1
|
Balba NM, Elliott JE, Weymann KB, Opel RA, Duke JW, Oken BS, Morasco BJ, Heinricher MM, Lim MM. Increased Sleep Disturbances and Pain in Veterans With Comorbid Traumatic Brain Injury and Posttraumatic Stress Disorder. J Clin Sleep Med 2018; 14:1865-1878. [PMID: 30373686 DOI: 10.5664/jcsm.7482] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
STUDY OBJECTIVES Veterans are at an increased risk for traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD), both of which are associated with sleep disturbances and increased pain. Furthermore, sleep disturbances and pain are reciprocally related such that each can exacerbate the other. Although both TBI and PTSD are independently linked to sleep disturbances and pain, it remains unclear whether Veterans with comorbid TBI+PTSD show worse sleep disturbances and pain compared to those with only TBI or PTSD. We hypothesized that sleep and pain would be worse in Veterans with comorbid TBI+PTSD compared to Veterans with only TBI or PTSD. METHODS Veterans (n = 639) from the VA Portland Health Care System completed overnight polysomnography and self-report questionnaires. Primary outcome variables were self-reported sleep disturbances and current pain intensity. Participants were categorized into four trauma-exposure groups: (1) neither: without TBI or PTSD (n = 383); (2) TBI: only TBI (n = 67); (3) PTSD: only PTSD (n = 126); and (4) TBI+PTSD: TBI and PTSD (n = 63). RESULTS The PTSD and TBI+PTSD groups reported worse sleep compared to the TBI and neither groups. The TBI+PTSD group reported the greatest pain intensity compared to the other groups. CONCLUSIONS These data suggest sleep and pain are worst in Veterans with TBI and PTSD, and that sleep is similarly impaired in Veterans with PTSD despite not having as much pain. Thus, although this is a complex relationship, these data suggest PTSD may be driving sleep disturbances, and the added effect of TBI in the comorbid group may be driving pain in this population.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
51 |
2
|
Elliott JE, Duke JW, Hawn JA, Halliwill JR, Lovering AT. Increased cardiac output, not pulmonary artery systolic pressure, increases intrapulmonary shunt in healthy humans breathing room air and 40% O2. J Physiol 2014; 592:4537-53. [PMID: 25085889 DOI: 10.1113/jphysiol.2014.274829] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Blood flow through intrapulmonary arteriovenous anastomoses (IPAVAs) has been demonstrated to increase in healthy humans during a variety of conditions; however, whether or not this blood flow represents a source of venous admixture (Q̇ VA /Q̇T) that impairs pulmonary gas exchange efficiency (i.e. increases the alveolar-to-arterial PO2 difference (A-aDO2)) remains controversial and unknown. We hypothesized that blood flow through IPAVAs does provide a source of Q̇ VA /Q̇T. To test this, blood flow through IPAVAs was increased in healthy humans at rest breathing room air and 40% O2: (1) during intravenous adrenaline (epinephrine) infusion at 320 ng kg(-1) min(-1) (320 ADR), and (2) with vagal blockade (2 mg atropine), before and during intravenous adrenaline infusion at 80 ng kg(-1) min(-1) (ATR + 80 ADR). When breathing room air the A-aDO2 increased by 6 ± 2 mmHg during 320 ADR and by 5 ± 2 mmHg during ATR + 80 ADR, and the change in calculated Q̇ VA /Q̇T was +2% in both conditions. When breathing 40% O2, which minimizes contributions from diffusion limitation and alveolar ventilation-to-perfusion inequality, the A-aDO2 increased by 12 ± 7 mmHg during 320 ADR, and by 9 ± 6 mmHg during ATR + 80 ADR, and the change in calculated Q̇ VA /Q̇T was +2% in both conditions. During 320 ADR cardiac output (Q̇T) and pulmonary artery systolic pressure (PASP) were significantly increased; however, during ATR + 80 ADR only Q̇T was significantly increased, yet blood flow through IPAVAs as detected with saline contrast echocardiography was not different between conditions. Accordingly, we suggest that blood flow through IPAVAs provides a source of intrapulmonary shunt, and is mediated primarily by increases in Q̇T rather than PASP.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
38 |
3
|
Duke JW, Gladstone IM, Sheel AW, Lovering AT. Premature birth affects the degree of airway dysanapsis and mechanical ventilatory constraints. Exp Physiol 2017; 103:261-275. [PMID: 29193495 DOI: 10.1113/ep086588] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/10/2017] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Adult survivors of preterm birth without (PRE) and with bronchopulmonary dysplasia (BPD) have airflow obstruction at rest and significant mechanical ventilatory constraints during exercise compared with those born at full term (CON). Do PRE/BPD have smaller airways, indexed via the dysanapsis ratio, than CON? What is the main finding and its importance? The dysanapsis ratio was significantly smaller in BPD and PRE compared with CON, with BPD having the smallest dysanapsis ratio. These data suggest that airflow obstruction in PRE and BPD might be because of smaller airways than CON. Adult survivors of very preterm birth (≤32 weeks gestational age) without (PRE) and with bronchopulmonary dysplasia (BPD) have obstructive lung disease as evidenced by reduced expiratory airflow at rest and have significant mechanical ventilatory constraints during exercise. Airflow obstruction, in any conditions, could be attributable to several factors, including small airways. PRE and/or BPD could have smaller airways than their counterparts born at full term (CON) owing to a greater degree of dysanaptic airway development during the pre- and/or postnatal period. Thus, the purpose of the present study was to compare the dysanapsis ratio (DR), as an index of airway size, between PRE, BPD and CON. To do so, we calculated DR in PRE (n = 21), BPD (n = 14) and CON (n = 34) individuals and examined flow-volume loops at rest and during submaximal exercise. The DR, using multiple estimates of static recoil pressure, was significantly smaller in PRE and BPD (0.16 ± 0.05 and 0.10 ± 0.03 a.u.) compared with CON (0.22 ± 0.04 a.u.; both P < 0.001) and smallest in BPD (P < 0.001). The DR was significantly correlated with peak expiratory airflow at rest (r = 0.42; P < 0.001) and the extent of expiratory flow limitation during exercise (r = 0.60; P < 0.001). Our findings suggest that PRE/BPD might have anatomically smaller airways than CON, which might help to explain their lower expiratory airflow rate at rest and during exercise and further our understanding of the consequences of preterm birth and neonatal O2 therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
37 |
4
|
Duke JW, Elliott JE, Laurie SS, Beasley KM, Mangum TS, Hawn JA, Gladstone IM, Lovering AT. Pulmonary gas exchange efficiency during exercise breathing normoxic and hypoxic gas in adults born very preterm with low diffusion capacity. J Appl Physiol (1985) 2014; 117:473-81. [DOI: 10.1152/japplphysiol.00307.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adults with a history of very preterm birth (<32 wk gestational age; PRET) have reduced lung function and significantly lower lung diffusion capacity for carbon monoxide (DLCO) relative to individuals born at term (CONT). Low DLCO may predispose PRET to diffusion limitation during exercise, particularly while breathing hypoxic gas because of a reduced O2 driving gradient and pulmonary capillary transit time. We hypothesized that PRET would have significantly worse pulmonary gas exchange efficiency [i.e., increased alveolar-to-arterial Po2 difference (AaDO2)] during exercise breathing room air or hypoxic gas (FiO2 = 0.12) compared with CONT. To test this hypothesis, we compared the AaDO2 in PRET ( n = 13) with a clinically mild reduction in DLCO (72 ± 7% of predicted) and CONT ( n = 14) with normal DLCO (105 ± 10% of predicted) pre- and during exercise breathing room air and hypoxic gas. Measurements of temperature-corrected arterial blood gases, and direct measure of O2 saturation (SaO2), were made prior to and during exercise at 25, 50, and 75% of peak oxygen consumption (V̇o2peak) while breathing room air and hypoxic gas. In addition to DLCO, pulmonary function and exercise capacity were significantly less in PRET. Despite PRET having low DLCO, no differences were observed in the AaDO2 or SaO2 pre- or during exercise breathing room air or hypoxic gas compared with CONT. Although our findings were unexpected, we conclude that reduced pulmonary function and low DLCO resulting from very preterm birth does not cause a measureable reduction in pulmonary gas exchange efficiency.
Collapse
|
|
11 |
34 |
5
|
Duke JW, Lewandowski AJ, Abman SH, Lovering AT. Physiological aspects of cardiopulmonary dysanapsis on exercise in adults born preterm. J Physiol 2022; 600:463-482. [PMID: 34961925 PMCID: PMC9036864 DOI: 10.1113/jp281848] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/03/2021] [Indexed: 02/03/2023] Open
Abstract
Progressive improvements in perinatal care and respiratory management of preterm infants have resulted in increased survival of newborns of extremely low gestational age over the past few decades. However, the incidence of bronchopulmonary dysplasia, the chronic lung disease after preterm birth, has not changed. Studies of the long-term follow-up of adults born preterm have shown persistent abnormalities of respiratory, cardiovascular and cardiopulmonary function, possibly leading to a lower exercise capacity. The underlying causes of these abnormalities are incompletely known, but we hypothesize that dysanapsis, i.e. discordant growth and development, in the respiratory and cardiovascular systems is a central structural feature that leads to a lower exercise capacity in young adults born preterm than those born at term. We discuss how the hypothesized system dysanapsis underscores the observed respiratory, cardiovascular and cardiopulmonary limitations. Specifically, adults born preterm have: (1) normal lung volumes but smaller airways, which causes expiratory airflow limitation and abnormal respiratory mechanics but without impacts on pulmonary gas exchange efficiency; (2) normal total cardiac size but smaller cardiac chambers; and (3) in some cases, evidence of pulmonary hypertension, particularly during exercise, suggesting a reduced pulmonary vascular capacity despite reduced cardiac output. We speculate that these underlying developmental abnormalities may accelerate the normal age-associated decline in exercise capacity, via an accelerated decline in respiratory, cardiovascular and cardiopulmonary function. Finally, we suggest areas of future research, especially the need for longitudinal and interventional studies from infancy into adulthood to better understand how preterm birth alters exercise capacity across the lifespan.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
28 |
6
|
Lovering AT, Duke JW, Elliott JE. Intrapulmonary arteriovenous anastomoses in humans--response to exercise and the environment. J Physiol 2015; 593:507-20. [PMID: 25565568 DOI: 10.1113/jphysiol.2014.275495] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 12/05/2014] [Indexed: 12/17/2022] Open
Abstract
Intrapulmonary arteriovenous anastomoses (IPAVA) have been known to exist in human lungs for over 60 years. The majority of the work in this area has largely focused on characterizing the conditions in which IPAVA blood flow (Q̇IPAVA ) is either increased, e.g. during exercise, acute normobaric hypoxia, and the intravenous infusion of catecholamines, or absent/decreased, e.g. at rest and in all conditions with alveolar hyperoxia (FIO2 = 1.0). Additionally, Q̇IPAVA is present in utero and shortly after birth, but is reduced in older (>50 years) adults during exercise and with alveolar hypoxia, suggesting potential developmental origins and an effect of age. The physiological and pathophysiological roles of Q̇IPAVA are only beginning to be understood and therefore these data remain controversial. Although evidence is accumulating in support of important roles in both health and disease, including associations with pulmonary arterial pressure, and adverse neurological sequelae, there is much work that remains to be done to fully understand the physiological and pathophysiological roles of IPAVA. The development of novel approaches to studying these pathways that can overcome the limitations of the currently employed techniques will greatly help to better quantify Q̇IPAVA and identify the consequences of Q̇IPAVA on physiological and pathophysiological processes. Nevertheless, based on currently published data, our proposed working model is that Q̇IPAVA occurs due to passive recruitment under conditions of exercise and supine body posture, but can be further modified by active redistribution of pulmonary blood flow under hypoxic and hyperoxic conditions.
Collapse
|
Review |
10 |
26 |
7
|
Cameron Norris H, Mangum TS, Duke JW, Straley TB, Hawn JA, Goodman RD, Lovering AT. Exercise- and hypoxia-induced blood flow through intrapulmonary arteriovenous anastomoses is reduced in older adults. J Appl Physiol (1985) 2014; 116:1324-33. [DOI: 10.1152/japplphysiol.01125.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mean pulmonary arterial pressure (Ppa) during exercise is significantly higher in individuals aged ≥50 yr compared with their younger counterparts, but the reasons for this are unknown. Blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) can be detected during exercise or while breathing hypoxic gas mixtures using saline contrast echocardiography in almost all healthy young individuals. It has been previously hypothesized that a lower degree of exercise-induced blood flow through IPAVA is associated with high Ppa during exercise. This association may suggest that individuals who are known to have high Ppa during exercise, such as those ≥50 yr of age, may have lower blood flow through IPAVA, but the presence and degree of exercise-induced blood flow through IPAVA has not been specifically studied in older populations. Using transthoracic saline contrast echocardiography, we investigated the potential effects of age on exercise-induced blood flow through IPAVA in a cross-section of subjects aged 19–72 yr. To verify our findings, we assessed the effects of age on hypoxia-induced blood flow through IPAVA. Age groups were ≤41 yr (younger, n = 16) and ≥50 yr (older, n = 14). Qualitatively measured exercise- and hypoxia-induced blood flow through IPAVA was significantly lower in older individuals compared with younger controls. Older individuals also had significantly higher pulmonary arterial systolic pressure and total pulmonary resistance (TPR) during exercise. Low blood flow through IPAVA was independently associated with high TPR. The reasons for the age-related decrease in blood flow through IPAVA are unknown.
Collapse
|
|
11 |
26 |
8
|
Duke JW, Davis JT, Ryan BJ, Elliott JE, Beasley KM, Hawn JA, Byrnes WC, Lovering AT. Decreased arterial PO2, not O2 content, increases blood flow through intrapulmonary arteriovenous anastomoses at rest. J Physiol 2016; 594:4981-96. [PMID: 27062157 DOI: 10.1113/jp272211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/23/2016] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS The mechanism(s) that regulate hypoxia-induced blood flow through intrapulmonary arteriovenous anastomoses (QIPAVA ) are currently unknown. Our previous work has demonstrated that the mechanism of hypoxia-induced QIPAVA is not simply increased cardiac output, pulmonary artery systolic pressure or sympathetic nervous system activity and, instead, it may be a result of hypoxaemia directly. To determine whether it is reduced arterial PO2 (PaO2) or O2 content (CaO2) that causes hypoxia-induced QIPAVA , individuals were instructed to breathe room air and three levels of hypoxic gas at rest before (control) and after CaO2 was reduced by 10% by lowering the haemoglobin concentration (isovolaemic haemodilution; Low [Hb]). QIPAVA , assessed by transthoracic saline contrast echocardiography, significantly increased as PaO2 decreased and, despite reduced CaO2 (via isovolaemic haemodilution), was similar at iso-PaO2. These data suggest that, with alveolar hypoxia, low PaO2 causes the hypoxia-induced increase in QIPAVA , although where and how this is detected remains unknown. ABSTRACT Alveolar hypoxia causes increased blood flow through intrapulmonary arteriovenous anastomoses (QIPAVA ) in healthy humans at rest. However, it is unknown whether the stimulus regulating hypoxia-induced QIPAVA is decreased arterial PO2 (PaO2) or O2 content (CaO2). CaO2 is known to regulate blood flow in the systemic circulation and it is suggested that IPAVA may be regulated similar to the systemic vasculature. Thus, we hypothesized that reduced CaO2 would be the stimulus for hypoxia-induced QIPAVA . Blood volume (BV) was measured using the optimized carbon monoxide rebreathing method in 10 individuals. Less than 5 days later, subjects breathed room air, as well as 18%, 14% and 12.5% O2 , for 30 min each, in a randomized order, before (CON) and after isovolaemic haemodilution (10% of BV withdrawn and replaced with an equal volume of 5% human serum albumin-saline mixture) to reduce [Hb] (Low [Hb]). PaO2 was measured at the end of each condition and QIPAVA was assessed using transthoracic saline contrast echocardiography. [Hb] was reduced from 14.2 ± 0.8 to 12.8 ± 0.7 g dl(-1) (10 ± 2% reduction) from CON to Low [Hb] conditions. PaO2 was no different between CON and Low [Hb], although CaO2 was 10.4%, 9.2% and 9.8% lower at 18%, 14% and 12.5% O2 , respectively. QIPAVA significantly increased as PaO2 decreased and, despite reduced CaO2, was similar at iso-PaO2. These data suggest that, with alveolar hypoxia, low PaO2 causes the hypoxia-induced increase in QIPAVA . Whether the low PO2 is detected at the carotid body, airway and/or the vasculature remains unknown.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
25 |
9
|
Laurie SS, Elliott JE, Beasley KM, Mangum TS, Goodman RD, Duke JW, Gladstone IM, Lovering AT. Exaggerated Increase in Pulmonary Artery Pressure during Exercise in Adults Born Preterm. Am J Respir Crit Care Med 2018; 197:821-823. [DOI: 10.1164/rccm.201704-0740le] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
|
7 |
23 |
10
|
Lane AR, Duke JW, Hackney AC. Influence of dietary carbohydrate intake on the free testosterone: cortisol ratio responses to short-term intensive exercise training. Eur J Appl Physiol 2009; 108:1125-31. [PMID: 20091182 DOI: 10.1007/s00421-009-1220-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2009] [Indexed: 11/26/2022]
Abstract
This study examined the effect of dietary carbohydrate (CHO) consumption on the free testosterone to cortisol (fTC) ratio during a short-term intense micro-cycle of exercise training. The fTC ratio is a proposed biomarker for overreaching-overtraining (i.e., training stress or imbalance) in athletes. The ratio was studied in two groups, control-CHO (approximately 60% of daily intake, n = 12) and low-CHO (approximately 30% of daily intake, n = 8), of male subjects who performed three consecutive days of intensive training (approximately 70-75% maximal oxygen consumption, 60 min per day) with a dietary intervention (on the day before and during training). Resting, pre-exercise blood samples were collected under standardized-controlled conditions before each day of training (Pre 1, 2, 3) and on a fourth day after the micro-cycle (Rest). Bloods were analyzed for free testosterone and cortisol via radioimmunoassay procedures. Subjects performed no additional physical activity other than prescribed training. Statistical analysis (ANCOVA) revealed the fTC ratio decreased significantly (p < 0.01) from pre-study resting measurement (Pre 1) to the final post-study resting measurement (Rest) in the low-CHO group (-43%), but no change occurred (p > 0.05) in the control-CHO group (-3%). Findings suggest if the fTC ratio is utilized as a marker of training stress or imbalance it is necessary for a moderately high diet of CHO to be consumed to maintain validity of any observed changes in the ratio value.
Collapse
|
Journal Article |
16 |
20 |
11
|
Tanner DA, Duke JW, Stager JM. Ventilatory patterns differ between maximal running and cycling. Respir Physiol Neurobiol 2013; 191:9-16. [PMID: 24211317 DOI: 10.1016/j.resp.2013.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 10/26/2022]
Abstract
To determine the effect of exercise mode on ventilatory patterns, 22 trained men performed two maximal graded exercise tests; one running on a treadmill and one cycling on an ergometer. Tidal flow-volume (FV) loops were recorded during each minute of exercise with maximal loops measured pre and post exercise. Running resulted in a greater VO2peak than cycling (62.7±7.6 vs. 58.1±7.2mLkg(-1)min(-1)). Although maximal ventilation (VE) did not differ between modes, ventilatory equivalents for O2 and CO2 were significantly larger during maximal cycling. Arterial oxygen saturation (estimated via ear oximeter) was also greater during maximal cycling, as were end-expiratory (EELV; 3.40±0.54 vs. 3.21±0.55L) and end-inspiratory lung volumes, (EILV; 6.24±0.88 vs. 5.90±0.74L). Based on these results we conclude that ventilatory patterns differ as a function of exercise mode and these observed differences are likely due to the differences in posture adopted during exercise in these modes.
Collapse
|
Journal Article |
12 |
19 |
12
|
Duke JW, Lovering AT. Respiratory and cardiopulmonary limitations to aerobic exercise capacity in adults born preterm. J Appl Physiol (1985) 2020; 129:718-724. [PMID: 32790592 DOI: 10.1152/japplphysiol.00419.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Adults born preterm, regardless of whether they develop bronchopulmonary dysplasia, have underdeveloped respiratory and cardiopulmonary systems. The resulting impaired respiratory and cardiopulmonary systems are inadequate for the challenges imposed by aerobic exercise, which is exacerbated by the presence of bronchopulmonary dysplasia. Thus the respiratory and cardiopulmonary systems of these preterm individuals may be the most influential contributors to the significantly lower aerobic exercise capacity compared with their term born counterparts. The precise underlying cause(s) of the lower aerobic exercise capacity in adults born preterm is not entirely known but could be a number of interrelated parameters including mechanical ventilatory constraints, impaired pulmonary gas exchange efficiency, and excessive cardiopulmonary pressures. Likewise, additional aspects, such as impaired cardiovascular function and altered muscle bioenergetics, may play additional roles in limiting aerobic exercise capacity. Whether or not all or some of these aspects are present in adults born preterm and precisely how they may contribute to the lower aerobic exercise capacity are only beginning to be systematically explored. The purpose of this mini-review is to outline what is currently known about the respiratory and cardiopulmonary limitations during exercise in this population and to identify key areas where additional knowledge will help to advance this area. Additionally, where possible, we highlight the similarities and differences between obstructive lung disease resulting from preterm birth and chronic obstructive pulmonary disease (COPD) as the physiology and pathophysiology of these two forms of obstructive lung disease may not be identical.
Collapse
|
Review |
5 |
17 |
13
|
Duke JW, Elliott JE, Lovering AT. Clinical consideration for techniques to detect and quantify blood flow through intrapulmonary arteriovenous anastomoses: lessons from physiological studies. Echocardiography 2015; 32 Suppl 3:S195-204. [PMID: 25693624 DOI: 10.1111/echo.12839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Intrapulmonary arteriovenous anastomoses (IPAVA) are large diameter (>50 μm) vascular conduits, present in >95% of healthy humans. Because IPAVA are large diameter pathways that allow blood flow to bypass the pulmonary capillary network, blood flow through IPAVA (QIPAVA) can permit the transpulmonary passage of particles larger than pulmonary capillaries. IPAVA have been known to exist for over 50 years, but their physiological and clinical significance are still being established; although, currently suggested roles for QIPAVA include allowing emboli to reach the systemic circulation and providing a source of shunt. Studying QIPAVA is an important area of research and as the suggested roles become better established, detecting and quantifying QIPAVA may become significantly more important in the clinic. Several techniques that can be used to quantify and/or detect QIPAVA in animals, ex vivo human/animal lungs, and intact healthy humans; microspheres, radiolabeled macroaggregated albumin particles, and saline contrast echocardiography, are reviewed with limitations and advantages to each. The current body of literature using these techniques to study QIPAVA in animals, ex vivo lungs, and healthy humans has established conditions when QIPAVA is present, such as during exercise or with arterial hypoxemia and conditions when QIPAVA is absent, such as at rest or during exercise breathing 100% O2 . Many of these physiological studies have direct application to patient populations and we discuss each of these findings in the context of their potential to influence the clinical utility, and interpretation, of the results from these techniques highlighted in this review.
Collapse
|
Review |
10 |
15 |
14
|
Duke JW, Stickford JL, Weavil JC, Chapman RF, Stager JM, Mickleborough TD. Operating lung volumes are affected by exercise mode but not trunk and hip angle during maximal exercise. Eur J Appl Physiol 2014; 114:2387-97. [DOI: 10.1007/s00421-014-2956-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 07/12/2014] [Indexed: 10/25/2022]
|
|
11 |
13 |
15
|
Kohn P, Dawes ED, Duke JW. Absorption of carbohydrates from the intestine of the rat. BIOCHIMICA ET BIOPHYSICA ACTA 1965; 107:358-62. [PMID: 5880559 DOI: 10.1016/0304-4165(65)90142-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
|
60 |
12 |
16
|
Duke JW, Lovering AT, Goss KN. Premature Aging and Increased Risk of Adult Cardiorespiratory Disease after Extreme Preterm Birth. Getting to the Heart (and Lungs) of the Matter. Am J Respir Crit Care Med 2020; 202:319-320. [PMID: 32407162 PMCID: PMC7397806 DOI: 10.1164/rccm.202004-1437ed] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
Comment |
5 |
8 |
17
|
Duke JW, Zidron AM, Gladstone IM, Lovering AT. Alleviating mechanical constraints to ventilation with heliox improves exercise endurance in adult survivors of very preterm birth. Thorax 2018; 74:302-304. [DOI: 10.1136/thoraxjnl-2018-212346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/17/2018] [Accepted: 08/27/2018] [Indexed: 11/04/2022]
Abstract
Adult survivors of very preterm birth (PRET) have significantly lower aerobic exercise capacities than their counterparts born at term (CONT), but the underlying cause is unknown. To test whether expiratory flow limitation (EFL) during exercise negatively affects exercise endurance in PRET, we had PRET and CONT exercise to exhaustion breathing air and again breathing heliox. In PRET, EFL decreased and time-to-exhaustion increased significantly while breathing heliox. Heliox had a minimal effect on EFL and had no effect on time-to-exhaustion in CONT. We conclude that aerobic exercise endurance in PRET is limited, in part, by mechanical ventilatory constraints, specifically EFL.
Collapse
|
|
7 |
7 |
18
|
Duke JW, Elliott JE, Laurie SS, Voelkel T, Gladstone IM, Fish MB, Lovering AT. Bubble and macroaggregate methods differ in detection of blood flow through intrapulmonary arteriovenous anastomoses in upright and supine hypoxia in humans. J Appl Physiol (1985) 2017; 123:1592-1598. [PMID: 28970204 DOI: 10.1152/japplphysiol.00673.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Blood flow through intrapulmonary arteriovenous anastomoses (Q̇IPAVA) increases in healthy humans breathing hypoxic gas and is potentially dependent on body position. Previous work in subjects breathing room air has shown an effect of body position when Q̇IPAVA is detected with transthoracic saline contrast echocardiography (TTSCE). However, the potential effect of body position on Q̇IPAVA has not been investigated when subjects are breathing hypoxic gas or with a technique capable of quantifying Q̇IPAVA. Thus the purpose of this study was to quantify the effect of body position on Q̇IPAVA when breathing normoxic and hypoxic gas at rest. We studied Q̇IPAVA with TTSCE and quantified Q̇IPAVA with filtered technetium-99m-labeled macroaggregates of albumin (99mTc-MAA) in seven healthy men breathing normoxic and hypoxic (12% O2) gas at rest while supine and upright. On the basis of previous work using TTSCE, we hypothesized that the quantified Q̇IPAVA would be greatest with hypoxia in the supine position. We found that Q̇IPAVA quantified with 99mTc-MAA significantly increased while subjects breathed hypoxic gas in both supine and upright body positions (ΔQ̇IPAVA = 0.7 ± 0.4 vs. 2.5 ± 1.1% of cardiac output, respectively). Q̇IPAVA detected with TTSCE increased from normoxia in supine hypoxia but not in upright hypoxia (median hypoxia bubble score of 2 vs. 0, respectively). Surprisingly, Q̇IPAVA magnitude was greatest in upright hypoxia, when Q̇IPAVA was undetectable with TTSCE. These findings suggest that the relationship between TTSCE and 99mTc-MAA is more complex than previously appreciated, perhaps because of the different physical properties of bubbles and MAA in solution. NEW & NOTEWORTHY Using saline contrast bubbles and radiolabeled macroaggregrates (MAA), we detected and quantified, respectively, hypoxia-induced blood flow through intrapulmonary arteriovenous anastomoses (Q̇IPAVA) in supine and upright body positions in healthy men. Upright hypoxia resulted in the largest magnitude of Q̇IPAVA quantified with MAA but the lowest Q̇IPAVA detected with saline contrast bubbles. These surprising results suggest that the differences in physical properties between saline contrast bubbles and MAA in blood may affect their behavior in vivo.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
8 |
5 |
19
|
Molgat-Seon Y, Dominelli PB, Peters CM, Guenette JA, Sheel AW, Gladstone IM, Lovering AT, Duke JW. Analysis of maximal expiratory flow-volume curves in adult survivors of preterm birth. Am J Physiol Regul Integr Comp Physiol 2019; 317:R588-R596. [PMID: 31433666 DOI: 10.1152/ajpregu.00114.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adult survivors of very preterm (≤32 wk gestational age) birth without (PRE) and with bronchopulmonary dysplasia (BPD) have variable degrees of airflow obstruction at rest. Assessment of the shape of the maximal expiratory flow-volume (MEFV) curve in PRE and BPD may provide information concerning their unique pattern of airflow obstruction. The purposes of the present study were to 1) quantitatively assess the shape of the MEFV curve in PRE, BPD, and healthy adults born at full-term (CON), 2) identify where along the MEFV curve differences in shape existed between groups, and 3) determine the association between an index of MEFV curve shape and characteristics of preterm birth (i.e., gestational age, mass at birth, duration of oxygen therapy) in PRE and BPD. To do so, we calculated the average slope ratio (SR) throughout the effort-independent portion of the MEFV curve and at increments of 5% of forced vital capacity (FVC) between 20 and 80% of FVC in PRE (n = 19), BPD (n = 25), and CON (n = 20). We found that average SR was significantly higher in PRE (1.34 ± 0.35) and BPD (1.33 ± 0.45) compared with CON (1.03 ± 0.22; both P < 0.05) but similar between PRE and BPD (P = 0.99). Differences in SR between groups occurred early in expiration (i.e., 20-30% of FVC). There was no association between SR and characteristics of preterm birth in PRE and BPD groups (all P > 0.05). The mechanism(s) of increased SR during early expiration in PRE/BPD relative to CON is unknown but may be due to differences in the structural and mechanical properties of the airways.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
5 |
20
|
Duke JW, Beasley KM, Speros JP, Elliott JE, Laurie SS, Goodman RD, Futral E, Hawn JA, Lovering AT. Impaired pulmonary gas exchange efficiency, but normal pulmonary artery pressure increases, with hypoxia in men and women with a patent foramen ovale. Exp Physiol 2020; 105:1648-1659. [PMID: 32627890 DOI: 10.1113/ep088750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/30/2020] [Indexed: 01/07/2023]
Abstract
NEW FINDINGS What is the central question of this study? Do individuals with a patent foramen ovale (PFO+ ) have a larger alveolar-to-arterial difference in P O 2 ( A - a D O 2 ) than those without (PFO- ) and/or an exaggerated increase in pulmonary artery systolic pressure (PASP) in response to hypoxia? What is the main finding and its importance? PFO+ had a greater A - a D O 2 while breathing air, 16% and 14% O2 , but not 12% or 10% O2 . PASP increased equally in hypoxia between PFO+ and PFO- . These data suggest that PFO+ may not have an exaggerated acute increase in PASP in response to hypoxia. ABSTRACT Patent foramen ovale (PFO) is present in 30-40% of the population and is a potential source of right-to-left shunt. Accordingly, those with a PFO (PFO+ ) may have a larger alveolar-to-arterial difference in P O 2 ( A - a D O 2 ) than those without (PFO- ) in normoxia and with mild hypoxia. Likewise, PFO is associated with high-altitude pulmonary oedema, a condition known to have an exaggerated pulmonary pressure response to hypoxia. Thus, PFO+ may also have exaggerated pulmonary pressure increases in response to hypoxia. Therefore, the purposes of the present study were to systematically determine whether or not: (1) the A - a D O 2 was greater in PFO+ than in PFO- in normoxia and mild to severe hypoxia and (2) the increase in pulmonary artery systolic pressure (PASP) in response to hypoxia was greater in PFO+ than in PFO- . We measured arterial blood gases and PASP via ultrasound in healthy PFO+ (n = 15) and PFO- (n = 15) humans breathing air and 30 min after breathing four levels of hypoxia (16%, 14%, 12%, 10% O2 , randomized and balanced order) at rest. The A - a D O 2 was significantly greater in PFO+ compared to PFO- while breathing air (2.1 ± 0.7 vs. 0.4 ± 0.3 Torr), 16% O2 (1.8 ± 1.2 vs. 0.7 ± 0.8 Torr) and 14% O2 (2.3 ± 1.2 vs. 0.7 ± 0.6 Torr), but not 12% or 10% O2 . We found no effect of PFO on PASP at any level of hypoxia. We conclude that PFO influences pulmonary gas exchange efficiency with mild hypoxia, but not the acute increase in PASP in response to hypoxia.
Collapse
|
|
5 |
4 |
21
|
Duke JW, Elliott JE, Laurie SS, Voelkel T, Gladstone IM, Fish MB, Lovering AT. Relationship between quantitative and descriptive methods of studying blood flow through intrapulmonary arteriovenous anastomoses during exercise. Respir Physiol Neurobiol 2017; 243:47-54. [PMID: 28536067 DOI: 10.1016/j.resp.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Several methods exist to study intrapulmonary arteriovenous anastomoses (IPAVA) in humans. Transthoracic saline contrast echocardiography (TTSCE), i.e., bubble scores, is minimally-invasive, but cannot be used to quantify the magnitude of blood flow through IPAVA (QIPAVA). Radiolabeled macroaggregates of albumin (99mTc-MAA) have been used to quantify QIPAVA in humans, but this requires injection of radioactive particles. Previous work has shown agreement between 99mTc-MAA and TTSCE, but this has not been tested simultaneously in the same group of subjects. Thus, the purpose of this study was to determine if there was a relationship between QIPAVA quantified with 99mTc-MAA and bubble scores obtained with TTSCE. To test this, we used 99mTc-MAA and TTSCE to quantify and detect QIPAVA at rest and during exercise in humans. QIPAVA significantly increased from rest to exercise using 99mTc-MAA and TTSCE and there was a moderately-strong, but significant relationship between methods. Our data suggest that high bubble scores generally correspond with large QIPAVA quantified with 99mTc-MAA during exercise.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
8 |
4 |
22
|
Cross TJ, Gideon EA, Morris SJ, Coriell CL, Hubbard CD, Duke JW. A comparison of methods used to quantify the work of breathing during exercise. J Appl Physiol (1985) 2021; 131:1123-1133. [PMID: 34410846 DOI: 10.1152/japplphysiol.00411.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanical work of breathing (Wb) is an insightful tool used to assess respiratory mechanics during exercise. There are several different methods used to calculate the Wb, however, each approach having its own distinct advantages/disadvantages. To date, a comprehensive assessment of the differences in the components of Wb between these methods is lacking. We therefore sought to compare the values of Wb during graded exercise as determined via the four most popular methods: 1) pressure-volume integration; 2) the Hedstrand diagram; 3) the Otis diagram; and the 4) modified Campbell diagram. Forty-two participants (30 ± 15 yr; 16 women) performed graded cycling to volitional exhaustion. Esophageal pressure-volume loops were obtained throughout exercise. These data were used to calculate the total Wb and, where possible, its subcomponents of inspiratory and expiratory, resistive and elastic Wb, using each of the four methods. Our results demonstrate that the components of Wb were indeed different between methods across the minute ventilations engendered by graded exercise. Importantly, however, no systematic pattern in these differences could be observed. Our findings indicate that the values of Wb obtained during exercise are uniquely determined by the specific method chosen to compute its value-no two methods yield identical results. Because there is currently no "gold-standard" for measuring the Wb, it is emphasized that future investigators be cognizant of the limitations incurred by their chosen method, such that observations made by others may be interpreted with greater context, and transparency.NEW & NOTEWORTHY The measurement of the work of breathing (Wb) during exercise provides us with deep insights into respiratory (patho)physiology, and sheds light on the putative factors which lead to respiratory muscle fatigue. There are 4 popular methods available to determine the Wb. Our study demonstrates that no two of these methods produce identical values of Wb during exercise. This paper also discusses the practical and theoretical limitations of each method.
Collapse
|
|
4 |
4 |
23
|
Foster GE, Bain AR, Tremblay JC, Boulet LM, Lemaitre F, Madden D, Dujic Z, Barak O, Boussuges A, Gavarry O, Duke JW, Elliott JE, Laurie SS, Lovering AT, Balestra C, Eichhorn L, Vagula MC, Fitz-Clarke JR, Muth CM. Commentaries on Viewpoint: Why predominantly neurological DCS in breath-hold divers? J Appl Physiol (1985) 2016; 120:1478-82. [PMID: 27306840 DOI: 10.1152/japplphysiol.00242.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
Letter |
9 |
4 |
24
|
Gideon EA, Cross TJ, Coriell CL, Duke JW. The effect of estimating chest wall compliance on the work of breathing during exercise as determined via the modified Campbell diagram. Am J Physiol Regul Integr Comp Physiol 2021; 320:R268-R275. [PMID: 33356877 DOI: 10.1152/ajpregu.00263.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The modified Campbell diagram provides one of the most comprehensive assessments of the work of breathing (Wb) during exercise, wherein the resistive and elastic work of inspiration and expiration are quantified. Importantly, a necessary step in constructing the modified Campbell diagram is to obtain a value for chest wall compliance (CCW). To date, it remains unknown whether estimating or directly measuring CCW impacts the Wb, as determined by the modified Campbell diagram. Therefore, the purpose of this study was to evaluate whether the components of the Wb differ when the modified Campbell diagram is constructed using an estimated versus measured value of CCW. Forty-two participants (n = 26 men, 16 women) performed graded exercise to volitional exhaustion on a cycle ergometer. CCW was measured directly at rest via quasistatic relaxation. Estimated values of CCW were taken from prior literature. The measured value of CCW was greater than that obtained via estimation (214 ± 52 mL/cmH2O vs. 189 ± 18 mL/cmH2O; P < 0.05). At modest-to-high minute ventilations (i.e., 50-200 L/min), the inspiratory elastic Wb was greater and expiratory resistive Wb was lower, when modified Campbell diagrams were constructed using estimated compared with measured values of CCW (P = 0.001). These differences were however small and never exceeded ±5%. Thus, although our findings demonstrate that estimating CCW has a measurable impact on the determination of the Wb, its effect appears relatively small within a cohort of healthy adults during graded exercise.
Collapse
|
|
4 |
3 |
25
|
DiMarco KG, Beasley KM, Shah K, Speros JP, Elliott JE, Laurie SS, Duke JW, Goodman RD, Futral JE, Hawn JA, Roach RC, Lovering AT. No effect of patent foramen ovale on acute mountain sickness and pulmonary pressure in normobaric hypoxia. Exp Physiol 2021; 107:122-132. [PMID: 34907608 DOI: 10.1113/ep089948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022]
Abstract
What is the central question to this study? Is there a relationship between a patent foramen ovale and the development of acute mountain sickness and an exaggerated increase in pulmonary pressure in response to 7-10 hours of normobaric hypoxia? What is the main finding and its importance? Patent foramen ovale presence did not increase susceptibility to acute mountain sickness or result in an exaggerated increase in pulmonary artery systolic pressure with normobaric hypoxia. This data suggest hypobaric hypoxia is integral to the increased susceptibility to acute mountain sickness previously reported in those with patent foramen ovale, and patent foramen ovale presence alone does not contribute to the hypoxic pulmonary pressor response. ABSTRACT: Acute mountain sickness (AMS) develops following rapid ascent to altitude, but its exact causes remain unknown. A patent foramen ovale (PFO) is a right-to-left intracardiac shunt present in ∼30% of the population that has been shown to increase AMS susceptibility with high altitude hypoxia. Additionally, high altitude pulmonary edema (HAPE), is a severe type of altitude illness characterized by an exaggerated pulmonary pressure response, and there is a greater prevalence of PFO in those with a history of HAPE. However, whether hypoxia, per se, is causing the increased incidence of AMS in those with a PFO and whether a PFO is associated with an exaggerated increase in pulmonary pressure in those without a history of HAPE is unknown. Participants (n = 36) matched for biological sex (18 female) and the presence or absence of a PFO (18 PFO+) were exposed to 7-10 hours of normobaric hypoxia equivalent to 4755 m. Presence and severity of AMS was determined using the Lake Louise AMS scoring system. Pulmonary artery systolic pressure, cardiac output, and total pulmonary resistance were measured using ultrasound. We found no significant association of PFO with incidence or severity of AMS and no association of PFO with arterial oxygen saturation. Additionally, there was no effect of a PFO on pulmonary pressure, cardiac output, or total pulmonary resistance. These data suggest that hypobaric hypoxia is necessary for those with a PFO to have increased incidence of AMS and that presence of PFO is not associated with an exaggerated pulmonary pressor response. This article is protected by copyright. All rights reserved.
Collapse
|
|
4 |
3 |