1
|
Weygand J, Fuller CD, Ibbott GS, Mohamed ASR, Ding Y, Yang J, Hwang KP, Wang J. Spatial Precision in Magnetic Resonance Imaging-Guided Radiation Therapy: The Role of Geometric Distortion. Int J Radiat Oncol Biol Phys 2016; 95:1304-16. [PMID: 27354136 DOI: 10.1016/j.ijrobp.2016.02.059] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/05/2016] [Accepted: 02/25/2016] [Indexed: 12/11/2022]
Abstract
Because magnetic resonance imaging-guided radiation therapy (MRIgRT) offers exquisite soft tissue contrast and the ability to image tissues in arbitrary planes, the interest in this technology has increased dramatically in recent years. However, intrinsic geometric distortion stemming from both the system hardware and the magnetic properties of the patient affects MR images and compromises the spatial integrity of MRI-based radiation treatment planning, given that for real-time MRIgRT, precision within 2 mm is desired. In this article, we discuss the causes of geometric distortion, describe some well-known distortion correction algorithms, and review geometric distortion measurements from 12 studies, while taking into account relevant imaging parameters. Eleven of the studies reported phantom measurements quantifying system-dependent geometric distortion, while 2 studies reported simulation data quantifying magnetic susceptibility-induced geometric distortion. Of the 11 studies investigating system-dependent geometric distortion, 5 reported maximum measurements less than 2 mm. The simulation studies demonstrated that magnetic susceptibility-induced distortion is typically smaller than system-dependent distortion but still nonnegligible, with maximum distortion ranging from 2.1 to 2.6 mm at a field strength of 1.5 T. As expected, anatomic landmarks containing interfaces between air and soft tissue had the largest distortions. The evidence indicates that geometric distortion reduces the spatial integrity of MRI-based radiation treatment planning and likely diminishes the efficacy of MRIgRT. Better phantom measurement techniques and more effective distortion correction algorithms are needed to achieve the desired spatial precision.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
123 |
2
|
Wang J, Weygand J, Hwang KP, Mohamed ASR, Ding Y, Fuller CD, Lai SY, Frank SJ, Zhou J. Magnetic Resonance Imaging of Glucose Uptake and Metabolism in Patients with Head and Neck Cancer. Sci Rep 2016; 6:30618. [PMID: 27461165 PMCID: PMC4962090 DOI: 10.1038/srep30618] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
Imaging metabolic dysfunction, a hallmark of solid tumors, usually requires radioactive tracers. Chemical exchange saturation transfer (CEST) imaging can potentially detect and visualize glucose uptake and metabolism, without the need for radioisotopes. Here, we tested the feasibility of using glucose CEST (glucoCEST) to image unlabeled glucose uptake in head and neck cancer by using a clinical 3T magnetic resonance imaging (MRI) scanner. The average CEST contrast between tumors and normal tissue in 17 patients was 7.58% (P = 0.006) in the 3–4 ppm offset frequency range and 5.06% (P = 0.02) in 1–5 ppm range. In a subgroup of eight patients, glucoCEST signal enhancement was higher in tumors than in normal muscle (4.98% vs. 1.28%, P < 0.021). We conclude that glucoCEST images of head and neck cancer can be obtained with a clinical 3T MRI scanner.
Collapse
|
Journal Article |
9 |
54 |
3
|
Frey HU, Amm O, Chaston CC, Fu S, Haerendel G, Juusola L, Karlsson T, Lanchester B, Nakamura R, Østgaard N, Sakanoi T, Séran E, Whiter D, Weygand J, Asamura K, Hirahara M. Small and meso-scale properties of a substorm onset auroral arc. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010ja015537] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
15 |
25 |
4
|
Dutta P, Perez MR, Lee J, Kang Y, Pratt M, Salzillo TC, Weygand J, Zacharias NM, Gammon ST, Koay EJ, Kim M, McAllister F, Sen S, Maitra A, Piwnica-Worms D, Fleming JB, Bhattacharya PK. Combining Hyperpolarized Real-Time Metabolic Imaging and NMR Spectroscopy To Identify Metabolic Biomarkers in Pancreatic Cancer. J Proteome Res 2019; 18:2826-2834. [PMID: 31120258 DOI: 10.1021/acs.jproteome.9b00132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer that progresses without any symptom, and oftentimes, it is detected at an advanced stage. The lack of prior symptoms and effective treatments have created a knowledge gap in the management of this lethal disease. This issue can be addressed by developing novel noninvasive imaging-based biomarkers in PDAC. We explored in vivo hyperpolarized (HP) 13C MRS of pyruvate to lactate conversion and ex vivo 1H NMR spectroscopy in a panel of well-annotated patient-derived PDAC xenograft (PDXs) model and investigated the correlation between aberrant glycolytic metabolism and aggressiveness of the tumor. Real-time metabolic imaging data demonstrate the immediate intracellular conversion of HP 13C pyruvate to lactate after intravenous injection interrogating upregulated lactate dehydrogenase (LDH) activity in aggressive PDXs. Total ex vivo lactate measurement by 1H NMR spectroscopy showed a direct correlation with in vivo dynamic pyruvate-to-lactate conversion and demonstrated the potential of dynamic metabolic flux as a biomarker of total lactate concentration and aggressiveness of the tumor. Furthermore, the metabolite concentrations were very distinct among all four tumor types analyzed in this study. Overexpression of LDH-A and hypoxia-inducible factor (HIF-1α) plays a significant role in the conversion kinetics of HP pyruvate-to-lactate in tumors. Collectively, these data identified aberrant metabolic characteristics of pancreatic cancer PDXs and could potentially delineate metabolic targets for therapeutic intervention. Metabolic imaging with HP pyruvate and NMR metabolomics may enable identification and classification of aggressive subtypes of patient-derived xenografts. Translation of this real-time metabolic technique to the clinic may have the potential to improve the management of patients at high risk of developing pancreatic diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
24 |
5
|
Salzillo TC, Hu J, Nguyen L, Whiting N, Lee J, Weygand J, Dutta P, Pudakalakatti S, Millward NZ, Gammon ST, Lang FF, Heimberger AB, Bhattacharya PK. Interrogating Metabolism in Brain Cancer. Magn Reson Imaging Clin N Am 2017; 24:687-703. [PMID: 27742110 DOI: 10.1016/j.mric.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article reviews existing and emerging techniques of interrogating metabolism in brain cancer from well-established proton magnetic resonance spectroscopy to the promising hyperpolarized metabolic imaging and chemical exchange saturation transfer and emerging techniques of imaging inflammation. Some of these techniques are at an early stage of development and clinical trials are in progress in patients to establish the clinical efficacy. It is likely that in vivo metabolomics and metabolic imaging is the next frontier in brain cancer diagnosis and assessing therapeutic efficacy; with the combined knowledge of genomics and proteomics a complete understanding of tumorigenesis in brain might be achieved.
Collapse
|
Review |
8 |
12 |
6
|
Bryant JM, Weygand J, Keit E, Cruz-Chamorro R, Sandoval ML, Oraiqat IM, Andreozzi J, Redler G, Latifi K, Feygelman V, Rosenberg SA. Stereotactic Magnetic Resonance-Guided Adaptive and Non-Adaptive Radiotherapy on Combination MR-Linear Accelerators: Current Practice and Future Directions. Cancers (Basel) 2023; 15:2081. [PMID: 37046741 PMCID: PMC10093051 DOI: 10.3390/cancers15072081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Stereotactic body radiotherapy (SBRT) is an effective radiation therapy technique that has allowed for shorter treatment courses, as compared to conventionally dosed radiation therapy. As its name implies, SBRT relies on daily image guidance to ensure that each fraction targets a tumor, instead of healthy tissue. Magnetic resonance imaging (MRI) offers improved soft-tissue visualization, allowing for better tumor and normal tissue delineation. MR-guided RT (MRgRT) has traditionally been defined by the use of offline MRI to aid in defining the RT volumes during the initial planning stages in order to ensure accurate tumor targeting while sparing critical normal tissues. However, the ViewRay MRIdian and Elekta Unity have improved upon and revolutionized the MRgRT by creating a combined MRI and linear accelerator (MRL), allowing MRgRT to incorporate online MRI in RT. MRL-based MR-guided SBRT (MRgSBRT) represents a novel solution to deliver higher doses to larger volumes of gross disease, regardless of the proximity of at-risk organs due to the (1) superior soft-tissue visualization for patient positioning, (2) real-time continuous intrafraction assessment of internal structures, and (3) daily online adaptive replanning. Stereotactic MR-guided adaptive radiation therapy (SMART) has enabled the safe delivery of ablative doses to tumors adjacent to radiosensitive tissues throughout the body. Although it is still a relatively new RT technique, SMART has demonstrated significant opportunities to improve disease control and reduce toxicity. In this review, we included the current clinical applications and the active prospective trials related to SMART. We highlighted the most impactful clinical studies at various tumor sites. In addition, we explored how MRL-based multiparametric MRI could potentially synergize with SMART to significantly change the current treatment paradigm and to improve personalized cancer care.
Collapse
|
Review |
2 |
5 |
7
|
Salzillo TC, Mawoneke V, Weygand J, Shetty A, Gumin J, Zacharias NM, Gammon ST, Piwnica-Worms D, Fuller GN, Logothetis CJ, Lang FF, Bhattacharya PK. Measuring the Metabolic Evolution of Glioblastoma throughout Tumor Development, Regression, and Recurrence with Hyperpolarized Magnetic Resonance. Cells 2021; 10:cells10102621. [PMID: 34685601 PMCID: PMC8534002 DOI: 10.3390/cells10102621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
Rapid diagnosis and therapeutic monitoring of aggressive diseases such as glioblastoma can improve patient survival by providing physicians the time to optimally deliver treatment. This research tested whether metabolic imaging with hyperpolarized MRI could detect changes in tumor progression faster than conventional anatomic MRI in patient-derived glioblastoma murine models. To capture the dynamic nature of cancer metabolism, hyperpolarized MRI, NMR spectroscopy, and immunohistochemistry were performed at several time-points during tumor development, regression, and recurrence. Hyperpolarized MRI detected significant changes of metabolism throughout tumor progression whereas conventional MRI was less sensitive. This was accompanied by aberrations in amino acid and phospholipid lipid metabolism and MCT1 expression. Hyperpolarized MRI can help address clinical challenges such as identifying malignant disease prior to aggressive growth, differentiating pseudoprogression from true progression, and predicting relapse. The individual evolution of these metabolic assays as well as their correlations with one another provides context for further academic research.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
3 |
8
|
Bryant JM, Doniparthi A, Weygand J, Cruz-Chamorro R, Oraiqat IM, Andreozzi J, Graham J, Redler G, Latifi K, Feygelman V, Rosenberg SA, Yu HHM, Oliver DE. Treatment of Central Nervous System Tumors on Combination MR-Linear Accelerators: Review of Current Practice and Future Directions. Cancers (Basel) 2023; 15:5200. [PMID: 37958374 PMCID: PMC10649155 DOI: 10.3390/cancers15215200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Magnetic resonance imaging (MRI) provides excellent visualization of central nervous system (CNS) tumors due to its superior soft tissue contrast. Magnetic resonance-guided radiotherapy (MRgRT) has historically been limited to use in the initial treatment planning stage due to cost and feasibility. MRI-guided linear accelerators (MRLs) allow clinicians to visualize tumors and organs at risk (OARs) directly before and during treatment, a process known as online MRgRT. This novel system permits adaptive treatment planning based on anatomical changes to ensure accurate dose delivery to the tumor while minimizing unnecessary toxicity to healthy tissue. These advancements are critical to treatment adaptation in the brain and spinal cord, where both preliminary MRI and daily CT guidance have typically had limited benefit. In this narrative review, we investigate the application of online MRgRT in the treatment of various CNS malignancies and any relevant ongoing clinical trials. Imaging of glioblastoma patients has shown significant changes in the gross tumor volume over a standard course of chemoradiotherapy. The use of adaptive online MRgRT in these patients demonstrated reduced target volumes with cavity shrinkage and a resulting reduction in radiation dose to uninvolved tissue. Dosimetric feasibility studies have shown MRL-guided stereotactic radiotherapy (SRT) for intracranial and spine tumors to have potential dosimetric advantages and reduced morbidity compared with conventional linear accelerators. Similarly, dosimetric feasibility studies have shown promise in hippocampal avoidance whole brain radiotherapy (HA-WBRT). Next, we explore the potential of MRL-based multiparametric MRI (mpMRI) and genomically informed radiotherapy to treat CNS disease with cutting-edge precision. Lastly, we explore the challenges of treating CNS malignancies and special limitations MRL systems face.
Collapse
|
Review |
2 |
2 |
9
|
Weygand J, Armstrong T, Bryant JM, Andreozzi JM, Oraiqat IM, Nichols S, Liveringhouse CL, Latifi K, Yamoah K, Costello JR, Frakes JM, Moros EG, El Naqa IM, Naghavi AO, Rosenberg SA, Redler G. Accurate, repeatable, and geometrically precise diffusion-weighted imaging on a 0.35 T magnetic resonance imaging-guided linear accelerator. Phys Imaging Radiat Oncol 2023; 28:100505. [PMID: 38045642 PMCID: PMC10692914 DOI: 10.1016/j.phro.2023.100505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Background and purpose Diffusion weighted imaging (DWI) allows for the interrogation of tissue cellularity, which is a surrogate for cellular proliferation. Previous attempts to incorporate DWI into the workflow of a 0.35 T MR-linac (MRL) have lacked quantitative accuracy. In this study, accuracy, repeatability, and geometric precision of apparent diffusion coefficient (ADC) maps produced using an echo planar imaging (EPI)-based DWI protocol on the MRL system is illustrated, and in vivo potential for longitudinal patient imaging is demonstrated. Materials and methods Accuracy and repeatability were assessed by measuring ADC values in a diffusion phantom at three timepoints and comparing to reference ADC values. System-dependent geometric distortion was quantified by measuring the distance between 93 pairs of phantom features on ADC maps acquired on a 0.35 T MRL and a 3.0 T diagnostic scanner and comparing to spatially precise CT images. Additionally, for five sarcoma patients receiving radiotherapy on the MRL, same-day in vivo ADC maps were acquired on both systems, one of which at multiple timepoints. Results Phantom ADC quantification was accurate on the 0.35 T MRL with significant discrepancies only seen at high ADC. Average geometric distortions were 0.35 (±0.02) mm and 0.85 (±0.02) mm in the central slice and 0.66 (±0.04) mm and 2.14 (±0.07) mm at 5.4 cm off-center for the MRL and diagnostic system, respectively. In the sarcoma patients, a mean pretreatment ADC of 910x10-6 (±100x10-6) mm2/s was measured on the MRL. Conclusions The acquisition of accurate, repeatable, and geometrically precise ADC maps is possible at 0.35 T with an EPI approach.
Collapse
|
research-article |
2 |
2 |
10
|
Jalloul M, Miranda-Schaeubinger M, Noor AM, Stein JM, Amiruddin R, Derbew HM, Mango VL, Akinola A, Hart K, Weygand J, Pollack E, Mohammed S, Scheel JR, Shell J, Dako F, Mhatre P, Kulinski L, Otero HJ, Mollura DJ. MRI scarcity in low- and middle-income countries. NMR IN BIOMEDICINE 2023; 36:e5022. [PMID: 37574441 DOI: 10.1002/nbm.5022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
Since the introduction of MRI as a sustainable diagnostic modality, global accessibility to its services has revealed a wide discrepancy between populations-leaving most of the population in LMICs without access to this important imaging modality. Several factors lead to the scarcity of MRI in LMICs; for example, inadequate infrastructure and the absence of a dedicated workforce are key factors in the scarcity observed. RAD-AID has contributed to the advancement of radiology globally by collaborating with our partners to make radiology more accessible for medically underserved communities. However, progress is slow and further investment is needed to ensure improved global access to MRI.
Collapse
|
|
2 |
1 |
11
|
Hansen C, Mohamed A, Weygand J, Ding Y, Fuller C, Frank S, Wang J. SU-E-J-220: Assessment of MRI Geometric Distortion in Head and Neck Cancer Patients Scanned in Immobilized Radiation Treatment Position. Med Phys 2015. [DOI: 10.1118/1.4924306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
|
10 |
1 |
12
|
Liveringhouse C, Netzley A, Bryant JM, Linkowski LC, Weygand J, Sandoval ML, Dohm A, Dookhoo M, Kelley S, Rosenberg SA, Latifi K, Torres-Roca JF, Johnstone PA, Yamoah K, Grass GD. Trimodal Therapy Using an MR-guided Radiation Therapy Partial Bladder Tumor Boost in Muscle Invasive Bladder Cancer. Adv Radiat Oncol 2023; 8:101268. [PMID: 38047218 PMCID: PMC10692296 DOI: 10.1016/j.adro.2023.101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/03/2023] [Indexed: 12/05/2023] Open
Abstract
Purpose Bladder preservation with trimodal therapy (TMT; maximal tumor resection followed by chemoradiation) is an effective paradigm for select patients with muscle invasive bladder cancer. We report our institutional experience of a TMT protocol using nonadaptive magnetic resonance imaging-guided radiation therapy (MRgRT) for partial bladder boost (PBB). Methods and Materials A retrospective analysis was performed on consecutive patients with nonmetastatic muscle invasive bladder cancer who were treated with TMT using MRgRT between 2019 and 2022. Patients underwent intensity modulated RT-based nonadaptive MRgRT PBB contoured on True fast imaging with steady state precession (FISP) images (full bladder) followed sequentially by computed tomography-based RT to the whole empty bladder and pelvic lymph nodes with concurrent chemotherapy. MRgRT treatment time, table shifts, and dosimetric parameters of target coverage and normal tissue exposure were described. Prospectively assessed acute and late genitourinary and gastrointestinal (GI) toxicity were reported. Two-year local control was assessed with Kaplan-Meier methods. Results Seventeen patients were identified for analysis. PBB planning target volume margins were ≤8 mm in 94% (n = 16) of cases. Dosimetric target coverage parameters were favorable and all normal tissue dose constraints were met. For MRgRT PBB fractions, median table shifts were 0.4 cm (range, 0-3.15), 0.45 cm (0-2.65), and 0.75 cm (0-4.8) in the X, Y, and Z planes, respectively. Median treatment time for MRgRT PBB fractions was 9 minutes (range, 6.9-17.4). We identified 32 out of 100 total MRgRT fractions that may have benefitted from online adaptation based on changes in organ position relative to planning target volume, predominantly because of small bowel (13/32, 41%) or rectum (8/32, 25%). Two patients discontinued RT prematurely. The incidence of highest-grade acute genitourinary toxicity was 1 to 2 (69%) and 3 (6%), whereas the incidence of acute GI toxicity was 1 to 2 (81%) and 3 (6%). There were no late grade 3 events; 17.6% had late grade 2 cystitis and none had late GI toxicity. With median follow-up of 18.2 months (95% CI, 12.4-22.5), the local control rate was 92%, and no patient has required salvage cystectomy. Conclusions Nonadaptive MRgRT PBB is feasible with favorable dosimetry and low resource utilization. Larger studies are needed to evaluate for potential benefits in toxicity and local control associated with this approach in comparison to standard treatment techniques.
Collapse
|
research-article |
2 |
|
13
|
Naghavi AO, Bryant JM, Kim Y, Weygand J, Redler G, Sim AJ, Miller J, Coucoules K, Michael LT, Gloria WE, Yang G, Rosenberg SA, Ahmed K, Bui MM, Henderson-Jackson EB, Lee A, Lee CD, Gonzalez RJ, Feygelman V, Eschrich SA, Scott JG, Torres-Roca J, Latifi K, Parikh N, Costello J. Habitat escalated adaptive therapy (HEAT): a phase 2 trial utilizing radiomic habitat-directed and genomic-adjusted radiation dose (GARD) optimization for high-grade soft tissue sarcoma. BMC Cancer 2024; 24:437. [PMID: 38594603 PMCID: PMC11003059 DOI: 10.1186/s12885-024-12151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Soft tissue sarcomas (STS), have significant inter- and intra-tumoral heterogeneity, with poor response to standard neoadjuvant radiotherapy (RT). Achieving a favorable pathologic response (FPR ≥ 95%) from RT is associated with improved patient outcome. Genomic adjusted radiation dose (GARD), a radiation-specific metric that quantifies the expected RT treatment effect as a function of tumor dose and genomics, proposed that STS is significantly underdosed. STS have significant radiomic heterogeneity, where radiomic habitats can delineate regions of intra-tumoral hypoxia and radioresistance. We designed a novel clinical trial, Habitat Escalated Adaptive Therapy (HEAT), utilizing radiomic habitats to identify areas of radioresistance within the tumor and targeting them with GARD-optimized doses, to improve FPR in high-grade STS. METHODS Phase 2 non-randomized single-arm clinical trial includes non-metastatic, resectable high-grade STS patients. Pre-treatment multiparametric MRIs (mpMRI) delineate three distinct intra-tumoral habitats based on apparent diffusion coefficient (ADC) and dynamic contrast enhanced (DCE) sequences. GARD estimates that simultaneous integrated boost (SIB) doses of 70 and 60 Gy in 25 fractions to the highest and intermediate radioresistant habitats, while the remaining volume receives standard 50 Gy, would lead to a > 3 fold FPR increase to 24%. Pre-treatment CT guided biopsies of each habitat along with clip placement will be performed for pathologic evaluation, future genomic studies, and response assessment. An mpMRI taken between weeks two and three of treatment will be used for biological plan adaptation to account for tumor response, in addition to an mpMRI after the completion of radiotherapy in addition to pathologic response, toxicity, radiomic response, disease control, and survival will be evaluated as secondary endpoints. Furthermore, liquid biopsy will be performed with mpMRI for future ancillary studies. DISCUSSION This is the first clinical trial to test a novel genomic-based RT dose optimization (GARD) and to utilize radiomic habitats to identify and target radioresistance regions, as a strategy to improve the outcome of RT-treated STS patients. Its success could usher in a new phase in radiation oncology, integrating genomic and radiomic insights into clinical practice and trial designs, and may reveal new radiomic and genomic biomarkers, refining personalized treatment strategies for STS. TRIAL REGISTRATION NCT05301283. TRIAL STATUS The trial started recruitment on March 17, 2022.
Collapse
|
Clinical Trial |
1 |
|
14
|
Bryant JM, Cruz-Chamorro RJ, Gan A, Liveringhouse C, Weygand J, Nguyen A, Keit E, Sandoval ML, Sim AJ, Perez BA, Dilling TJ, Redler G, Andreozzi J, Nardella L, Naghavi AO, Feygelman V, Latifi K, Rosenberg SA. Structure-specific rigid dose accumulation dosimetric analysis of ablative stereotactic MRI-guided adaptive radiation therapy in ultracentral lung lesions. COMMUNICATIONS MEDICINE 2024; 4:96. [PMID: 38778215 PMCID: PMC11111790 DOI: 10.1038/s43856-024-00526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Definitive local therapy with stereotactic ablative radiation therapy (SABR) for ultracentral lung lesions is associated with a high risk of toxicity, including treatment related death. Stereotactic MR-guided adaptive radiation therapy (SMART) can overcome many of the challenges associated with SABR treatment of ultracentral lesions. METHODS We retrospectively identified 14 consecutive patients who received SMART to ultracentral lung lesions from 10/2019 to 01/2021. Patients had a median distance from the proximal bronchial tree (PBT) of 0.38 cm. Tumors were most often lung primary (64.3%) and HILUS group A (85.7%). A structure-specific rigid registration approach was used for cumulative dose analysis. Kaplan-Meier log-rank analysis was used for clinical outcome data and the Wilcoxon Signed Rank test was used for dosimetric data. RESULTS Here we show that SMART dosimetric improvements in favor of delivered plans over predicted non-adapted plans for PBT, with improvements in proximal bronchial tree DMax of 5.7 Gy (p = 0.002) and gross tumor 100% prescription coverage of 7.3% (p = 0.002). The mean estimated follow-up is 17.2 months and 2-year local control and local failure free survival rates are 92.9% and 85.7%, respectively. There are no grade ≥ 3 toxicities. CONCLUSIONS SMART has dosimetric advantages and excellent clinical outcomes for ultracentral lung tumors. Daily plan adaptation reliably improves target coverage while simultaneously reducing doses to the proximal airways. These results further characterize the therapeutic window improvements for SMART. Structure-specific rigid dose accumulation dosimetric analysis provides insights that elucidate the dosimetric advantages of SMART more so than per fractional analysis alone.
Collapse
|
research-article |
1 |
|
15
|
Bryant JM, Stimphil E, Andre V, Shotbolt M, Zhang E, Estrella V, Husain K, Weygand J, Marchion D, Lopez AS, Abrahams D, Chen S, Abdel-Mottaleb M, Conlan S, Oraiqat I, Khatri V, Guevara JA, Pilon-Thomas S, Redler G, Latifi K, Raghunand N, Yamoah K, Hoffe S, Costello J, Frakes JM, Liang P, Khizroev S, Gatenby RA, Malafa M. Nanoparticles use magnetoelectricity to target and eradicate cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618075. [PMID: 39464093 PMCID: PMC11507724 DOI: 10.1101/2024.10.13.618075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
This study presents the first in vivo and in vitro evidence of an externally controlled, predictive, MRI-based nanotheranostic agent capable of cancer cell specific targeting and killing via irreversible electroporation (IRE) in solid tumors. The rectangular-prism-shaped magnetoelectric nanoparticle is a smart nanoparticle that produces a local electric field in response to an externally applied magnetic field. When externally activated, MENPs are preferentially attracted to the highly conductive cancer cell membranes, which occurs in cancer cells because of dysregulated ion flux across their membranes. In a pancreatic adenocarcinoma murine model, MENPs activated by external magnetic fields during magnetic resonance imaging (MRI) resulted in a mean three-fold tumor volume reduction (62.3% vs 188.7%; P < .001) from a single treatment. In a longitudinal confirmatory study, 35% of mice treated with activated MENPs achieved a durable complete response for 14 weeks after one treatment. The degree of tumor volume reduction correlated with a decrease in MRI T 2 * relaxation time ( r = .351; P = .039) which suggests that MENPs have a potential to serve as a predictive nanotheranostic agent at time of treatment. There were no discernable toxicities associated with MENPs at any timepoint or on histopathological analysis of major organs. MENPs are a noninvasive alternative modality for the treatment of cancer. Summary We investigated the theranostic capabilities of magnetoelectric nanoparticles (MENPs) combined with MRI via a murine model of pancreatic adenocarcinoma. MENPs leverage the magnetoelectric effect to convert an applied magnetic field into local electric fields, which can induce irreversible electroporation of tumor cell membranes when activated by MRI. Additionally, MENPs modulate MRI relaxivity, which can be used to predict the degree of tumor ablation. Through a pilot study (n=21) and a confirmatory study (n=27), we demonstrated that, ≥300 µg of MRI-activated MENPs significantly reduced tumor volumes, averaging a three-fold decrease as compared to controls. Furthermore, there was a direct correlation between the reduction in tumor T 2 relaxation times and tumor volume reduction, highlighting the predictive prognostic value of MENPs. Six of 17 mice in the confirmatory study's experimental arms achieved a durable complete response, showcasing the potential for durable treatment outcomes. Importantly, the administration of MENPs was not associated with any evident toxicities. This study presents the first in vivo evidence of an externally controlled, MRI-based, theranostic agent that effectively targets and treats solid tumors via irreversible electroporation while sparing normal tissues, offering a new and promising approach to cancer therapy.
Collapse
|
Preprint |
1 |
|
16
|
Parker SA, Weygand J, Bernat BG, Jackson AM, Mawlawi O, Barreto I, Hao Y, Khan R, Yorke AA, Swanson W, Huq MS, Lief E, Biancia CD, Njeh CF, Al-Basheer A, Chau OW, Avery S, Ngwa W, Sandwall PA. Assessing Radiology and Radiation Therapy Needs for Cancer Care in Low-and-Middle-Income Countries: Insight From a Global Survey of Departmental and Institutional Leaders. Adv Radiat Oncol 2024; 9:101615. [PMID: 39410956 PMCID: PMC11474275 DOI: 10.1016/j.adro.2024.101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/26/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose The global cancer burden and mortality rates are increasing, with significant disparities in access to care in low- and middle-income countries (LMICs). This study aimed to identify radiology and radiation therapy needs in LMICs from the perspective of departmental and institutional leaders. Methods and Materials A survey was developed and conducted by the American Association of Physicists in Medicine Global Needs Assessment Committee and the American Association of Physicists in Medicine International Council. The survey, organized into 5 sections (Introduction, Infrastructure Needs, Education Needs, Research Needs, and General Information), was open to respondents from March 1, to August 16, 2022. Results A total of 175 responses were received from 6 global regions: Africa (31.4%), the Americas (17.7%), the Eastern Mediterranean (14.3%), Europe (9.1%), Southeast Asia (23.4%), and the Western Pacific (4.0%). The greatest reported need was for new or updated equipment, particularly positron emission tomography/computed tomography imaging technology. There was also a high demand for clinical and equipment training. Approximately 25% of institutions reported a lack of radiology-based cancer screening programs because of high health care costs and a shortage of specialized equipment. Many institutions that expressed interest in research face funding and grant challenges. Conclusions The findings highlight critical areas where organizations can support LMICs in enhancing radiology and radiation therapy services to mitigate the growing cancer burden.
Collapse
|
research-article |
1 |
|
17
|
Kozee M, Weygand J, Andreozzi JM, Hunt D, Perez BA, Graham JA, Redler G. Methodology for computed tomography characterization of commercially available 3D printing materials for use in radiology/radiation oncology. J Appl Clin Med Phys 2023:e13999. [PMID: 37096305 DOI: 10.1002/acm2.13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/26/2023] Open
Abstract
3D printing in medical physics provides opportunities for creating patient-specific treatment devices and in-house fabrication of imaging/dosimetry phantoms. This study characterizes several commercial fused deposition 3D printing materials with some containing nonstandard compositions. It is important to explore their similarities to human tissues and other materials encountered in patients. Uniform cylinders with infill from 50 to 100% at six evenly distributed intervals were printed using 13 different filaments. A novel approach rotating infill angle 10o between each layer avoids unwanted patterns. Five materials contained high-Z/metallic components. A clinical CT scanner with a range of tube potentials (70, 80, 100, 120, 140 kVp) was used. Density and average Hounsfield unit (HU) were measured. A commercial GAMMEX phantom mimicking various human tissues provides a comparison. Utility of the lookup tables produced is demonstrated. A methodology for calibrating print materials/parameters for a desired HU is presented. Density and HU were determined for all materials as a function of tube voltage (kVp) and infill percentage. The range of HU (-732.0-10047.4 HU) and physical densities (0.36-3.52 g/cm3 ) encompassed most tissues/materials encountered in radiology/radiotherapy applications with many overlapping those of human tissues. Printing filaments doped with high-Z materials demonstrated increased attenuation due to the photoelectric effect with decreased kVp, as found in certain endogenous materials (e.g., bone). HU was faithfully reproduced (within one standard deviation) in a 3D-printed mimic of a commercial anthropomorphic phantom section. Characterization of commercially available 3D print materials facilitates custom object fabrication for use in radiology and radiation oncology, including human tissue and common exogenous implant mimics. This allows for cost reduction and increased flexibility to fabricate novel phantoms or patient-specific devices imaging and dosimetry purposes. A formalism for calibrating to specific CT scanner, printer, and filament type/batch is presented. Utility is demonstrated by printing a commercial anthropomorphic phantom copy.
Collapse
|
|
2 |
|
18
|
Bryant J, Bhandari M, Liveringhouse C, Weygand J, Cruz-Chamorro R, Sandoval M, Sim A, Frakes J, Redler G, Andreozzi J, Nardella L, Feygelman V, Latifi K, Rosenberg S. Online Adaptive MR-Guided Radiotherapy (MRgRT) in UltraCentral (UC) Lung Lesions: Cumulative Delivered Dose as Assessed with Rigid Fusion (RF) Analysis Shows Significant Improvement in Clinically Relevant Parameters. Int J Radiat Oncol Biol Phys 2022. [DOI: 10.1016/j.ijrobp.2022.07.2268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
|
3 |
|
19
|
Keit E, Liveringhouse C, Figura N, Weygand J, Sandoval ML, Garcia G, Peters J, Nieder M, Faramand R, Khimani F, Kim S, Robinson TJ, Johnstone PAS, Penagaricano J, Latifi K. Feasibility and Toxicity of Full-Body Volumetric Modulated Arc Therapy Technique for High-Dose Total Body Irradiation. Technol Cancer Res Treat 2023; 22:15330338231180779. [PMID: 37287260 DOI: 10.1177/15330338231180779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Introduction: High-dose total body irradiation (TBI) is often part of myeloablative conditioning in acute leukemia. Modern volumetric modulated arc therapy (VMAT)-based plans employ arcs to the inferior-most portion of the body that can be simulated in a head-first position and use 2D planning for the inferior body which can result in heterogeneous doses. Here, we describe our institution's unique protocol for delivering high-dose TBI entirely with VMAT and retrospectively compare dosimetric outcomes with helical tomotherapy (HT) plans. Additionally, we describe our method of oropharyngeal mucosal sparing that was implemented after fatal mucositis occurred in two patients. Methods: Thirty-one patients were simulated and treated in head-first (HFS) and feet-first (FFS) orientations. Patients were treated with VMAT (n = 26) or HT (n = 5). In VMAT plans, to synchronize doses between the orientations, images were deformably registered and the HFS dose was transferred to the FFS plan and used as a background dose when optimizing plans. Six to eight isocenters with two arcs per isocenter were generated. HT was delivered with an established technique. Patients were treated to 13.2 Gy over eight twice daily fractions. Dosimetric outcomes and toxicities were retrospectively compared. Results: Prescription dose and organ at risk (OAR) constraints were met for all patients. Lower lung doses were achieved with VMAT relative to HT plans (7.4 vs 7.7 Gy, P = .009). Statistically significant improvement in mucositis was not achieved after adopting a mucosal-sparing technique, however lower doses to the oropharyngeal mucosal were achieved (6.9 vs 14.1 Gy, P = .009), and no further mucositis-related deaths occurred. Conclusions: This full-body VMAT method of TBI achieves dose goals, eliminates risk of heterogenous doses within the femur, and demonstrates that selective OAR sparing with the purpose of reducing TBI-related morbidity and mortality is possible at any institution with a VMAT-capable linear accelerator.
Collapse
|
|
2 |
|