1
|
Hunsberger J, Austin DR, Henter ID, Chen G. The neurotrophic and neuroprotective effects of psychotropic agents. DIALOGUES IN CLINICAL NEUROSCIENCE 2009. [PMID: 19877500 PMCID: PMC2804881 DOI: 10.31887/dcns.2009.11.3/jhunsberger] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Accumulating evidence suggests that psychotropic agents such as mood stabilizers, antidepressants, and antipsychotics realize their neurotrophic/neuroprotective effects by activating the mitogen activated protein kinaselextracellular signal-related kinase, PI3-kinase, and winglesslglycogen synthase kinase (GSK) 3 signaling pathways. These agents also upregulate the expression of trophic/protective molecules such as brain-derived neurotrophic factor, nerve growth factor, B-cell lymphoma 2, serine-threonine kinase, and Bcl-2 associated athanogene 1, and inactivate proapoptotic molecules such as GSK-3, They also promote neurogenesis and are protective in models of neurodegenerative diseases and ischemia. Most if not all, of this evidence was collected from animal studies that used clinically relevant treatment regimens. Furthermore, human imaging studies have found that these agents increase the volume and density of brain tissue, as well as levels of N-acetyl aspartate and glutamate in selected brain regions. Taken together, these data suggest that the neurotrophic/neuroprotective effects of these agents have broad therapeutic potential in the treatment, not only of mood disorders and schizophrenia, but also neurodegenerative diseases and ischemia.
Collapse
|
Review |
16 |
85 |
2
|
Hunsberger J, Harrysson O, Shirwaiker R, Starly B, Wysk R, Cohen P, Allickson J, Yoo J, Atala A. Manufacturing road map for tissue engineering and regenerative medicine technologies. Stem Cells Transl Med 2015; 4:130-5. [PMID: 25575525 DOI: 10.5966/sctm.2014-0254] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM.
Collapse
|
Review |
10 |
68 |
3
|
Girgenti MJ, Hunsberger J, Duman CH, Sathyanesan M, Terwilliger R, Newton SS. Erythropoietin induction by electroconvulsive seizure, gene regulation, and antidepressant-like behavioral effects. Biol Psychiatry 2009; 66:267-74. [PMID: 19185286 DOI: 10.1016/j.biopsych.2008.12.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 12/03/2008] [Accepted: 12/03/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND The neuroprotective and trophic actions of erythropoietin (EPO) have been tested in several animal models of insult, injury, and neurodegeneration. Recent studies in human volunteers demonstrated that EPO improves cognition and also elicits antidepressant effects. It is believed that the behavioral effects are mediated by EPO's trophic effect on neuronal systems. We therefore tested whether EPO is able to alter behavior and brain gene expression in rats. METHODS The expression of EPO and EPO receptor (EPOR) in multiple brain regions was examined by quantitative polymerase chain reaction, in situ hybridization, and immunohistochemistry. The regulation of EPO and the transcription factor hypoxia-induced factor-alpha (HIF1alpha) after electroconvulsive seizure (ECS) was investigated. Behavioral effects of EPO were tested in the rodent forced swimming and novelty-induced hypophagia (NIH) models. EPO gene profiles were obtained by microarray analysis of the hippocampus after intracerebroventricular infusion. RESULTS EPO and EPOR were widely expressed in the brain albeit at low levels. Highest level of EPO and EPOR were in the choroid plexus and striatum, respectively. Peripheral administration of EPO was sufficient to produce a robust antidepressant-like effect in the forced swim and NIH tests. Gene expression profiles revealed that EPO induces the expression of neurotrophic genes such as brain-derived neurotrophic factor, VGF (nonacronymic), and neuritin. CONCLUSIONS EPO is induced by ECS and independently exhibits antidepressant-like efficacy in the forced swim and NIH tests. EPO regulates the expression of genes implicated in antidepressant action and appears to be a candidate molecule for further testing in neuropsychiatry.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
58 |
4
|
Lim D, Renteria ES, Sime DS, Ju YM, Kim JH, Criswell T, Shupe TD, Atala A, Marini FC, Gurcan MN, Soker S, Hunsberger J, Yoo JJ. Bioreactor design and validation for manufacturing strategies in tissue engineering. Biodes Manuf 2021; 5:43-63. [PMID: 35223131 PMCID: PMC8870603 DOI: 10.1007/s42242-021-00154-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The fields of regenerative medicine and tissue engineering offer new therapeutic options to restore, maintain or improve tissue function following disease or injury. To maximize the biological function of a tissue-engineered clinical product, specific conditions must be maintained within a bioreactor to allow the maturation of the product in preparation for implantation. Specifically, the bioreactor should be designed to mimic the mechanical, electrochemical and biochemical environment that the product will be exposed to in vivo. Real-time monitoring of the functional capacity of tissue-engineered products during manufacturing is a critical component of the quality management process. The present review provides a brief overview of bioreactor engineering considerations. In addition, strategies for bioreactor automation, in-line product monitoring and quality assurance are discussed.
Collapse
|
|
4 |
24 |
5
|
Pavlovich MJ, Hunsberger J, Atala A. Biofabrication: a secret weapon to advance manufacturing, economies, and healthcare. Trends Biotechnol 2016; 34:679-680. [DOI: 10.1016/j.tibtech.2016.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
|
9 |
17 |
6
|
Atala A, Henn A, Lundberg M, Ahsan T, Greenberg J, Krukin J, Lynum S, Lutz C, Cetrulo K, Albanna M, Pereira T, Eaker S, Hunsberger J. Regen med therapeutic opportunities for fighting COVID-19. Stem Cells Transl Med 2021; 10:5-13. [PMID: 32856432 PMCID: PMC7461298 DOI: 10.1002/sctm.20-0245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
This perspective from a Regenerative Medicine Manufacturing Society working group highlights regenerative medicine therapeutic opportunities for fighting COVID-19. This article addresses why SARS-CoV-2 is so different from other viruses and how regenerative medicine is poised to deliver new therapeutic opportunities to battle COVID-19. We describe animal models that depict the mechanism of action for COVID-19 and that may help identify new treatments. Additionally, organoid platforms that can recapitulate some of the physiological properties of human organ systems, such as the lungs and the heart, are discussed as potential platforms that may prove useful in rapidly screening new drugs and identifying at-risk patients. This article critically evaluates some of the promising regenerative medicine-based therapies for treating COVID-19 and presents some of the collective technologies and resources that the scientific community currently has available to confront this pandemic.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
9 |
7
|
Hunsberger J, Simon C, Zylberberg C, Ramamoorthy P, Tubon T, Bedi R, Gielen K, Hansen C, Fischer L, Johnson J, Baraniak P, Mahdavi B, Pereira T, Hadjisavas M, Eaker S, Miller C. Improving patient outcomes with regenerative medicine: How the Regenerative Medicine Manufacturing Society plans to move the needle forward in cell manufacturing, standards, 3D bioprinting, artificial intelligence-enabled automation, education, and training. Stem Cells Transl Med 2020; 9:728-733. [PMID: 32222115 PMCID: PMC7308637 DOI: 10.1002/sctm.19-0389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
The Regenerative Medicine Manufacturing Society (RMMS) is the first and only professional society dedicated toward advancing manufacturing solutions for the field of regenerative medicine. RMMS's vision is to provide greater patient access to regenerative medicine therapies through innovative manufacturing solutions. Our mission is to identify unmet needs and gaps in regenerative medicine manufacturing and catalyze the generation of new ideas and solutions by working with private and public stakeholders. We aim to accomplish our mission through outreach and education programs and securing grants for public-private collaborations in regenerative medicine manufacturing. This perspective will cover four impact areas that the society's leadership team has identified as critical: (a) cell manufacturing and scale-up/out, respectively, for allogeneic and autologous cell therapies, (b) standards for regenerative medicine, (c) 3D bioprinting, and (d) artificial intelligence-enabled automation. In addition to covering these areas and ways in which the society intends to advance the field in a collaborative nature, we will also discuss education and training. Education and training is an area that is critical for communicating the current challenges, developing solutions to accelerate the commercialization of the latest technological advances, and growing the workforce in the rapidly expanding sector of regenerative medicine.
Collapse
|
research-article |
5 |
9 |
8
|
Criswell T, Swart C, Stoudemire J, Brockbank K, Floren M, Eaker S, Hunsberger J. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:107-113. [PMID: 36239619 PMCID: PMC9562819 DOI: 10.1093/stcltm/szab025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/07/2021] [Indexed: 11/20/2022] Open
Abstract
Advances in regenerative medicine manufacturing continue to be a priority for achieving the full commercial potential of important breakthrough therapies. Equally important will be the establishment of distribution chains that support the transport of live cells and engineered tissues and organs resulting from these advanced biomanufacturing processes. The importance of a well-managed distribution chain for products requiring specialized handling procedures was highlighted during the COVID-19 pandemic and serves as a reminder of the critical role of logistics and distribution in the success of breakthrough therapies. This perspective article will provide insight into current practices and future considerations for creating global distribution chains that facilitate the successful deployment of regenerative medicine therapies to the vast number of patients that would benefit from them worldwide.
Collapse
|
|
3 |
5 |
9
|
Hunsberger J, Atala A. The GAO Report: Funding, Challenges, and Solutions for Regenerative Medicine. Curr Stem Cell Res Ther 2016; 11:1. [PMID: 26763867 DOI: 10.2174/1574888x1101160108110005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
Editorial |
9 |
1 |
10
|
Hunsberger J, Lundberg MS, Allickson J, Simon CG, Zylberberg C, Beachy SH. Examining Resources, Initiatives, and Regulatory Pathways to Advance Regenerative Medicine Manufacturing. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-00163-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
|
6 |
1 |
11
|
Hunsberger J, Atala A. Editorial: Bringing regenerative medicine therapies to the 21st century. Curr Stem Cell Res Ther 2015; 10:1. [PMID: 25580503 DOI: 10.2174/1574888x1001141126103509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
Editorial |
10 |
1 |
12
|
Henn AD, Pereira T, Hunsberger J, Mitra K, Izadifar Z, Somara S, Lindström L, Forest Farb-Horch T, Boy J, Muschler GF, Bauer SR, Yerden R. Cytocentric measurement for regenerative medicine. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1154653. [PMID: 37181099 PMCID: PMC10172495 DOI: 10.3389/fmedt.2023.1154653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Any Regenerative Medicine (RM) business requires reliably predictable cell and tissue products. Regulatory agencies expect control and documentation. However, laboratory tissue production is currently not predictable or well-controlled. Before conditions can be controlled to meet the needs of cells and tissues in culture for RM, we have to know what those needs are and be able to quantify them. Therefore, identification and measurement of critical cell quality attributes at a cellular or pericellular level is essential to generating reproducible cell and tissue products. Here, we identify some of the critical cell and process parameters for cell and tissue products as well as technologies available for sensing them. We also discuss available and needed technologies for monitoring both 2D and 3D cultures to manufacture reliable cell and tissue products for clinical and non-clinical use. As any industry matures, it improves and standardizes the quality of its products. Cytocentric measurement of cell and tissue quality attributes are needed for RM.
Collapse
|
brief-report |
2 |
1 |
13
|
Newton SS, Collier EF, Hunsberger J, Adams D, Terwilliger R, Selvanayagam E, Duman RS. Gene profile of electroconvulsive seizures: induction of neurotrophic and angiogenic factors. J Neurosci 2003; 23:10841-51. [PMID: 14645477 PMCID: PMC6740983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Electroconvulsive seizure therapy (ECS) is a clinically proven treatment for depression and is often effective even in patients resistant to chemical antidepressants. However, the molecular mechanisms underlying the therapeutic efficacy of ECS are not fully understood. One theory that has gained attention is that ECS and other antidepressants increase the expression of select neurotrophic factors that could reverse or block the atrophy and cell loss resulting from stress and depression. To further address this topic, we examined the expression of other neurotrophic-growth factors and related signaling pathways in the hippocampus in response to ECS using a custom growth factor microarray chip. We report the regulation of several genes that are involved in growth factor and angiogenic-endothelial signaling, including neuritin, stem cell factor, vascular endothelial growth factor (VEGF), VGF (nonacronymic), cyclooxygenase-2, and tissue inhibitor of matrix metalloproteinase-1. Some of these, as well as other growth factors identified, including VEGF, basic fibroblast growth factor, and brain-derived neurotrophic factor, have roles in mediating neurogenesis and cell proliferation in the adult brain. We also examined gene expression in the choroid plexus and found several growth factors that are enriched in this vascular tissue as well as regulated by ECS. These data suggest that an amplification of growth factor signaling combined with angiogenic mechanisms could have an important role in the molecular action of ECS. This study demonstrates the applicability of custom-focused microarray technology in addressing hypothesis-driven questions regarding the action of antidepressants.
Collapse
|
research-article |
22 |
|