1
|
Bua E, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S, Aiken JM. Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet 2006; 79:469-80. [PMID: 16909385 PMCID: PMC1559550 DOI: 10.1086/507132] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 06/12/2006] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle-mass loss with age has severe health consequences, yet the molecular basis of the loss remains obscure. Although mitochondrial DNA (mtDNA)-deletion mutations have been shown to accumulate with age, for these aberrant genomes to be physiologically relevant, they must accumulate to high levels intracellularly and be present in a significant number of cells. We examined mtDNA-deletion mutations in vastus lateralis (VL) muscle of human subjects aged 49-93 years, using both histologic and polymerase-chain-reaction (PCR) analyses, to determine the physiological and genomic integrity of mitochondria in aging human muscle. The number of VL muscle fibers exhibiting mitochondrial electron-transport-system (ETS) abnormalities increased from an estimated 6% at age 49 years to 31% at age 92 years. We analyzed the mitochondrial genotype of 48 single ETS-abnormal, cytochrome c oxidase-negative/succinate dehydrogenase-hyperreactive (COX-/SDH++) fibers from normal aging human subjects and identified mtDNA-deletion mutations in all abnormal fibers. Deletion mutations were clonal within a fiber and concomitant to the COX-/SDH++ region. Quantitative PCR analysis of wild-type and deletion-containing mtDNA genomes within ETS-abnormal regions of single fibers demonstrated that these deletion mutations accumulate to detrimental levels (>90% of the total mtDNA).
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Aging/genetics
- DNA, Mitochondrial/analysis
- DNA, Mitochondrial/genetics
- Electron Transport/genetics
- Electron Transport Chain Complex Proteins/genetics
- Electron Transport Complex IV/genetics
- Female
- Humans
- Male
- Middle Aged
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/genetics
- Muscle Fibers, Skeletal/chemistry
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/enzymology
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/cytology
- Muscle, Skeletal/enzymology
- Sequence Deletion
- Succinate Dehydrogenase/genetics
Collapse
|
Research Support, N.I.H., Extramural |
19 |
325 |
2
|
Wanagat J, Cao Z, Pathare P, Aiken JM. Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J 2001; 15:322-32. [PMID: 11156948 DOI: 10.1096/fj.00-0320com] [Citation(s) in RCA: 306] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The in vivo cellular impact of age-associated mitochondrial DNA mutations is unknown. We hypothesized that mitochondrial DNA deletion mutations contribute to the fiber atrophy and loss that cause sarcopenia, the age-related decline of muscle mass and function. We examined 82,713 rectus femoris muscle fibers from Fischer 344 x Brown Norway F1 hybrid rats of ages 5, 18, and 38 months through 1000 microns by serial cryosectioning and histochemical staining for cytochrome c oxidase and succinate dehydrogenase. Between 5 and 38 months of age, the rectus femoris muscle in the hybrid rat demonstrated a 33% decrease in mass concomitant with a 30% decrease in total fibers at the muscle mid-belly. We observed significant increases in the number of mitochondrial abnormalities with age from 289 +/- 8 ETS abnormal fibers in the entire 5-month-old rectus femoris to 1094 +/- 126 in the 38-month-old as calculated from the volume density of these abnormalities. Segmental mitochondrial abnormalities contained mitochondrial DNA deletion mutations as revealed by laser capture microdissection and whole mitochondrial genome amplification. Muscle fibers harboring mitochondrial deletions often displayed atrophy, splitting and increased steady-state levels of oxidative nucleic damage. These data suggest a causal role for age-associated mitochondrial DNA deletion mutations in sarcopenia.
Collapse
MESH Headings
- Aging
- Animals
- Atrophy
- Base Sequence
- DNA Damage
- DNA, Mitochondrial/genetics
- Electron Transport
- Electron Transport Complex IV/metabolism
- Hybridization, Genetic
- Male
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Muscle Development
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Diseases/genetics
- Muscular Diseases/metabolism
- Muscular Diseases/pathology
- Rats
- Rats, Inbred BN
- Rats, Inbred F344
- Sequence Deletion
- Succinate Dehydrogenase/metabolism
Collapse
|
|
24 |
306 |
3
|
Johnson CJ, Phillips KE, Schramm PT, McKenzie D, Aiken JM, Pedersen JA. Prions adhere to soil minerals and remain infectious. PLoS Pathog 2006; 2:e32. [PMID: 16617377 PMCID: PMC1435987 DOI: 10.1371/journal.ppat.0020032] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 03/08/2006] [Indexed: 11/30/2022] Open
Abstract
An unidentified environmental reservoir of infectivity contributes to the natural transmission of prion diseases (transmissible spongiform encephalopathies [TSEs]) in sheep, deer, and elk. Prion infectivity may enter soil environments via shedding from diseased animals and decomposition of infected carcasses. Burial of TSE-infected cattle, sheep, and deer as a means of disposal has resulted in unintentional introduction of prions into subsurface environments. We examined the potential for soil to serve as a TSE reservoir by studying the interaction of the disease-associated prion protein (PrPSc) with common soil minerals. In this study, we demonstrated substantial PrPSc adsorption to two clay minerals, quartz, and four whole soil samples. We quantified the PrPSc-binding capacities of each mineral. Furthermore, we observed that PrPSc desorbed from montmorillonite clay was cleaved at an N-terminal site and the interaction between PrPSc and Mte was strong, making desorption of the protein difficult. Despite cleavage and avid binding, PrPSc bound to Mte remained infectious. Results from our study suggest that PrPSc released into soil environments may be preserved in a bioavailable form, perpetuating prion disease epizootics and exposing other species to the infectious agent. Transmissible spongiform encephalopathies (TSEs) are a group of incurable diseases likely caused by a misfolded form of the prion protein (PrPSc). TSEs include scrapie in sheep, bovine spongiform encephalopathy (“mad cow” disease) in cattle, chronic wasting disease (CWD) in deer and elk, and Creutzfeldt-Jakob disease in humans. Scrapie and CWD are unique among TSEs because they can be transmitted between animals, and the disease agents appear to persist in environments previously inhabited by infected animals. Soil has been hypothesized to act as a reservoir of infectivity, because PrPSc likely enters soil environments through urinary or alimentary shedding and decomposition of infected animals. In this manuscript, the authors test the potential for soil to serve as a reservoir for PrPSc and TSE infectivity. They demonstrate that PrPSc binds to a variety of soil minerals and to whole soils. They also quantitate the levels of protein binding to three common soil minerals and show that the interaction of PrPSc with montmorillonite, a common clay mineral, is remarkably strong. PrPSc bound to Mte remained infectious to laboratory animals, suggesting that soil can serve as a reservoir of TSE infectivity.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
192 |
4
|
Bua EA, McKiernan SH, Wanagat J, McKenzie D, Aiken JM. Mitochondrial abnormalities are more frequent in muscles undergoing sarcopenia. J Appl Physiol (1985) 2002; 92:2617-24. [PMID: 12015381 DOI: 10.1152/japplphysiol.01102.2001] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hypothesis that the accumulation of electron transport system (ETS) abnormalities and sarcopenia are linked was investigated. Vastus lateralis, soleus, and adductor longus muscles were studied in 5-, 18-, and 36-mo-old male Fischer 344 x Brown Norway F(1) hybrid rats. A significant decrease in soleus and vastus lateralis muscle mass was observed with age. Adductor longus was resistant to muscle mass loss. Multiple serial sections were analyzed for the activities of cytochrome-c oxidase (COX) and succinate dehydrogenase (SDH). The number of fibers exhibiting a COX(-)/SDH(++) phenotype increased with age in both vastus lateralis and soleus muscles. No ETS-abnormal fibers were identified in adductor longus at any age. Cross-sectional area of ETS-abnormal fibers decreased in the abnormal region (region displaying COX(-)/SDH(++) phenotype), whereas control fibers did not. The vastus lateralis muscle, which undergoes a high degree of sarcopenia, exhibited more ETS abnormalities and associated fiber loss than the soleus and adductor longus muscles, which are more resistant to sarcopenia, suggesting a direct association between ETS abnormalities and fiber loss.
Collapse
MESH Headings
- Anatomy, Cross-Sectional
- Animals
- Body Weight
- Electron Transport
- Electron Transport Complex IV/metabolism
- Female
- Male
- Mitochondria, Muscle/metabolism
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/ultrastructure
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/ultrastructure
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Organ Size
- Rats
- Rats, Inbred BN
- Rats, Inbred F344
- Succinate Dehydrogenase/metabolism
Collapse
|
|
23 |
160 |
5
|
Johnson CJ, Pedersen JA, Chappell RJ, McKenzie D, Aiken JM. Oral transmissibility of prion disease is enhanced by binding to soil particles. PLoS Pathog 2008; 3:e93. [PMID: 17616973 PMCID: PMC1904474 DOI: 10.1371/journal.ppat.0030093] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 05/17/2007] [Indexed: 01/13/2023] Open
Abstract
Soil may serve as an environmental reservoir for prion infectivity and contribute to the horizontal transmission of prion diseases (transmissible spongiform encephalopathies [TSEs]) of sheep, deer, and elk. TSE infectivity can persist in soil for years, and we previously demonstrated that the disease-associated form of the prion protein binds to soil particles and prions adsorbed to the common soil mineral montmorillonite (Mte) retain infectivity following intracerebral inoculation. Here, we assess the oral infectivity of Mte- and soil-bound prions. We establish that prions bound to Mte are orally bioavailable, and that, unexpectedly, binding to Mte significantly enhances disease penetrance and reduces the incubation period relative to unbound agent. Cox proportional hazards modeling revealed that across the doses of TSE agent tested, Mte increased the effective infectious titer by a factor of 680 relative to unbound agent. Oral exposure to Mte-associated prions led to TSE development in experimental animals even at doses too low to produce clinical symptoms in the absence of the mineral. We tested the oral infectivity of prions bound to three whole soils differing in texture, mineralogy, and organic carbon content and found soil-bound prions to be orally infectious. Two of the three soils increased oral transmission of disease, and the infectivity of agent bound to the third organic carbon-rich soil was equivalent to that of unbound agent. Enhanced transmissibility of soil-bound prions may explain the environmental spread of some TSEs despite the presumably low levels shed into the environment. Association of prions with inorganic microparticles represents a novel means by which their oral transmission is enhanced relative to unbound agent. Transmissible spongiform encephalopathies (TSEs) are a group of incurable neurological diseases likely caused by a misfolded form of the prion protein. TSEs include scrapie in sheep, bovine spongiform encephalopathy (“mad cow” disease) in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob disease in humans. Scrapie and chronic wasting disease are unique among TSEs because they can be transmitted between animals, and the disease agents appear to persist in environments previously inhabited by infected animals. Soil has been hypothesized to act as a reservoir of infectivity and to bind the infectious agent. In the current study, we orally dosed experimental animals with a common clay mineral, montmorillonite, or whole soils laden with infectious prions, and compared the transmissibility to unbound agent. We found that prions bound to montmorillonite and whole soils remained orally infectious, and, in most cases, increased the oral transmission of disease compared to the unbound agent. The results presented in this study suggest that soil may contribute to environmental spread of TSEs by increasing the transmissibility of small amounts of infectious agent in the environment.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
17 |
155 |
6
|
Cao Z, Wanagat J, McKiernan SH, Aiken JM. Mitochondrial DNA deletion mutations are concomitant with ragged red regions of individual, aged muscle fibers: analysis by laser-capture microdissection. Nucleic Acids Res 2001; 29:4502-8. [PMID: 11691938 PMCID: PMC60181 DOI: 10.1093/nar/29.21.4502] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Laser-capture microdissection was coupled with PCR to define the mitochondrial genotype of aged muscle fibers exhibiting mitochondrial enzymatic abnormalities. These electron transport system (ETS) abnormalities accumulate with age, are localized segmentally along muscle fibers, are associated with fiber atrophy and may contribute to age-related fiber loss. DNA extracted from single, 10 microm thick, ETS abnormal muscle fibers, as well as sections from normal fibers, served as templates for PCR-based deletion analysis. Large mitochondrial (mt) DNA deletion mutations (4.4-9.7 kb) were detected in all 29 ETS abnormal fibers analyzed. Deleted mtDNA genomes were detected only in the regions of the fibers with ETS abnormalities; adjacent phenotypically normal portions of the same fiber contained wild-type mtDNA. In addition, identical mtDNA deletion mutations were found within different sections of the same abnormal region. These findings demonstrate that large deletion mutations are associated with ETS abnormalities in aged rat muscle and that, within a fiber, deletion mutations are clonal. The displacement of wild-type mtDNAs with mutant mtDNAs results in concomitant mitochondrial enzymatic abnormalities, fiber atrophy and fiber breakage.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Cellular Senescence
- DNA Mutational Analysis
- DNA, Mitochondrial/genetics
- Dissection/methods
- Electron Transport
- Genome
- Genotype
- Lasers
- Male
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Phenotype
- Polymerase Chain Reaction
- Rats
- Rats, Inbred BN
- Rats, Inbred F344
- Sequence Deletion/genetics
Collapse
|
|
24 |
138 |
7
|
Herbst A, Pak JW, McKenzie D, Bua E, Bassiouni M, Aiken JM. Accumulation of mitochondrial DNA deletion mutations in aged muscle fibers: evidence for a causal role in muscle fiber loss. J Gerontol A Biol Sci Med Sci 2007; 62:235-45. [PMID: 17389720 PMCID: PMC2846622 DOI: 10.1093/gerona/62.3.235] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although mitochondrial mutation abundance has been recognized to increase in an age-dependent manner, the impact of mutation has been more difficult to establish. Using quantitative polymerase chain reaction, we measured the intracellular abundance of mutant and wild-type mitochondrial genomes along the length of individual laser-captured microdissected muscle fibers from aged rat quadriceps. Aged muscle fibers possessed segmental, clonal intracellular expansions of unique somatically derived mitochondrial DNA (mtDNA) deletion mutations. When the mutation abundance surpassed 90% of the total mitochondrial genomes, the fiber lost cytochrome c oxidase activity and exhibited an increase in succinate dehydrogenase activity. In addition to the mitochondrial enzymatic abnormalities, some fibers displayed abnormal morphology such as fiber splitting, atrophy, and breakage. Deletion mutation accumulation was linked to these aberrant morphologies with more severe cellular pathologies resulting from higher deletion mutation abundance. In summary, our measurements indicate that age-induced mtDNA deletion mutations expand within individual muscle fibers, eliciting fiber dysfunction and breakage.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
136 |
8
|
Aspnes LE, Lee CM, Weindruch R, Chung SS, Roecker EB, Aiken JM. Caloric restriction reduces fiber loss and mitochondrial abnormalities in aged rat muscle. FASEB J 1997; 11:573-81. [PMID: 9212081 DOI: 10.1096/fasebj.11.7.9212081] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The influence of caloric restriction (CR) initiated at 17 months of age was investigated on selected age-associated measures in skeletal muscle. Tissue from young (3-4 months) ad libitum-fed, old (30-32 months) restricted (35% and 50% CR, designated CR35 and CR50, respectively), and old ad libitum-fed rats (29 months) was studied. CR preserved fiber number and fiber type composition in the vastus lateralis muscle of the CR50 rats. In the old rats from all groups, individual fibers were found with either no detectable cytochrome c oxidase activity (COX-), hyperreactivity for succinate dehydrogenase activity (SDH++; also known as ragged red fibers [RRF]), or both COX- and SDH++. Muscle from the CR50 rats contained significantly fewer COX- and SDH++ fibers than did the muscle from CR35 rats. CR50 rats also had significantly lower numbers of mtDNA deletion products in two (adductor longus and soleus) of the four muscles examined compared to CR35 rats. These data indicate that CR begun in late middle age can retard age-associated fiber loss and fiber type changes, as well as increases in the number of skeletal muscle fibers showing mitochondrial enzyme abnormalities. CR also decreased the accumulation of mtDNA deletions.
Collapse
|
|
28 |
132 |
9
|
Johnson C, Johnson J, Vanderloo JP, Keane D, Aiken JM, McKenzie D. Prion protein polymorphisms in white-tailed deer influence susceptibility to chronic wasting disease. J Gen Virol 2006; 87:2109-2114. [PMID: 16760415 DOI: 10.1099/vir.0.81615-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The primary sequence of the prion protein affects susceptibility to transmissible spongiform encephalopathies, or prion diseases, in mice, sheep and humans. The Prnp gene sequence of free-ranging, Wisconsin white-tailed deer was determined and the Prnp genotypes of chronic wasting disease (CWD)-positive and CWD-negative deer were compared. Six amino acid changes were identified, two of which were located in pseudogenes. Two alleles, a Q-->K polymorphism at codon 226 and a single octapeptide repeat insertion into the pseudogene, have not been reported previously. The predominant alleles--wild-type (Q95, G96 and Q226) and a G96S polymorphism--comprised almost 98% of the Prnp alleles in the Wisconsin white-tailed deer population. Comparison of the allelic frequencies in the CWD-positive and CWD-negative deer suggested that G96S and a Q95H polymorphism were linked to a reduced susceptibility to CWD. The G96S allele did not, however, provide complete resistance, as a CWD-positive G96S/G96S deer was identified. The G96S allele was also linked to slower progression of the disease in CWD-positive deer based on the deposition of PrP(CWD) in the obex region of the medulla oblongata. Although the reduced susceptibility of deer with at least one copy of the Q95H or G96S allele is insufficient to serve as a genetic barrier, the presence of these alleles may modulate the impact of CWD on white-tailed deer populations.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
124 |
10
|
Bartz JC, Bessen RA, McKenzie D, Marsh RF, Aiken JM. Adaptation and selection of prion protein strain conformations following interspecies transmission of transmissible mink encephalopathy. J Virol 2000; 74:5542-7. [PMID: 10823860 PMCID: PMC112040 DOI: 10.1128/jvi.74.12.5542-5547.2000] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interspecies transmission of the transmissible spongiform encephalopathies (TSEs), or prion diseases, can result in the adaptation and selection of TSE strains with an expanded host range and increased virulence such as in the case of bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease. To investigate TSE strain adaptation, we serially passaged a biological clone of transmissible mink encephalopathy (TME) into Syrian golden hamsters and examined the selection of distinct strain phenotypes and conformations of the disease-specific isoform of the prion protein (PrP(Sc)). The long-incubation-period drowsy (DY) TME strain was the predominate strain, based on the presence of its strain-specific PrP(Sc) following interspecies passage. Additional serial passages in hamsters resulted in the selection of the hyper (HY) TME PrP(Sc) strain-dependent conformation and its short incubation period phenotype unless the passages were performed with a low-dose inoculum (e.g., 10(-5) dilution), in which case the DY TME clinical phenotype continued to predominate. For both TME strains, the PrP(Sc) strain pattern preceded stabilization of the TME strain phenotype. These findings demonstrate that interspecies transmission of a single cloned TSE strain resulted in adaptation of at least two strain-associated PrP(Sc) conformations that underwent selection until one type of PrP(Sc) conformation and strain phenotype became predominant. To examine TME strain selection in the absence of host adaptation, hamsters were coinfected with hamster-adapted HY and DY TME. DY TME was able to interfere with the selection of the short-incubation HY TME phenotype. Coinfection could result in the DY TME phenotype and PrP(Sc) conformation on first passage, but on subsequent passages, the disease pattern converted to HY TME. These findings indicate that during TSE strain adaptation, there is selection of a strain-specific PrP(Sc) conformation that can determine the TSE strain phenotype.
Collapse
|
research-article |
25 |
118 |
11
|
Strand MR, McKenzie DI, Grassl V, Dover BA, Aiken JM. Persistence and expression of Microplitis demolitor polydnavirus in Pseudoplusia includens. J Gen Virol 1992; 73 ( Pt 7):1627-35. [PMID: 1629694 DOI: 10.1099/0022-1317-73-7-1627] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Persistence and expression of Microplitis demolitor polydnavirus (MdPDV) was examined in parasitized and virus-injected Pseudoplusia includens larvae. Viral DNA persisted in P. includens larvae for 6 days, but no increase in the amount of viral DNA present was detected. Viral transcripts were observed in parasitized and virus-injected larvae 4 h post-parasitism and expression continued for 6 days. When specific host tissues were examined, more viral DNA and RNA was detected in haemocytes than in the gut, nervous system and fat body. 32P-labelled MdPDV DNA hybridized to approximately six different size classes of mRNAs on Northern blots of RNA from haemocytes of parasitized larvae. MdPDV transcription was first detected in haemocytes at 4 h post-parasitism and continued for 6 days. Similar transcripts were observed in haemocytes from larvae that had been injected with calyx fluid or MdPDV plus venom. First-strand cDNA probes of haemocyte-specific MdPDV transcripts hybridized to only certain MdPDV viral DNAs, suggesting that only part of the MdPDV genome is expressed in this host cell type.
Collapse
|
|
33 |
108 |
12
|
McKenzie D, Bua E, McKiernan S, Cao Z, Aiken JM. Mitochondrial DNA deletion mutations: a causal role in sarcopenia. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2010-5. [PMID: 11985577 DOI: 10.1046/j.1432-1033.2002.02867.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mitochondrial DNA (mtDNA) deletion mutations accumulate with age in tissues of a variety of species. Although the relatively low calculated abundance of these deletion mutations in whole tissue homogenates led some investigators to suggest that these mutations do not have any physiological impact, their focal and segmental accumulation suggests that they can, and do, accumulate to levels sufficient to affect the metabolism of a tissue. This phenomenon is most clearly demonstrated in skeletal muscle, where the accumulation of mtDNA deletion mutations remove critical subunits that encode for the electron transport system (ETS). In this review, we detail and provide evidence for a molecular basis of muscle fiber loss with age. Our data suggest that the mtDNA deletion mutations, which are generated in tissues with age, cause muscle fiber loss. Within a fiber, the process begins with a mtDNA replication error, an error that results in a loss of 25-80% of the mitochondrial genome. This smaller genome is replicated and, through a process not well understood, eventually comprises the majority of mtDNA within the small affected region of the muscle fiber. The preponderance of the smaller genomes results in a dysfunctional ETS in the affected area. As a consequence of both the decline in energy production and the increase in oxidative damage in the region, the fiber is no longer capable of self-maintenance, resulting in the observed intrafiber atrophy and fiber breakage. We are therefore proposing that a process contained within a very small region of a muscle fiber can result in breakage and loss of muscle fiber from the tissue.
Collapse
|
Review |
23 |
102 |
13
|
Bartz JC, Marsh RF, McKenzie DI, Aiken JM. The host range of chronic wasting disease is altered on passage in ferrets. Virology 1998; 251:297-301. [PMID: 9837794 DOI: 10.1006/viro.1998.9427] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic wasting disease (CWD), a member of the transmissible spongiform encephalopathies (TSEs), was first identified in captive mule and black-tail deer in 1967. Due to the failure to transmit CWD to rodents, we investigated the use of ferrets (Mustela putorius furo) as a small animal model of CWD. The inoculation of CWD into ferrets resulted in an incubation period of 17-21 months on primary passage that shortened to 5 months by the third ferret passage. The brain tissue of animals inoculated with ferret-passaged CWD exhibited spongiform degeneration and reactive astrocytosis. Western blot analysis of ferret-passaged CWD demonstrated the presence of PrP-res. Unlike mule deer CWD, ferret-passaged CWD was transmissible to Syrian golden hamsters (Mesocricetus auratus). Increasing the passage number of CWD in ferrets increased the pathogenicity of the agent for hamsters. This increase in host range of a field isolate on interspecies transmission emphasizes the need for caution when assessing the potential risk of transmission of TSEs, such as bovine spongiform encephalopathy, to new host species.
Collapse
|
|
27 |
100 |
14
|
Schwarze SR, Lee CM, Chung SS, Roecker EB, Weindruch R, Aiken JM. High levels of mitochondrial DNA deletions in skeletal muscle of old rhesus monkeys. Mech Ageing Dev 1995; 83:91-101. [PMID: 8569289 DOI: 10.1016/0047-6374(95)01611-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mitochondrial DNA (mtDNA) deletions increase in abundance with age in many tissues, however, their calculated low levels (usually < 0.1%) in samples from tissue homogenates containing thousands of cells argue against physiologic significance. Through the analysis of defined numbers of cells (skeletal muscle fibers) from rhesus monkeys, we report that the calculated abundance of specific mtDNA deletions is dependent upon the number of fibers analyzed: as the number of fibers decreases, the calculated deletion abundance increases. Also, most mtDNA deletions appear to occur in a mosaic pattern, varying from cell to cell in size, number and abundance. These data support the hypothesis that mtDNA deletions can focally accumulate to high levels contributing to declines in mass and function of aging skeletal muscle.
Collapse
|
|
30 |
98 |
15
|
Lee CM, Lopez ME, Weindruch R, Aiken JM. Association of age-related mitochondrial abnormalities with skeletal muscle fiber atrophy. Free Radic Biol Med 1998; 25:964-72. [PMID: 9840742 DOI: 10.1016/s0891-5849(98)00185-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hypothesis that mitochondrial dysfunction contributes to the senescent loss of skeletal muscle was investigated in quadriceps from 2- to 39-year old rhesus monkeys. Histological approaches, both cross-sectional (a single cross-section of the muscle) and longitudinal (multiple cross-sections of individual fibers spanning a 350-1600 microm region), were used to identify muscle fibers with abnormal mitochondrial electron transport system (ETS) enzyme activities and mitochondrial DNA deletions. Fibers were examined for two ETS activities, succinate dehydrogenase (SDH, ETS complex II) and cytochrome c oxidase (COX, ETS complex IV). The number of individual fibers containing ETS abnormalities (predominately negative for cytochrome c oxidase activity and/or hyperreactive for succinate dehydrogenase) increased with age. Deletions of the mitochondrial genome were observed in 89% of these ETS abnormal fibers. Longitudinal analysis allowed characterization of the ETS abnormal phenotype along their length. A decrease in cross-sectional area in 14% of the ETS abnormal fibers supports the hypothesis that deleted mitochondrial genomes may contribute to age-related fiber atrophy.
Collapse
|
|
27 |
94 |
16
|
Lee CM, Chung SS, Kaczkowski JM, Weindruch R, Aiken JM. Multiple mitochondrial DNA deletions associated with age in skeletal muscle of rhesus monkeys. JOURNAL OF GERONTOLOGY 1993; 48:B201-5. [PMID: 8227987 DOI: 10.1093/geronj/48.6.b201] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have examined skeletal muscle for the presence of age-associated mitochondrial DNA (mtDNA) deletions from 16 rhesus monkeys (age range 6-27 years). All animals over 13 years of age contained potential mtDNA deletions, whereas the presence of deletions was greatly reduced or absent in younger animals. The specific deletion patterns varied from individual to individual. Numerous mtDNA deletions accumulate with age in skeletal muscle from a nonhuman primate, indicating that the rhesus monkey may provide an excellent animal model to study mtDNA deletions. Further, the existence of multiple mtDNA deletions supports the possibility that they may contribute to geriatric muscular deficits, which are nearly universal in occurrence yet poorly understood.
Collapse
|
|
32 |
91 |
17
|
Schwarze SR, Weindruch R, Aiken JM. Oxidative stress and aging reduce COX I RNA and cytochrome oxidase activity in Drosophila. Free Radic Biol Med 1998; 25:740-7. [PMID: 9801075 DOI: 10.1016/s0891-5849(98)00153-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Drosophila melanogaster displays an age-associated increase in oxidative damage and a decrease in mitochondrial transcripts. To determine if these changes result in energy production deficiencies, we measured the electron transport system (ETS) enzyme activity, and ATP levels with age. No statistically significant influences of age on activities of complexes I and II or citrate synthase were observed. In contrast, from 2 to 45 days post-eclosion, declines were found in complex IV cytochrome c oxidase activity (COX, 40% decline) and ATP abundance (15%), while lipid peroxidation increased 71%. We next examined flies that were either genetically or chemically oxidatively stressed to determine the effect on levels of mitochondrial-encoded cytochrome oxidase I RNA (coxI) and COX activity. A catalase null mutant line had 48% of coxI RNA compared to the wild type. In Cu/Zn superoxide dismutase (cSOD) null flies, the rate of coxI RNA decline was greater than in controls. CoxI RNA also declined with increasing hydrogen peroxide (H2O2) treatment, which was reflected in reduced cytochrome c oxidase (COX) activity. These results show that oxidative stress is closely associated with reductions in mitochondrial transcript levels and support the hypothesis that oxidative stress may contribute to mitochondrial dysfunction and aging in D. melanogaster.
Collapse
|
|
27 |
81 |
18
|
Cheema N, Herbst A, McKenzie D, Aiken JM. Apoptosis and necrosis mediate skeletal muscle fiber loss in age-induced mitochondrial enzymatic abnormalities. Aging Cell 2015; 14:1085-93. [PMID: 26365892 PMCID: PMC4693455 DOI: 10.1111/acel.12399] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 01/07/2023] Open
Abstract
Sarcopenia, the age‐induced loss of skeletal muscle mass and function, results from the contributions of both fiber atrophy and loss of myofibers. We have previously characterized sarcopenia in FBN rats, documenting age‐dependent declines in muscle mass and fiber number along with increased fiber atrophy and fibrosis in vastus lateralis and rectus femoris muscles. Concomitant with these sarcopenic changes is an increased abundance of mitochondrial DNA deletion mutations and electron transport chain (ETC) abnormalities. In this study, we used immunohistological and histochemical approaches to define cell death pathways involved in sarcopenia. Activation of muscle cell death pathways was age‐dependent with most apoptotic and necrotic muscle fibers exhibiting ETC abnormalities. Although activation of apoptosis was a prominent feature of electron transport abnormal muscle fibers, necrosis was predominant in atrophic and broken ETC‐abnormal fibers. These data suggest that mitochondrial dysfunction is a major contributor to the activation of cell death processes in aged muscle fibers. The link between ETC abnormalities, apoptosis, fiber atrophy, and necrosis supports the hypothesis that mitochondrial DNA deletion mutations are causal in myofiber loss. These studies suggest a progression of events beginning with the generation and accumulation of a mtDNA deletion mutation, the concomitant development of ETC abnormalities, a subsequent triggering of apoptotic and, ultimately, necrotic events resulting in muscle fiber atrophy, breakage, and fiber loss.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
68 |
19
|
Gokey NG, Cao Z, Pak JW, Lee D, McKiernan SH, McKenzie D, Weindruch R, Aiken JM. Molecular analyses of mtDNA deletion mutations in microdissected skeletal muscle fibers from aged rhesus monkeys. Aging Cell 2004; 3:319-26. [PMID: 15379855 DOI: 10.1111/j.1474-9728.2004.00122.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mitochondrial DNA (mtDNA) deletion mutations co-localize with electron transport system (ETS) abnormalities in rhesus monkey skeletal muscle fibers. Using laser capture microdissection in conjunction with PCR and DNA sequence analysis, mitochondrial genomes from single sections of ETS abnormal fibers were characterized. All ETS abnormal fibers contained mtDNA deletion mutations. Deletions were large, removing 20-78% of the genome, with some to nearly all of the functional genes lost. In one-third of the deleted genomes, the light strand origin was deleted, whereas the heavy strand origin of replication was conserved in all fibers. A majority (27/39) of the deletion mutations had direct repeat sequences at their breakpoints and most (36/39) had one breakpoint within or in close proximity to the cytochrome b gene. Several pieces of evidence support the clonality of the mtDNA deletion mutation within an ETS abnormal region of a fiber: (a) only single, smaller than wild-type, PCR products were obtained from each ETS abnormal region; (b) the amplification of mtDNA from two regions of the same ETS abnormal fiber identified identical deletion mutations, and (c) a polymorphism was observed at nucleotide position 16103 (A and G) in the wild-type mtDNA of one animal (sequence analysis of an ETS abnormal region revealed that mtDNA deletion mutations contained only A or G at this position). Species-specific differences in the regions of the genomes lost as well as the presence of direct repeat sequences at the breakpoints suggest mechanistic differences in deletion mutation formation between rodents and primates.
Collapse
|
|
21 |
68 |
20
|
Lushaj EB, Johnson JK, McKenzie D, Aiken JM. Sarcopenia accelerates at advanced ages in Fisher 344xBrown Norway rats. J Gerontol A Biol Sci Med Sci 2008; 63:921-7. [PMID: 18840796 DOI: 10.1093/gerona/63.9.921] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although the age-dependent loss of muscle mass and strength, sarcopenia, is an inevitable process, its onset and progression are not well established. Here we defined the onset and the progression of sarcopenia in a healthy aging animal model, Fisher 344xBrown Norway rats. Vastus lateralis, rectus femoris, and vastus medialis muscles (three of the quadriceps muscles) were analyzed at 5 months of age and at 3-month intervals between 12 and 39 months of age. We found an age-dependent decline in muscle mass and fiber number and an increase in fiber atrophy and nonmuscle tissue. Significant changes of fiber number and muscle mass were not observed until very late in life (30-33 months) and were concurrent, whereas fiber cross-sectional area (CSA) gradually declined from maximum CSA (24 months). Sarcopenic declines identified between 30 and 36 months did not continue to 39 months, possibly due to the increased proportion of type I fibers.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
67 |
21
|
Pak JW, Herbst A, Bua E, Gokey N, McKenzie D, Aiken JM. Mitochondrial DNA mutations as a fundamental mechanism in physiological declines associated with aging. Aging Cell 2003; 2:1-7. [PMID: 12882328 DOI: 10.1046/j.1474-9728.2003.00034.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hypothesis that mitochondrial DNA damage accumulates and contributes to aging was proposed decades ago. Only recently have technological advancements, which facilitate microanalysis of single cells or portions of cells, revealed that mtDNA deletion mutations and, perhaps, single nucleotide mutations accumulate to physiologically relevant levels in the tissues of various species with age. Although a link between single nucleotide mutations and physiological consequences in aging tissue has not been established, the accumulation of deletion mutations in skeletal muscle fibres has been associated with sarcopenia. Different, and apparently random, deletion mutations are specific to individual fibres. However, the mtDNA deletion mutation within a phenotypically abnormal region of a fibre is the same, suggesting a selection, amplification and clonal expansion of the initial deletion mutation. mtDNA deletion mutations within a muscle fibre are associated with specific electron transport system abnormalities, muscle fibre atrophy and fibre breakage. These data point to a causal relationship between mitochondrial DNA mutations and the age-related loss of muscle mass.
Collapse
|
|
22 |
65 |
22
|
McKiernan SH, Colman RJ, Lopez M, Beasley TM, Aiken JM, Anderson RM, Weindruch R. Caloric restriction delays aging-induced cellular phenotypes in rhesus monkey skeletal muscle. Exp Gerontol 2010; 46:23-9. [PMID: 20883771 DOI: 10.1016/j.exger.2010.09.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 11/24/2022]
Abstract
Sarcopenia is the age-related loss of skeletal muscle mass and function and is characterized by a reduction in muscle mass and fiber cross-sectional area, alterations in muscle fiber type and mitochondrial functional changes. In rhesus monkeys, calorie restriction (CR) without malnutrition improves survival and delays the onset of age-associated diseases and disorders including sarcopenia. We present a longitudinal study on the impact of CR on early stage sarcopenia in the upper leg of monkeys from ~16 years to ~22 years of age. Using dual-energy X-ray absorptiometry we show that CR delayed the development of maximum muscle mass and, unlike Control animals, muscle mass of the upper leg was preserved in CR animals during early phase sarcopenia. Histochemical analyses of vastus lateralis muscle biopsies revealed that CR opposed age-related changes in the proportion of Type II muscle fibers and fiber cross-sectional area. In contrast the number of muscle fibers with mitochondrial electron transport system enzyme abnormalities (ETS(ab)) was not significantly affected by CR. Laser capture microdissection of ETS(ab) fibers and subsequent PCR analysis of the mitochondrial DNA revealed large deletion mutations in fibers with abnormal mitochondrial enzyme activities. CR did not prevent stochastic mitochondrial deletion mutations in muscle fibers but CR may have contributed to the maintenance of affected fibers.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
62 |
23
|
Hacker TA, McKiernan SH, Douglas PS, Wanagat J, Aiken JM. Age-related changes in cardiac structure and function in Fischer 344 x Brown Norway hybrid rats. Am J Physiol Heart Circ Physiol 2005; 290:H304-11. [PMID: 16143657 DOI: 10.1152/ajpheart.00290.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of aging on cardiovascular function and cardiac structure were determined in a rat model recommended for gerontological studies. A cross-sectional analysis assessed cardiac changes in male Fischer 344 x Brown Norway F1 hybrid rats (FBN) from adulthood to the very aged (n = 6 per 12-, 18-, 21-, 24-, 27-, 30-, 33-, 36-, and 39-mo-old group). Rats underwent echocardiographic and hemodynamic analyses to determine standard values for left ventricular (LV) mass, LV wall thickness, LV chamber diameter, heart rate, LV fractional shortening, mitral inflow velocity, LV relaxation time, and aortic/LV pressures. Histological analyses were used to assess LV fibrotic infiltration and cardiomyocyte volume density over time. Aged rats had an increased LV mass-to-body weight ratio and deteriorated systolic function. LV systolic pressure declined with age. Histological analysis demonstrated a gradual increase in fibrosis and a decrease in cardiomyocyte volume density with age. We conclude that, although significant physiological and morphological changes occurred in heart function and structure between 12 and 39 mo of age, these changes did not likely contribute to mortality. We report reference values for cardiac function and structure in adult FBN male rats through very old age at 3-mo intervals.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
61 |
24
|
Abstract
Age-associated alterations of the mitochondrial genome occur in several different species; however, their physiological relevance remains unclear. The age-associated changes of mitochondrial DNA (mtDNA) include nucleotide point mutations and modifications, as well as deletions. In this review, we summarize the current literature on age-associated mtDNA mutations and deletions and comment on their abundance. A clear need exists for a more thorough evaluation of the total damage to the mitochondrial genome that accumulates in aged tissues.
Collapse
|
Review |
28 |
60 |
25
|
Lopez ME, Van Zeeland NL, Dahl DB, Weindruch R, Aiken JM. Cellular phenotypes of age-associated skeletal muscle mitochondrial abnormalities in rhesus monkeys. Mutat Res 2000; 452:123-38. [PMID: 10894897 DOI: 10.1016/s0027-5107(00)00059-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rhesus monkey vastus lateralis muscle was examined histologically for age-associated electron transport system (ETS) abnormalities: fibers lacking cytochrome c oxidase activity (COX(-)) and/or exhibiting succinate dehydrogenase hyperreactivity (SDH(++)). Two hundred serial cross-sections (spanning 1600 microm) were obtained and analyzed for ETS abnormalities at regular intervals. The abundance and length of ETS abnormal regions increased with age. Extrapolating the data to the entire length of the fiber, up to 60% of the fibers were estimated to display ETS abnormalities in the oldest animal studied (34 years) compared to 4% in a young adult animal (11 years). ETS abnormal phenotypes varied with age and fiber type. Middle-aged animals primarily exhibited the COX(-) phenotype, while COX(-)/SDH(++) abnormalities were more common in old animals. Transition region phenotype was affected by fiber type with type 2 fibers first displaying COX(-) and then COX(-)/SDH(++) while type 1 fibers progressed from normal to SDH(++) and then to COX(-)/SDH(++). In situ hybridizations studies revealed an association of ETS abnormalities with deletions of the mitochondrial genome. By measuring cross-sectional area along the length of ETS abnormal fibers, we demonstrated that some of these fibers exhibit atrophy. Our data suggest mitochondrial (mtDNA) deletions and associated ETS abnormalities are contributors to age-associated fiber atrophy.
Collapse
|
|
25 |
51 |