1
|
Glerean E, Salmi J, Lahnakoski JM, Jääskeläinen IP, Sams M. Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity. Brain Connect 2012; 2:91-101. [PMID: 22559794 DOI: 10.1089/brain.2011.0068] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Functional brain activity and connectivity have been studied by calculating intersubject and seed-based correlations of hemodynamic data acquired with functional magnetic resonance imaging (fMRI). To inspect temporal dynamics, these correlation measures have been calculated over sliding time windows with necessary restrictions on the length of the temporal window that compromises the temporal resolution. Here, we show that it is possible to increase temporal resolution by using instantaneous phase synchronization (PS) as a measure of dynamic (time-varying) functional connectivity. We applied PS on an fMRI dataset obtained while 12 healthy volunteers watched a feature film. Narrow frequency band (0.04-0.07 Hz) was used in the PS analysis to avoid artifactual results. We defined three metrics for computing time-varying functional connectivity and time-varying intersubject reliability based on estimation of instantaneous PS across the subjects: (1) seed-based PS, (2) intersubject PS, and (3) intersubject seed-based PS. Our findings show that these PS-based metrics yield results consistent with both seed-based correlation and intersubject correlation methods when inspected over the whole time series, but provide an important advantage of maximal single-TR temporal resolution. These metrics can be applied both in studies with complex naturalistic stimuli (e.g., watching a movie or listening to music in the MRI scanner) and more controlled (e.g., event-related or blocked design) paradigms. A MATLAB toolbox FUNPSY ( http://becs.aalto.fi/bml/software.html ) is openly available for using these metrics in fMRI data analysis.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
208 |
2
|
Lahnakoski JM, Glerean E, Salmi J, Jääskeläinen IP, Sams M, Hari R, Nummenmaa L. Naturalistic FMRI mapping reveals superior temporal sulcus as the hub for the distributed brain network for social perception. Front Hum Neurosci 2012; 6:233. [PMID: 22905026 PMCID: PMC3417167 DOI: 10.3389/fnhum.2012.00233] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 07/22/2012] [Indexed: 11/17/2022] Open
Abstract
Despite the abundant data on brain networks processing static social signals, such as pictures of faces, the neural systems supporting social perception in naturalistic conditions are still poorly understood. Here we delineated brain networks subserving social perception under naturalistic conditions in 19 healthy humans who watched, during 3-T functional magnetic resonance imaging (fMRI), a set of 137 short (approximately 16 s each, total 27 min) audiovisual movie clips depicting pre-selected social signals. Two independent raters estimated how well each clip represented eight social features (faces, human bodies, biological motion, goal-oriented actions, emotion, social interaction, pain, and speech) and six filler features (places, objects, rigid motion, people not in social interaction, non-goal-oriented action, and non-human sounds) lacking social content. These ratings were used as predictors in the fMRI analysis. The posterior superior temporal sulcus (STS) responded to all social features but not to any non-social features, and the anterior STS responded to all social features except bodies and biological motion. We also found four partially segregated, extended networks for processing of specific social signals: (1) a fronto-temporal network responding to multiple social categories, (2) a fronto-parietal network preferentially activated to bodies, motion, and pain, (3) a temporo-amygdalar network responding to faces, social interaction, and speech, and (4) a fronto-insular network responding to pain, emotions, social interactions, and speech. Our results highlight the role of the pSTS in processing multiple aspects of social information, as well as the feasibility and efficiency of fMRI mapping under conditions that resemble the complexity of real life.
Collapse
|
Journal Article |
13 |
187 |
3
|
Lahnakoski JM, Glerean E, Jääskeläinen IP, Hyönä J, Hari R, Sams M, Nummenmaa L. Synchronous brain activity across individuals underlies shared psychological perspectives. Neuroimage 2014; 100:316-24. [PMID: 24936687 PMCID: PMC4153812 DOI: 10.1016/j.neuroimage.2014.06.022] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/06/2014] [Indexed: 11/26/2022] Open
Abstract
For successful communication, we need to understand the external world consistently with others. This task requires sufficiently similar cognitive schemas or psychological perspectives that act as filters to guide the selection, interpretation and storage of sensory information, perceptual objects and events. Here we show that when individuals adopt a similar psychological perspective during natural viewing, their brain activity becomes synchronized in specific brain regions. We measured brain activity with functional magnetic resonance imaging (fMRI) from 33 healthy participants who viewed a 10-min movie twice, assuming once a ‘social’ (detective) and once a ‘non-social’ (interior decorator) perspective to the movie events. Pearson's correlation coefficient was used to derive multisubject voxelwise similarity measures (inter-subject correlations; ISCs) of functional MRI data. We used k-nearest-neighbor and support vector machine classifiers as well as a Mantel test on the ISC matrices to reveal brain areas wherein ISC predicted the participants' current perspective. ISC was stronger in several brain regions—most robustly in the parahippocampal gyrus, posterior parietal cortex and lateral occipital cortex—when the participants viewed the movie with similar rather than different perspectives. Synchronization was not explained by differences in visual sampling of the movies, as estimated by eye gaze. We propose that synchronous brain activity across individuals adopting similar psychological perspectives could be an important neural mechanism supporting shared understanding of the environment.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
119 |
4
|
Glerean E, Pan RK, Salmi J, Kujala R, Lahnakoski JM, Roine U, Nummenmaa L, Leppämäki S, Nieminen-von Wendt T, Tani P, Saramäki J, Sams M, Jääskeläinen IP. Reorganization of functionally connected brain subnetworks in high-functioning autism. Hum Brain Mapp 2015; 37:1066-79. [PMID: 26686668 DOI: 10.1002/hbm.23084] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 11/03/2015] [Accepted: 12/02/2015] [Indexed: 01/21/2023] Open
Abstract
Previous functional connectivity studies have found both hypo- and hyper-connectivity in brains of individuals having autism spectrum disorder (ASD). Here we studied abnormalities in functional brain subnetworks in high-functioning individuals with ASD during free viewing of a movie containing social cues and interactions. Twenty-six subjects (13 with ASD) watched a 68-min movie during functional magnetic resonance imaging. For each subject, we computed Pearson's correlation between haemodynamic time-courses of each pair of 6-mm isotropic voxels. From the whole-brain functional networks, we derived individual and group-level subnetworks using graph theory. Scaled inclusivity was then calculated between all subject pairs to estimate intersubject similarity of connectivity structure of each subnetwork. Additional 54 individuals (27 with ASD) from the ABIDE resting-state database were included to test the reproducibility of the results. Between-group differences were observed in the composition of default-mode and ventro-temporal-limbic (VTL) subnetworks. The VTL subnetwork included amygdala, striatum, thalamus, parahippocampal, fusiform, and inferior temporal gyri. Further, VTL subnetwork similarity between subject pairs correlated significantly with similarity of symptom gravity measured with autism quotient. This correlation was observed also within the controls, and in the reproducibility dataset with ADI-R and ADOS scores. Our results highlight how the reorganization of functional subnetworks in individuals with ASD clarifies the mixture of hypo- and hyper-connectivity findings. Importantly, only the functional organization of the VTL subnetwork emerges as a marker of inter-individual similarities that co-vary with behavioral measures across all participants. These findings suggest a pivotal role of ventro-temporal and limbic systems in autism.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
77 |
5
|
Nummenmaa L, Lahnakoski JM, Glerean E. Sharing the social world via intersubject neural synchronisation. Curr Opin Psychol 2018; 24:7-14. [PMID: 29550395 DOI: 10.1016/j.copsyc.2018.02.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 11/30/2022]
Abstract
Sociability and capability of shared mental states are hallmarks of the human species, and pursuing shared goals oftentimes requires coordinating both behaviour and mental states. Here we review recent work using indices of intersubject neural synchronisation for measuring similarity of mental states across individuals. We discuss the methodological advances and limitations in the analyses based on intersubject synchrony, and discuss how these kinds of model-free analysis techniques enable the investigation of the brain basis of complex social processes. We argue that similarity of brain activity across individuals can be used, under certain conditions, to index the similarity of their subjective states of consciousness, and thus be used for investigating brain basis of mutual understanding and cooperation.
Collapse
|
Review |
7 |
52 |
6
|
Lahnakoski JM, Salmi J, Jääskeläinen IP, Lampinen J, Glerean E, Tikka P, Sams M. Stimulus-related independent component and voxel-wise analysis of human brain activity during free viewing of a feature film. PLoS One 2012; 7:e35215. [PMID: 22496909 PMCID: PMC3320648 DOI: 10.1371/journal.pone.0035215] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 03/13/2012] [Indexed: 11/19/2022] Open
Abstract
Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
44 |
7
|
Karjalainen T, Karlsson HK, Lahnakoski JM, Glerean E, Nuutila P, Jääskeläinen IP, Hari R, Sams M, Nummenmaa L. Dissociable Roles of Cerebral μ-Opioid and Type 2 Dopamine Receptors in Vicarious Pain: A Combined PET–fMRI Study. Cereb Cortex 2017; 27:4257-4266. [DOI: 10.1093/cercor/bhx129] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 12/21/2022] Open
|
|
8 |
37 |
8
|
Bolis D, Lahnakoski JM, Seidel D, Tamm J, Schilbach L. Interpersonal similarity of autistic traits predicts friendship quality. Soc Cogn Affect Neurosci 2021; 16:222-231. [PMID: 33104781 PMCID: PMC7812635 DOI: 10.1093/scan/nsaa147] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 01/14/2023] Open
Abstract
Autistic traits are known to be associated with social interaction difficulties. Yet, somewhat paradoxically, relevant research has been typically restricted to studying individuals. In line with the 'dialectical misattunement hypothesis' and clinical insights of intact social interactions among autistic individuals, we hypothesized that friendship quality varies as a function of interpersonal similarity and more concretely the difference value of autistic traits in a dyad, above and beyond autistic traits per se. Therefore, in this study, we used self-report questionnaires to investigate these measures in a sample of 67 neurotypical dyads across a broad range of autistic traits. Our results demonstrate that the more similar two persons are in autistic traits, the higher is the perceived quality of their friendship, irrespective of friendship duration, age, sex and, importantly, the (average of) autistic traits in a given dyad. More specifically, higher interpersonal similarity of autistic traits was associated with higher measures of closeness, acceptance and help. These results, therefore, lend support to the idea of an interactive turn in the study of social abilities across the autism spectrum and pave the way for future studies on the multiscale dynamics of social interactions.
Collapse
|
research-article |
4 |
34 |
9
|
Henco L, Diaconescu AO, Lahnakoski JM, Brandi ML, Hörmann S, Hennings J, Hasan A, Papazova I, Strube W, Bolis D, Schilbach L, Mathys C. Aberrant computational mechanisms of social learning and decision-making in schizophrenia and borderline personality disorder. PLoS Comput Biol 2020; 16:e1008162. [PMID: 32997653 PMCID: PMC7588082 DOI: 10.1371/journal.pcbi.1008162] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/26/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022] Open
Abstract
Psychiatric disorders are ubiquitously characterized by debilitating social impairments. These difficulties are thought to emerge from aberrant social inference. In order to elucidate the underlying computational mechanisms, patients diagnosed with major depressive disorder (N = 29), schizophrenia (N = 31), and borderline personality disorder (N = 31) as well as healthy controls (N = 34) performed a probabilistic reward learning task in which participants could learn from social and non-social information. Patients with schizophrenia and borderline personality disorder performed more poorly on the task than healthy controls and patients with major depressive disorder. Broken down by domain, borderline personality disorder patients performed better in the social compared to the non-social domain. In contrast, controls and major depressive disorder patients showed the opposite pattern and schizophrenia patients showed no difference between domains. In effect, borderline personality disorder patients gave up a possible overall performance advantage by concentrating their learning in the social at the expense of the non-social domain. We used computational modeling to assess learning and decision-making parameters estimated for each participant from their behavior. This enabled additional insights into the underlying learning and decision-making mechanisms. Patients with borderline personality disorder showed slower learning from social and non-social information and an exaggerated sensitivity to changes in environmental volatility, both in the non-social and the social domain, but more so in the latter. Regarding decision-making the modeling revealed that compared to controls and major depression patients, patients with borderline personality disorder and schizophrenia showed a stronger reliance on social relative to non-social information when making choices. Depressed patients did not differ significantly from controls in this respect. Overall, our results are consistent with the notion of a general interpersonal hypersensitivity in borderline personality disorder and schizophrenia based on a shared computational mechanism characterized by an over-reliance on beliefs about others in making decisions and by an exaggerated need to make sense of others during learning specifically in borderline personality disorder. People suffering from psychiatric disorders frequently experience difficulties in social interaction, such as an impaired ability to use social signals to build representations of others and use these to guide behavior. Compuational models of learning and decision-making enable the characterization of individual patterns in learning and decision-making mechanisms that may be disorder-specific or disorder-general. We employed this approach to investigate the behavior of healthy participants and patients diagnosed with depression, schizophrenia, and borderline personality disorder while they performed a probabilistic reward learning task which included a social component. Patients with schizophrenia and borderline personality disorder performed more poorly on the task than controls and depressed patients. In addition, patients with borderline personality disorder concentrated their learning efforts more on the social compared to the non-social information. Computational modeling additionally revealed that borderline personality disorder patients showed a reduced flexibility in the weighting of newly obtained social and non-social information when learning about their predictive value. Instead, we found exaggerated learning of the volatility of social and non-social information. Additionally, we found a pattern shared between patients with borderline personality disorder and schizophrenia who both showed an over-reliance on predictions about social information during decision-making. Our modeling therefore provides a computational account of the exaggerated need to make sense of and rely on one’s interpretation of others’ behavior, which is prominent in both disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
31 |
10
|
Lahnakoski JM, Forbes PA, McCall C, Schilbach L. Unobtrusive tracking of interpersonal orienting and distance predicts the subjective quality of social interactions. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191815. [PMID: 32968493 PMCID: PMC7481680 DOI: 10.1098/rsos.191815] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/17/2020] [Indexed: 05/20/2023]
Abstract
Interpersonal coordination of behaviour is essential for smooth social interactions. Measures of interpersonal behaviour, however, often rely on subjective evaluations, invasive measurement techniques or gross measures of motion. Here, we constructed an unobtrusive motion tracking system that enables detailed analysis of behaviour at the individual and interpersonal levels, which we validated using wearable sensors. We evaluate dyadic measures of joint orienting and distancing, synchrony and gaze behaviours to summarize data collected during natural conversation and joint action tasks. Our results demonstrate that patterns of proxemic behaviours, rather than more widely used measures of interpersonal synchrony, best predicted the subjective quality of the interactions. Increased distance between participants predicted lower enjoyment, while increased joint orienting towards each other during cooperation correlated with increased effort reported by the participants. Importantly, the interpersonal distance was most informative of the quality of interaction when task demands and experimental control were minimal. These results suggest that interpersonal measures of behaviour gathered during minimally constrained social interactions are particularly sensitive for the subjective quality of social interactions and may be useful for interaction-based phenotyping for further studies.
Collapse
|
research-article |
5 |
31 |
11
|
Smirnov D, Glerean E, Lahnakoski JM, Salmi J, Jääskeläinen IP, Sams M, Nummenmaa L. Fronto-parietal network supports context-dependent speech comprehension. Neuropsychologia 2014; 63:293-303. [PMID: 25218167 PMCID: PMC4410787 DOI: 10.1016/j.neuropsychologia.2014.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/02/2014] [Indexed: 12/05/2022]
Abstract
Knowing the context of a discourse is an essential prerequisite for comprehension. Here we used functional magnetic resonance imaging (fMRI) to disclose brain networks supporting context-dependent speech comprehension. During fMRI, 20 participants listened to 1-min spoken narratives preceded by pictures that were either contextually matching or mismatching with the narrative. Matching pictures increased narrative comprehension, decreased hemodynamic activity in Broca׳s area, and enhanced its functional connectivity with left anterior superior frontal gyrus, bilateral inferior parietal cortex, as well as anterior and posterior cingulate cortex. Further, the anterior (BA 45) and posterior (BA 44) portions of Broca׳s area differed in their functional connectivity patterns. Both BA 44 and BA 45 have shown increased connectivity with right angular gyrus and supramarginal gyrus. Whereas BA 44 showed increased connectivity with left angular gyrus, left inferior/middle temporal gyrus and left postcentral gyrus, BA 45 showed increased connectivity with right posterior cingulate cortex, right anterior inferior frontal gyrus, lateral occipital cortex and anterior cingulate cortex. Our results suggest that a fronto-parietal functional network supports context-dependent narrative comprehension, and that Broca׳s area is involved in resolving ambiguity from speech when appropriate contextual cues are lacking.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
21 |
12
|
Bacha-Trams M, Glerean E, Dunbar R, Lahnakoski JM, Ryyppö E, Sams M, Jääskeläinen IP. Differential inter-subject correlation of brain activity when kinship is a variable in moral dilemma. Sci Rep 2017; 7:14244. [PMID: 29079809 PMCID: PMC5660240 DOI: 10.1038/s41598-017-14323-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/09/2017] [Indexed: 11/18/2022] Open
Abstract
Previous behavioural studies have shown that humans act more altruistically towards kin. Whether and how knowledge of genetic relatedness translates into differential neurocognitive evaluation of observed social interactions has remained an open question. Here, we investigated how the human brain is engaged when viewing a moral dilemma between genetic vs. non-genetic sisters. During functional magnetic resonance imaging, a movie was shown, depicting refusal of organ donation between two sisters, with subjects guided to believe the sisters were related either genetically or by adoption. Although 90% of the subjects self-reported that genetic relationship was not relevant, their brain activity told a different story. Comparing correlations of brain activity across all subject pairs between the two viewing conditions, we found significantly stronger inter-subject correlations in insula, cingulate, medial and lateral prefrontal, superior temporal, and superior parietal cortices, when the subjects believed that the sisters were genetically related. Cognitive functions previously associated with these areas include moral and emotional conflict regulation, decision making, and mentalizing, suggesting more similar engagement of such functions when observing refusal of altruism from a genetic sister. Our results show that mere knowledge of a genetic relationship between interacting persons robustly modulates social cognition of the perceiver.
Collapse
|
research-article |
8 |
18 |
13
|
Karjalainen T, Seppälä K, Glerean E, Karlsson HK, Lahnakoski JM, Nuutila P, Jääskeläinen IP, Hari R, Sams M, Nummenmaa L. Opioidergic Regulation of Emotional Arousal: A Combined PET–fMRI Study. Cereb Cortex 2018; 29:4006-4016. [DOI: 10.1093/cercor/bhy281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/11/2018] [Indexed: 01/17/2023] Open
Abstract
Abstract
Emotions can be characterized by dimensions of arousal and valence (pleasantness). While the functional brain bases of emotional arousal and valence have been actively investigated, the neuromolecular underpinnings remain poorly understood. We tested whether the opioid and dopamine systems involved in reward and motivational processes would be associated with emotional arousal and valence. We used in vivo positron emission tomography to quantify μ-opioid receptor and type 2 dopamine receptor (MOR and D2R, respectively) availability in brains of 35 healthy adult females. During subsequent functional magnetic resonance imaging carried out to monitor hemodynamic activity, the subjects viewed movie scenes of varying emotional content. Arousal and valence were associated with hemodynamic activity in brain regions involved in emotional processing, including amygdala, thalamus, and superior temporal sulcus. Cerebral MOR availability correlated negatively with the hemodynamic responses to arousing scenes in amygdala, hippocampus, thalamus, and hypothalamus, whereas no positive correlations were observed in any brain region. D2R availability—here reliably quantified only in striatum—was not associated with either arousal or valence. These results suggest that emotional arousal is regulated by the MOR system, and that cerebral MOR availability influences brain activity elicited by arousing stimuli.
Collapse
|
|
7 |
17 |
14
|
Salmi J, Glerean E, Jääskeläinen IP, Lahnakoski JM, Kettunen J, Lampinen J, Tikka P, Sams M. Posterior parietal cortex activity reflects the significance of others' actions during natural viewing. Hum Brain Mapp 2014; 35:4767-76. [PMID: 24706557 DOI: 10.1002/hbm.22510] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 12/31/2013] [Accepted: 03/17/2014] [Indexed: 11/06/2022] Open
Abstract
The posterior parietal cortex (PPC) has been associated with multiple stimulus-driven (e.g., processing stimulus movements, providing visual signals for the motor system), goal-directed (e.g., directing visual attention to a target, processing behavioral priority of intentions), and action-related functions in previous studies with non-naturalistic paradigms. Here, we examined how these functions reflect PPC activity during natural viewing. Fourteen healthy volunteers watched a re-edited movie during functional magnetic resonance imaging (fMRI). Participants separately annotated behavioral priority (accounting for percepts, thoughts, and emotions) they had experienced during movie episodes. Movements in the movie were quantified with computer vision and eye movements were recorded from a separate group of subjects. Our results show that while overlapping dorsomedial PPC areas respond to episodes with multiple types of stimulus content, ventrolateral PPC areas exhibit enhanced activity when viewing goal-directed human hand actions. Furthermore, PPC activity related to viewing goal-directed human hand actions was more accurately explained by behavioral priority than by movements of the stimulus or eye movements. Taken together, our results suggest that PPC participates in perception of goal-directed human hand actions, supporting the view that PPC has a special role in providing visual signals for the motor system ("how"), in addition to processing visual spatial movements ("where").
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
15 |
15
|
Henco L, Brandi ML, Lahnakoski JM, Diaconescu AO, Mathys C, Schilbach L. Bayesian modelling captures inter-individual differences in social belief computations in the putamen and insula. Cortex 2020; 131:221-236. [DOI: 10.1016/j.cortex.2020.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/21/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
|
|
5 |
8 |
16
|
Lahnakoski JM, Jääskeläinen IP, Sams M, Nummenmaa L. Neural mechanisms for integrating consecutive and interleaved natural events. Hum Brain Mapp 2017; 38:3360-3376. [PMID: 28379608 DOI: 10.1002/hbm.23591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/02/2017] [Accepted: 03/20/2017] [Indexed: 11/07/2022] Open
Abstract
To understand temporally extended events, the human brain needs to accumulate information continuously across time. Interruptions that require switching of attention to other event sequences disrupt this process. To reveal neural mechanisms supporting integration of event information, we measured brain activity with functional magnetic resonance imaging (fMRI) from 18 participants while they viewed 6.5-minute excerpts from three movies (i) consecutively and (ii) as interleaved segments of approximately 50-s in duration. We measured inter-subject reliability of brain activity by calculating inter-subject correlations (ISC) of fMRI signals and analyzed activation timecourses with a general linear model (GLM). Interleaving decreased the ISC in posterior temporal lobes, medial prefrontal cortex, superior precuneus, medial occipital cortex, and cerebellum. In the GLM analyses, posterior temporal lobes were activated more consistently by instances of speech when the movies were viewed consecutively than as interleaved segments. By contrast, low-level auditory and visual stimulus features and editing boundaries caused similar activity patterns in both conditions. In the medial occipital cortex, decreases in ISC were seen in short bursts throughout the movie clips. By contrast, the other areas showed longer-lasting differences in ISC during isolated scenes depicting socially-relevant and suspenseful content, such as deception or inter-subject conflict. The areas in the posterior temporal lobes also showed sustained activity during continuous actions and were deactivated when actions ended at scene boundaries. Our results suggest that the posterior temporal and dorsomedial prefrontal cortices, as well as the cerebellum and dorsal precuneus, support integration of events into coherent event sequences. Hum Brain Mapp 38:3360-3376, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
Journal Article |
8 |
7 |
17
|
Brandi ML, Kaifel D, Lahnakoski JM, Schilbach L. A naturalistic paradigm simulating gaze-based social interactions for the investigation of social agency. Behav Res Methods 2020; 52:1044-1055. [PMID: 31712998 PMCID: PMC7280341 DOI: 10.3758/s13428-019-01299-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sense of agency describes the experience of being the cause of one's own actions and the resulting effects. In a social interaction, one's actions may also have a perceivable effect on the actions of others. In this article, we refer to the experience of being responsible for the behavior of others as social agency, which has important implications for the success or failure of social interactions. Gaze-contingent eyetracking paradigms provide a useful tool to analyze social agency in an experimentally controlled manner, but the current methods are lacking in terms of their ecological validity. We applied this technique in a novel task using video stimuli of real gaze behavior to simulate a gaze-based social interaction. This enabled us to create the impression of a live interaction with another person while being able to manipulate the gaze contingency and congruency shown by the simulated interaction partner in a continuous manner. Behavioral data demonstrated that participants believed they were interacting with a real person and that systematic changes in the responsiveness of the simulated partner modulated the experience of social agency. More specifically, gaze contingency (temporal relatedness) and gaze congruency (gaze direction relative to the participant's gaze) influenced the explicit sense of being responsible for the behavior of the other. In general, our study introduces a new naturalistic task to simulate gaze-based social interactions and demonstrates that it is suitable to studying the explicit experience of social agency.
Collapse
|
research-article |
5 |
5 |
18
|
Zillekens IC, Brandi ML, Lahnakoski JM, Koul A, Manera V, Becchio C, Schilbach L. Increased functional coupling of the left amygdala and medial prefrontal cortex during the perception of communicative point-light stimuli. Soc Cogn Affect Neurosci 2019; 14:97-107. [PMID: 30481356 PMCID: PMC6318468 DOI: 10.1093/scan/nsy105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 11/21/2018] [Indexed: 11/15/2022] Open
Abstract
Interpersonal predictive coding (IPPC) describes the behavioral phenomenon whereby seeing a communicative rather than an individual action helps to discern a masked second agent. As little is known, yet, about the neural correlates of IPPC, we conducted a functional magnetic resonance imaging study in a group of 27 healthy participants using point-light displays of moving agents embedded in distractors. We discovered that seeing communicative compared to individual actions was associated with higher activation of right superior frontal gyrus, whereas the reversed contrast elicited increased neural activation in an action observation network that was activated during all trials. Our findings, therefore, potentially indicate the formation of action predictions and a reduced demand for executive control in response to communicative actions. Further, in a regression analysis, we revealed that increased perceptual sensitivity was associated with a deactivation of the left amygdala during the perceptual task. A consecutive psychophysiological interaction analysis showed increased connectivity of the amygdala with medial prefrontal cortex in the context of communicative compared to individual actions. Thus, whereas increased amygdala signaling might interfere with task-relevant processes, increased co-activation of the amygdala and the medial prefrontal cortex in a communicative context might represent the integration of mentalizing computations.
Collapse
|
|
6 |
4 |
19
|
Lahnakoski JM, Eickhoff SB, Dukart J, Schilbach L. Naturalizing psychopathology-towards a quantitative real-world psychiatry. Mol Psychiatry 2022; 27:781-783. [PMID: 34667260 PMCID: PMC9054666 DOI: 10.1038/s41380-021-01322-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 02/04/2023]
|
brief-report |
3 |
4 |
20
|
Haaf R, Brandi ML, Albantakis L, Lahnakoski JM, Henco L, Schilbach L. Peripheral oxytocin levels are linked to hypothalamic gray matter volume in autistic adults: a cross-sectional secondary data analysis. Sci Rep 2024; 14:1380. [PMID: 38228703 PMCID: PMC10791615 DOI: 10.1038/s41598-023-50770-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
Oxytocin (OXT) is known to modulate social behavior and cognition and has been discussed as pathophysiological and therapeutic factor for autism spectrum disorder (ASD). An accumulating body of evidence indicates the hypothalamus to be of particular importance with regard to the underlying neurobiology. Here we used a region of interest voxel-based morphometry (VBM) approach to investigate hypothalamic gray matter volume (GMV) in autistic (n = 29, age 36.03 ± 11.0) and non-autistic adults (n = 27, age 30.96 ± 11.2). Peripheral plasma OXT levels and the autism spectrum quotient (AQ) were used for correlation analyses. Results showed no differences in hypothalamic GMV in autistic compared to non-autistic adults but suggested a differential association between hypothalamic GMV and OXT levels, such that a positive association was found for the ASD group. In addition, hypothalamic GMV showed a positive association with autistic traits in the ASD group. Bearing in mind the limitations such as a relatively small sample size, a wide age range and a high rate of psychopharmacological treatment in the ASD sample, these results provide new preliminary evidence for a potentially important role of the HTH in ASD and its relationship to the OXT system, but also point towards the importance of interindividual differences.
Collapse
|
research-article |
1 |
1 |
21
|
Alho J, Lahnakoski JM, Panula JM, Rikandi E, Mäntylä T, Lindgren M, Kieseppä T, Suvisaari J, Sams M, Raij TT. Hippocampus-Centered Network Is Associated With Positive Symptom Alleviation in Patients With First-Episode Psychosis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1197-1206. [PMID: 37336263 DOI: 10.1016/j.bpsc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Previous functional magnetic resonance imaging studies have reported widespread brain functional connectivity alterations in patients with psychosis. These studies have mostly used either resting-state or simple-task paradigms, thereby compromising experimental control or ecological validity, respectively. Additionally, in a conventional functional magnetic resonance imaging intrasubject functional connectivity analysis, it is difficult to identify which connections relate to extrinsic (stimulus-induced) and which connections relate to intrinsic (non-stimulus-related) neural processes. METHODS To mitigate these limitations, we used intersubject functional connectivity (ISFC) to analyze longitudinal functional magnetic resonance imaging data collected while 36 individuals with first-episode psychosis (FEP) and 29 age- and sex-matched population control participants watched scenes from the fantasy movie Alice in Wonderland at baseline and again at 1-year follow-up. Furthermore, to allow unconfounded comparison and to overcome possible circularity of ISFC, we introduced a novel approach wherein ISFC in both the FEP and population control groups was calculated with respect to an independent group of participants (not included in the analyses). RESULTS Using this independent-reference ISFC approach, we found an interaction effect wherein the independent-reference ISFC in individuals with FEP, but not in the control group participants, was significantly stronger at baseline than at follow-up in a network centered in the hippocampus and involving thalamic, striatal, and cortical regions, such as the orbitofrontal cortex. Alleviation of positive symptoms, particularly delusions, from baseline to follow-up was correlated with decreased network connectivity in patients with FEP. CONCLUSIONS These findings link deviation of naturalistic information processing in the hippocampus-centered network to positive symptoms.
Collapse
|
|
2 |
|
22
|
Rinne P, Lahnakoski JM, Saarimäki H, Tavast M, Sams M, Henriksson L. Six types of loves differentially recruit reward and social cognition brain areas. Cereb Cortex 2024; 34:bhae331. [PMID: 39183646 PMCID: PMC11345515 DOI: 10.1093/cercor/bhae331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Feelings of love are among the most significant human phenomena. Love informs the formation and maintenance of pair bonds, parent-offspring attachments, and influences relationships with others and even nature. However, little is known about the neural mechanisms of love beyond romantic and maternal types. Here, we characterize the brain areas involved in love for six different objects: romantic partner, one's children, friends, strangers, pets, and nature. We used functional magnetic resonance imaging (fMRI) to measure brain activity, while we induced feelings of love using short stories. Our results show that neural activity during a feeling of love depends on its object. Interpersonal love recruited social cognition brain areas in the temporoparietal junction and midline structures significantly more than love for pets or nature. In pet owners, love for pets activated these same regions significantly more than in participants without pets. Love in closer affiliative bonds was associated with significantly stronger and more widespread activation in the brain's reward system than love for strangers, pets, or nature. We suggest that the experience of love is shaped by both biological and cultural factors, originating from fundamental neurobiological mechanisms of attachment.
Collapse
|
research-article |
1 |
|
23
|
Brouzou KO, Kamp D, Hensel L, Lüdtke J, Lahnakoski JM, Dukart J, Mikus N, Mathys C, Eickhoff SB, Schilbach L. Using personalised brain stimulation to modulate social cognition in adults with autism-spectrum-disorder: protocol for a randomised single-blind rTMS study. BMC Psychiatry 2025; 25:281. [PMID: 40133861 PMCID: PMC11938784 DOI: 10.1186/s12888-025-06719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments of social interaction and communication as well as repetitive, stereotyped behaviour. Previous research indicates that ASD without intellectual impairment is associated with underactivity and reduced functional connectivity of the brain's mentalizing pathway, to which the right temporo-parietal junction (rTPJ) serves as an important entry point and hub. In this study, we aim to utilize functional magnetic resonance imaging (fMRI) to localize activation maxima in the rTPJ and other regions involved in social cognition to generate individualized targets for neuro-navigated, intermittent theta burst stimulation (iTBS) in order to modulate brain activity in a region centrally engaged in social information processing. METHODS In this single-blind, randomized, between-subject neuroimaging-guided brain stimulation study we plan to recruit 52 participants with prediagnosed ASD and 52 controls without ASD aged between 18 and 65 years. Participants will be classified into two groups and will randomly receive one session of either verum- or sham-iTBS. Effects will be assessed by using well-established experimental tasks that interrogate social behaviour, but also use computational modelling to investigate brain stimulation effects at this level. DISCUSSION This study aims to use personalized, non-invasive brain stimulation to alter social information processing in adults with and without high-functioning ASD, which has not been studied before with a similar protocol or a sample size of this magnitude. By doing so in combination with behavioural and computational tasks, this study has the potential to provide new mechanistic insights into the workings of the social brain. TRIAL REGISTRATION German Clinical Trial Register, DRKS-ID: DRKS00028819. Registered 14 June 2022.
Collapse
|
Clinical Trial Protocol |
1 |
|
24
|
Saalasti S, Alho J, Lahnakoski JM, Bacha-Trams M, Glerean E, Jääskeläinen IP, Hasson U, Sams M. Lipreading a naturalistic narrative in a female population: Neural characteristics shared with listening and reading. Brain Behav 2023; 13:e2869. [PMID: 36579557 PMCID: PMC9927859 DOI: 10.1002/brb3.2869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Few of us are skilled lipreaders while most struggle with the task. Neural substrates that enable comprehension of connected natural speech via lipreading are not yet well understood. METHODS We used a data-driven approach to identify brain areas underlying the lipreading of an 8-min narrative with participants whose lipreading skills varied extensively (range 6-100%, mean = 50.7%). The participants also listened to and read the same narrative. The similarity between individual participants' brain activity during the whole narrative, within and between conditions, was estimated by a voxel-wise comparison of the Blood Oxygenation Level Dependent (BOLD) signal time courses. RESULTS Inter-subject correlation (ISC) of the time courses revealed that lipreading, listening to, and reading the narrative were largely supported by the same brain areas in the temporal, parietal and frontal cortices, precuneus, and cerebellum. Additionally, listening to and reading connected naturalistic speech particularly activated higher-level linguistic processing in the parietal and frontal cortices more consistently than lipreading, probably paralleling the limited understanding obtained via lip-reading. Importantly, higher lipreading test score and subjective estimate of comprehension of the lipread narrative was associated with activity in the superior and middle temporal cortex. CONCLUSIONS Our new data illustrates that findings from prior studies using well-controlled repetitive speech stimuli and stimulus-driven data analyses are also valid for naturalistic connected speech. Our results might suggest an efficient use of brain areas dealing with phonological processing in skilled lipreaders.
Collapse
|
research-article |
2 |
|
25
|
Lahnakoski JM, Bennett E, Nummenmaa L, Steinert U, Sams M, Svärd S. Embodied emotions in ancient Neo-Assyrian texts revealed by bodily mapping of emotional semantics. iScience 2024; 27:111365. [PMID: 39758986 PMCID: PMC11700638 DOI: 10.1016/j.isci.2024.111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 01/07/2025] Open
Abstract
Emotions are associated with subjective emotion-specific bodily sensations. Here, we utilized this relationship and computational linguistic methods to map a representation of emotions in ancient texts. We analyzed Neo-Assyrian texts from 934-612 BCE to discern consistent relationships between linguistic expressions related to both emotions and bodily sensations. We then computed statistical regularities between emotion terms and words referring to body parts and back-projected the resulting emotion-body part relationships on a body template, yielding bodily sensation maps for the emotions. We found consistent embodied patterns for 18 distinct emotions. Hierarchical clustering revealed four main clusters of bodily emotion categories, two clusters of mainly positive emotions, one large cluster of mainly negative emotions, and one of empathy and schadenfreude. These results reveal the historical use of embodied language pertaining to human emotions. Our data-driven tool could enable future comparisons of textual embodiment patterns across different languages and cultures across time.
Collapse
|
research-article |
1 |
|