1
|
Del Collado M, da Silveira JC, Sangalli JR, Andrade GM, Sousa LRDS, Silva LA, Meirelles FV, Perecin F. Fatty Acid Binding Protein 3 And Transzonal Projections Are Involved In Lipid Accumulation During In Vitro Maturation Of Bovine Oocytes. Sci Rep 2017; 7:2645. [PMID: 28572619 PMCID: PMC5453981 DOI: 10.1038/s41598-017-02467-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/11/2017] [Indexed: 12/20/2022] Open
Abstract
Oocytes that undergo in vitro maturation (IVM) are metabolically abnormal and accumulate excess lipid content. However, the mechanism of lipid accumulation and the role of cumulus cells in this process are unclear. Recently, it was shown that fatty acid binding proteins (FABPs) performed intra- and extracellular fatty acid transport. We postulated that FABP3 might be responsible for fatty acid transport from cumulus cells to the oocytes via transzonal projections (TZPs) during IVM. Transcript and protein levels of FABP3 were analyzed in both in vivo- and in vitro-matured cumulus-oocyte-complexes and were increased in IVM samples. Further analysis showed increased lipid content in oocytes and cumulus cells in IVM samples compared to in vivo-derived. We therefore speculated that altered traffic of fatty acids via FABP3 during IVM was the mechanism leading to the excess of lipids accumulated within IVM oocytes. Furthermore, we demonstrated an increase in FABP3 levels and lipid content during the first 9 h of IVM, further strengthening the possibility of fatty acid transport via FABP3 and TZPs. Additionally, disruptions of TZPs during IVM decreased lipid accumulation in oocytes. Our results shed light on a possible mechanism involving FABP3 and TZPs that causes excess lipid accumulation in oocytes during IVM.
Collapse
|
research-article |
8 |
59 |
2
|
Macabelli CH, Ferreira RM, Gimenes LU, de Carvalho NAT, Soares JG, Ayres H, Ferraz ML, Watanabe YF, Watanabe OY, Sangalli JR, Smith LC, Baruselli PS, Meirelles FV, Chiaratti MR. Reference gene selection for gene expression analysis of oocytes collected from dairy cattle and buffaloes during winter and summer. PLoS One 2014; 9:e93287. [PMID: 24676354 PMCID: PMC3968137 DOI: 10.1371/journal.pone.0093287] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 03/04/2014] [Indexed: 12/22/2022] Open
Abstract
Oocytes from dairy cattle and buffaloes have severely compromised developmental competence during summer. While analysis of gene expression is a powerful technique for understanding the factors affecting developmental hindrance in oocytes, analysis by real-time reverse transcription PCR (RT-PCR) relies on the correct normalization by reference genes showing stable expression. Furthermore, several studies have found that genes commonly used as reference standards do not behave as expected depending on cell type and experimental design. Hence, it is recommended to evaluate expression stability of candidate reference genes for a specific experimental condition before employing them as internal controls. In acknowledgment of the importance of seasonal effects on oocyte gene expression, the aim of this study was to evaluate the stability of expression levels of ten well-known reference genes (ACTB, GAPDH, GUSB, HIST1H2AG, HPRT1, PPIA, RPL15, SDHA, TBP and YWHAZ) using oocytes collected from different categories of dairy cattle and buffaloes during winter and summer. A normalization factor was provided for cattle (RPL15, PPIA and GUSB) and buffaloes (YWHAZ, GUSB and GAPDH) based on the expression of the three most stable reference genes in each species. Normalization of non-reference target genes by these reference genes was shown to be considerably different from normalization by less stable reference genes, further highlighting the need for careful selection of internal controls. Therefore, due to the high variability of reference genes among experimental groups, we conclude that data normalized by internal controls can be misleading and should be compared to not normalized data or to data normalized by an external control in order to better interpret the biological relevance of gene expression analysis.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
41 |
3
|
de Ávila ACFCM, Bridi A, Andrade GM, Del Collado M, Sangalli JR, Nociti RP, da Silva Junior WA, Bastien A, Robert C, Meirelles FV, Perecin F, da Silveira JC. Estrous cycle impacts microRNA content in extracellular vesicles that modulate bovine cumulus cell transcripts during in vitro maturation†. Biol Reprod 2021; 102:362-375. [PMID: 31504242 DOI: 10.1093/biolre/ioz177] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/19/2019] [Accepted: 07/04/2019] [Indexed: 01/02/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles secreted by ovarian follicle cells. Extracellular vesicles are an important form of intercellular communication, since they carry bioactive contents, such as microRNAs (miRNAs), mRNAs, and proteins. MicroRNAs are small noncoding RNA capable of modulating mRNA translation. Thus, EVs can play a role in follicle and oocyte development. However, it is not clear if EV contents vary with the estrous cycle stage. The aim of this study was to investigate the bovine miRNA content in EVs obtained from follicles at different estrous cycle stages, which are associated with different progesterone (P4) levels in the follicular fluid (FF). We collected FF from 3 to 6 mm follicles and evaluated the miRNA profile of the EVs and their effects on cumulus-oocyte complexes during in vitro maturation. We observed that EVs from low P4 group have a higher abundance of miRNAs predicted to modulate pathways, such as MAPK, RNA transport, Hippo, Cell cycle, FoxO, oocyte meiosis, and TGF-beta. Additionally, EVs were taken up by cumulus cells and, thus, affected the RNA global profile 9 h after EV supplementation. Cumulus cells supplemented with EVs from low P4 presented upregulated genes that could modulate biological processes, such as oocyte development, immune responses, and Notch signaling compared with genes of cumulus cells in the EV free media or with EVs from high P4 follicles. In conclusion, our results demonstrate that EV miRNA contents are distinct in follicles exposed to different estrous cycle stage. Supplementation with EVs impacts gene expression and biological processes in cumulus cells.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
36 |
4
|
Sangalli JR, Chiaratti MR, De Bem THC, de Araújo RR, Bressan FF, Sampaio RV, Perecin F, Smith LC, King WA, Meirelles FV. Development to term of cloned cattle derived from donor cells treated with valproic acid. PLoS One 2014; 9:e101022. [PMID: 24959750 PMCID: PMC4069182 DOI: 10.1371/journal.pone.0101022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/02/2014] [Indexed: 11/25/2022] Open
Abstract
Cloning of mammals by somatic cell nuclear transfer (SCNT) is still plagued by low efficiency. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this regard, most factors that promote chromatin decondensation, including histone deacetylase inhibitors (HDACis), have been found to increase nuclear reprogramming efficiency, making their use common to improve SCNT rates. Herein we used valproic acid (VPA) in SCNT to test whether the treatment of nuclear donor cells with this HDACi improves pre- and post-implantation development of cloned cattle. We found that the treatment of fibroblasts with VPA increased histone acetylation without affecting DNA methylation. Moreover, the treatment with VPA resulted in increased expression of IGF2R and PPARGC1A, but not of POU5F1. However, when treated cells were used as nuclear donors no difference of histone acetylation was found after oocyte reconstruction compared to the use of untreated cells. Moreover, shortly after artificial activation the histone acetylation levels were decreased in the embryos produced with VPA-treated cells. With respect to developmental rates, the use of treated cells as donors resulted in no difference during pre- and post-implantation development. In total, five clones developed to term; three produced with untreated cells and two with VPA-treated cells. Among the calves from treated group, one stillborn calf was delivered at day 270 of gestation whereas the other one was delivered at term but died shortly after birth. Among the calves from the control group, one died seven days after birth whereas the other two are still alive and healthy. Altogether, these results show that in spite of the alterations in fibroblasts resulting from the treatment with VPA, their use as donor cells in SCNT did not improve pre- and post-implantation development of cloned cattle.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
30 |
5
|
Machado TS, Macabelli CH, Sangalli JR, Rodrigues TB, Smith LC, Meirelles FV, Chiaratti MR. Real-Time PCR Quantification of Heteroplasmy in a Mouse Model with Mitochondrial DNA of C57BL/6 and NZB/BINJ Strains. PLoS One 2015; 10:e0133650. [PMID: 26274500 PMCID: PMC4537288 DOI: 10.1371/journal.pone.0133650] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/30/2015] [Indexed: 11/18/2022] Open
Abstract
Mouse models are widely employed to study mitochondrial inheritance, which have implications to several human diseases caused by mutations in the mitochondrial genome (mtDNA). These mouse models take advantage of polymorphisms between the mtDNA of the NZB/BINJ and the mtDNA of common inbred laboratory (i.e., C57BL/6) strains to generate mice with two mtDNA haplotypes (heteroplasmy). Based on PCR followed by restriction fragment length polymorphism (PCR-RFLP), these studies determine the level of heteroplasmy across generations and in different cell types aiming to understand the mechanisms underlying mitochondrial inheritance. However, PCR-RFLP is a time-consuming method of low sensitivity and accuracy that dependents on the use of restriction enzyme digestions. A more robust method to measure heteroplasmy has been provided by the use of real-time quantitative PCR (qPCR) based on allelic refractory mutation detection system (ARMS-qPCR). Herein, we report an ARMS-qPCR assay for quantification of heteroplasmy using heteroplasmic mice with mtDNA of NZB/BINJ and C57BL/6 origin. Heteroplasmy and mtDNA copy number were estimated in germline and somatic tissues, providing evidence of the reliability of the approach. Furthermore, it enabled single-step quantification of heteroplasmy, with sensitivity to detect as low as 0.1% of either NZB/BINJ or C57BL/6 mtDNA. These findings are relevant as the ARMS-qPCR assay reported here is fully compatible with similar heteroplasmic mouse models used to study mitochondrial inheritance in mammals.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
21 |
6
|
Sangalli JR, Sampaio RV, Del Collado M, da Silveira JC, De Bem THC, Perecin F, Smith LC, Meirelles FV. Metabolic gene expression and epigenetic effects of the ketone body β-hydroxybutyrate on H3K9ac in bovine cells, oocytes and embryos. Sci Rep 2018; 8:13766. [PMID: 30214009 PMCID: PMC6137158 DOI: 10.1038/s41598-018-31822-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
The rapid decline in fertility that has been occurring to high-producing dairy cows in the past 50 years seems to be associated with metabolic disturbances such as ketosis, supporting the need for research to improve our understanding of the relations among the diet, metabolism and embryonic development. Recently, the ketone body β-hydroxybutyrate (BOHB) was demonstrated to be a potent inhibitor of histone deacetylases (HDACs). Herein, we performed a series of experiments aiming to investigate the epigenetic effects of BOHB on histone acetylation in somatic cells, cumulus-oocyte complexes (COCs) and somatic cell nuclear transfer (SCNT) embryos. Treatment with BOHB does not increase histone acetylation in cells but stimulates genes associated with ketolysis and master regulators of metabolism. We further demonstrated that maturing COCs with high levels of BOHB does not affect their maturation rate or histone acetylation but increases the expression of PPARA in cumulus cells. Treatment of somatic cell nuclear transfer zygotes with BOHB causes hyperacetylation, which is maintained until the blastocyst stage, causing enhanced FOXO3A expression and blastocyst production. Our data shed light on the epigenetic mechanisms caused by BOHB in bovine cells and embryos and provide a better understanding of the connection between nutrition and reproduction.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
19 |
7
|
Monzani PS, Bressan FF, Mesquita LG, Sangalli JR, Meirelles FV. β-casein gene expression by in vitro cultured bovine mammary epithelial cells derived from developing mammary glands. GENETICS AND MOLECULAR RESEARCH 2011; 10:604-14. [PMID: 21491370 DOI: 10.4238/vol10-2gmr1034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Epithelial cells from mammary gland tissue that are cultured in vitro are able to maintain specific functions of this gland, such as cellular differentiation and milk protein synthesis. These characteristics make these cells a useful model to study mammary gland physiology, development and differentiation; they can also be used for production of exogenous proteins of pharmaceutical interest. Bovine mammary epithelial cells were cultured in vitro after isolation from mammary gland tissue of animals at different stages of development. The cells were plated on Petri dishes and isolated from fibroblasts using saline/EDTA treatment, followed by trypsinization. Cells isolated on plastic were capable of differentiating into alveolus-like structures; however, only cells derived from non-pregnant and non-lactating animals expressed β-casein. Real-time qPCR and epifluorescence microscopy analyses revealed that alveolus-like structures were competent at expressing Emerald green fluorescent protein (EmGFP) driven by the β-casein promoter, independent of β-casein expression.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
12 |
8
|
Sampaio RV, Sangalli JR, De Bem THC, Ambrizi DR, Del Collado M, Bridi A, de Ávila ACFCM, Macabelli CH, de Jesus Oliveira L, da Silveira JC, Chiaratti MR, Perecin F, Bressan FF, Smith LC, Ross PJ, Meirelles FV. Catalytic inhibition of H3K9me2 writers disturbs epigenetic marks during bovine nuclear reprogramming. Sci Rep 2020; 10:11493. [PMID: 32661262 PMCID: PMC7359371 DOI: 10.1038/s41598-020-67733-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/28/2020] [Indexed: 01/28/2023] Open
Abstract
Orchestrated events, including extensive changes in epigenetic marks, allow a somatic nucleus to become totipotent after transfer into an oocyte, a process termed nuclear reprogramming. Recently, several strategies have been applied in order to improve reprogramming efficiency, mainly focused on removing repressive epigenetic marks such as histone methylation from the somatic nucleus. Herein we used the specific and non-toxic chemical probe UNC0638 to inhibit the catalytic activity of the histone methyltransferases EHMT1 and EHMT2. Either the donor cell (before reconstruction) or the early embryo was exposed to the probe to assess its effect on developmental rates and epigenetic marks. First, we showed that the treatment of bovine fibroblasts with UNC0638 did mitigate the levels of H3K9me2. Moreover, H3K9me2 levels were decreased in cloned embryos regardless of treating either donor cells or early embryos with UNC0638. Additional epigenetic marks such as H3K9me3, 5mC, and 5hmC were also affected by the UNC0638 treatment. Therefore, the use of UNC0638 did diminish the levels of H3K9me2 and H3K9me3 in SCNT-derived blastocysts, but this was unable to improve their preimplantation development. These results indicate that the specific reduction of H3K9me2 by inhibiting EHMT1/2 during nuclear reprogramming impacts the levels of H3K9me3, 5mC, and 5hmC in preimplantation bovine embryos.
Collapse
|
research-article |
5 |
8 |
9
|
Ferronato GDA, Dos Santos CM, Rosa PMDS, Bridi A, Perecin F, Meirelles FV, Sangalli JR, da Silveira JC. Bovine in vitro oocyte maturation and embryo culture in liquid marbles 3D culture system. PLoS One 2023; 18:e0284809. [PMID: 37083878 PMCID: PMC10121032 DOI: 10.1371/journal.pone.0284809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/08/2023] [Indexed: 04/22/2023] Open
Abstract
Despite the advances in in vitro embryo production (IVP) over the years, the technique still has limitations that need to be overcome. In cell cultures, it is already well established that three-dimensional culture techniques are more physiological and similar to the in vivo development. Liquid marble (LM) is a three-dimensional system based on the use of a hydrophobic substance to create in vitro microbioreactors. Thus, we hypothesized that the LM system improves bovine in vitro oocyte maturation and embryo culture. In experiment I, bovine cumulus-oocyte complexes (COCs) were placed for in vitro maturation for 22h in two different groups: control (conventional 2D culture) and LM (three-dimensional culture). We found that oocyte nuclear maturation was not altered by the LM system, however it was observed a decrease in expression of genes important in the oocyte maturation process in cumulus cells of LM group (BCL2, EIF4E, and GAPDH). In experiment II, the COCs were conventionally matured and fertilized, and for culture, they were divided into LM or control groups. There was a decrease in blastocyst rate and cell counting, a down-regulation of miR-615 expression, and an increase in the DNA global methylation and hydroxymethylation in embryos of LM group. Therefore, for the bovine in vitro embryo production, this specific three-dimensional system did not present the advantages that we expected, but demonstrated that the embryos changed their development and epigenetics according to the culture system.
Collapse
|
|
2 |
8 |
10
|
Monzani PS, Sangalli JR, De Bem THC, Bressan FF, Fantinato-Neto P, Pimentel JRV, Birgel-Junior EH, Fontes AM, Covas DT, Meirelles FV. Breeding of transgenic cattle for human coagulation factor IX by a combination of lentiviral system and cloning. GENETICS AND MOLECULAR RESEARCH 2013; 12:3675-88. [PMID: 23479170 DOI: 10.4238/2013.february.28.25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recombinant coagulation factor IX must be produced in mammalian cells because FIX synthesis involves translational modifications. Human cell culture-based expression of human coagulation factor IX (hFIX) is expensive, and large-scale production capacity is limited. Transgenic animals may greatly increase the yield of therapeutic proteins and reduce costs. In this study, we used a lentiviral system to obtain transgenic cells and somatic cell nuclear transfer (SCNT) to produce transgenic animals. Lentiviral vectors carrying hFIX driven by 3 bovine β-casein promoters were constructed. Bovine epithelial mammary cells were transduced by lentivirus, selected with blasticidin, plated on extracellular matrix, and induced by lactogenic hormones; promoter activity was evaluated by quantitative PCR. Transcriptional activity of the 5.335-kb promoter was 6-fold higher than the 3.392- and 4.279-kb promoters, which did not significantly differ. Transgenic bovine fibroblasts were transduced with lentivirus carrying the 5.335-kb promoter and used as donor cells for SCNT. Cloned transgenic embryo production yielded development rates of 28.4%, similar to previous reports on cloned non-transgenic embryos. The embryos were transferred to recipient cows (N = 21) and 2 births of cloned transgenic cattle were obtained. These results suggest combination of the lentiviral system and cloning may be a good strategy for production of transgenic cattle.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
7 |
11
|
Sá AL, Sampaio RV, da Costa Almeida NN, Sangalli JR, Brito KNL, Bressan FF, Rissino JD, do Socorro Damasceno Santos S, Meirelles FV, Ohashi OM, dos Santos Miranda M. Effect of POU5F1 Expression Level in Clonal Subpopulations of Bovine Fibroblasts Used as Nuclear Donors for Somatic Cell Nuclear Transfer. Cell Reprogram 2017; 19:294-301. [DOI: 10.1089/cell.2016.0063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
|
8 |
4 |
12
|
Sangalli JR, Sampaio RV, Del Collado M, da Silveira JC, De Bem THC, Perecin F, Smith LC, Meirelles FV. Author Correction: Metabolic gene expression and epigenetic effects of the ketone body β-hydroxybutyrate on H3K9ac in bovine cells, oocytes and embryos. Sci Rep 2018; 8:17219. [PMID: 30442989 PMCID: PMC6237864 DOI: 10.1038/s41598-018-35527-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
Published Erratum |
7 |
2 |
13
|
Maria da Silva Rosa P, Bridi A, de Ávila Ferronato G, Nociti RP, Camargo Dos Santos A, Cataldi TR, Santos GD, Chiaratti MR, Silva LA, Pugliesi G, Sangalli JR, Meirelles FV, Perecin F, Coelho da Silveira J. Corpus luteum proximity alters molecular signature of the small extracellular vesicles and cumulus cells in the bovine ovarian follicle environment. Mol Cell Endocrinol 2024; 592:112347. [PMID: 39181310 DOI: 10.1016/j.mce.2024.112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Progesterone (P4) is predicted to act as a negative regulatory hormone for oocyte maturation events; however, its local effects during follicular development remain poorly understood in bovine. The complex process of oocyte meiosis progression is dependent on cellular communication among follicular cells. Besides, the breakdown of this communication, mainly between cumulus cells (CC) and oocyte, through the retraction of cumulus projections connecting these cells can impact oocyte maturation. In our study, we observed that follicles from the ovary ipsilateral to the corpus luteum (CL) containing high intrafollicular P4 concentrations enhance the abundance of proteins detected in follicular-derived small extracellular vesicles (sEVs) predicted to be involved in the retraction of membrane projections based on actin filaments, such as transzonal projections (TZPs). Conversely, we found that follicles from the ovary contralateral to the CL, which contained low intrafollicular P4 concentrations, had a high detection of proteins predicted to regulate the maintenance of TZPs. We also performed RNAseq analysis which demonstrated that 177 genes were differentially expressed in CC under the different P4 environments. Bioinformatic analysis points to changes associated to cell metabolism in cells from follicles ipsilateral to the CL in comparison to genes involved in cell communication in CC from follicles contralateral to the CL. Our functional analysis experiment confirmed that supplementation of cumulus-oocyte complexes during in vitro maturation with P4 at concentration similar to ipsilateral follicles reduces the number of TZPs. In summary, our study underscores a direct association between P4 concentration and cumulus-oocyte interaction, with potential consequences for the acquisition of oocyte competence.
Collapse
|
|
1 |
|
14
|
Machado LS, Borges CM, de Lima MA, Sangalli JR, Therrien J, Pessôa LVDF, Fantinato Neto P, Perecin F, Smith LC, Meirelles FV, Bressan FF. Exogenous OCT4 and SOX2 Contribution to In Vitro Reprogramming in Cattle. Biomedicines 2023; 11:2577. [PMID: 37761017 PMCID: PMC10526180 DOI: 10.3390/biomedicines11092577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Mechanisms of cell reprogramming by pluripotency-related transcription factors or nuclear transfer seem to be mediated by similar pathways, and the study of the contribution of OCT4 and SOX2 in both processes may help elucidate the mechanisms responsible for pluripotency. Bovine fibroblasts expressing exogenous OCT4 or SOX2, or both, were analyzed regarding the expression of pluripotency factors and imprinted genes H19 and IGF2R, and used for in vitro reprogramming. The expression of the H19 gene was increased in the control sorted group, and putative iPSC-like cells were obtained when cells were not submitted to cell sorting. When sorted cells expressing OCT4, SOX2, or none (control) were used as donor cells for somatic cell nuclear transfer, fusion rates were 60.0% vs. 64.95% and 70.53% vs. 67.24% for SOX2 vs. control and OCT4 vs. control groups, respectively; cleavage rates were 66.66% vs. 81.68% and 86.47% vs. 85.18%, respectively; blastocyst rates were 33.05% vs. 44.15% and 52.06% vs. 44.78%, respectively. These results show that the production of embryos by NT resulted in similar rates of in vitro developmental competence compared to control cells regardless of different profiles of pluripotency-related gene expression presented by donor cells; however, induced reprogramming was compromised after cell sorting.
Collapse
|
research-article |
2 |
|
15
|
Saraiva HFRDA, Sangalli JR, Alves L, da Silveira JC, Meirelles FV, Perecin F. Meiotic arrest, resumption and TZP retraction in bovine COCs undergoing pre-IVM: lessons from a refined GV stage classification. Reproduction 2025; 169:e230235. [PMID: 40152672 DOI: 10.1530/rep-23-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 03/28/2025] [Indexed: 03/29/2025]
Abstract
In brief Oocytes with subtle differences in chromatin configuration and nuclear lamina characteristics, detectable by a refined germinal vesicle (GV) classification system here described, respond differently to meiotic maturation systems leading to different in vitro maturation (IVM) outcomes. Abstract The nuclear, cytoplasmic and molecular maturation of the mammalian oocyte is a finely orchestrated sequence of events that relies on proper cumulus-oocyte communication. Bovine oocytes enter the IVM systems at the GV stage exhibiting four different chromatin configurations (GV0-GV3). Herein, we associate the oocyte chromatin and nuclear lamina configurations to propose a refined GV classification (GV0, GV1.1-GV1.3, GV2.1-GV2.3 and GV3.1-GV3.3). This refined GV classification system was correlated with oocyte meiosis resumption and transzonal projections (TZPs) density of cumulus-oocyte complexes (COCs) submitted to three IVM systems (control IVM and a modified IVM preceded or not by a pre-IVM step). Pre-IVM resulted in lower polar body extrusion rates at 19 h IVM, albeit ∼24% of the oocytes extruded their first polar body at 9 h IVM. Pre-IVM sustained 80% of oocytes meiotically arrested but altered GV distribution, reducing GV2 and increasing GV1.3 and GV3.3 categories. Pre-IVM reduced TZP densities predominantly in pre-matured GV3 and GVBD COCs. At 9 h of IVM, both groups matured in modified IVM showed lower TZP densities compared to immature and IVM control. Gene expression supports the TZP density differences, with ERK2 and PRKACA upregulation in pre-matured cumulus and in modified IVM groups at 9 h of IVM. GDF9 and BMP15 levels were similar between treated and control groups at all time points. Our findings indicate that despite the IVM system, the initial oocyte GV stage influences pre-IVM and IVM outcomes. The refined GV classification system is a useful tool to oocyte biologists.
Collapse
|
|
1 |
|
16
|
De Bem THC, Bridi A, Tinning H, Sampaio RV, Malo-Estepa I, Wang D, Vasconcelos EJR, Nociti RP, de Ávila ACFCM, Rodrigues Sangalli J, Motta IG, Arantes Ataíde G, da Silva JCB, Fumie Watanabe Y, Gonella-Diaza A, da Silveira JC, Pugliesi G, Vieira Meirelles F, Forde N. Biosensor capability of the endometrium is mediated in part, by altered miRNA cargo from conceptus-derived extracellular vesicles. FASEB J 2024; 38:e23639. [PMID: 38742798 DOI: 10.1096/fj.202302423rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
We tested the hypothesis that the biosensor capability of the endometrium is mediated in part, by the effect of different cargo contained in the extracellular vesicles secreted by the conceptus during the peri-implantation period of pregnancy. We transferred Bos taurus taurus embryos of different origin, in vivo (high developmental potential (IV)), in vitro (intermediate developmental potential (IVF)), or cloned (low developmental potential (NT)), into Bos taurus indicus recipients. Extracellular vesicles (EVs) recovered from Day 16 conceptus-conditioned medium were characterized and their microRNA (miRNA) cargo sequenced alongside RNA sequencing of their respective endometria. There were substantial differences in the endometrial response to in vivo versus in vitro and in vivo versus cloned conceptuses (1153 and 334DEGs respectively) with limited differences between in vitro Vs cloned conceptuses (36 DEGs). The miRNA cargo contained in conceptus-derived EVs was similar between all three groups (426 miRNA in common). Only 8 miRNAs were different between in vivo and cloned conceptuses, while only 6 miRNAs were different between in vivo and in vitro-derived conceptuses. Treatment of endometrial epithelial cells with mimic or inhibitors for miR-128 and miR-1298 changed the proteomic content of target cells (96 and 85, respectively) of which mRNAs are altered in the endometrium in vivo (PLXDC2, COPG1, HSPA12A, MCM5, TBL1XR1, and TTF). In conclusion, we have determined that the biosensor capability of the endometrium is mediated in part, by its response to different EVs miRNA cargo produced by the conceptus during the peri-implantation period of pregnancy.
Collapse
|
|
1 |
|
17
|
Nesiyama TNG, Sangalli JR, De Bem THC, Recchia K, Martins SMMK, de Andrade AFC, Ferst JG, Almeida GHDR, Marques MG, Dória RGS, Carregaro AB, Feliciano MAR, Miglino MA, Bressan FF, Perecin F, da Silveira JC, Smith LC, Bordignon V, Meirelles FV. Swine clones: potential application for animal production and animal models. Anim Reprod 2025; 22:e20240037. [PMID: 39867300 PMCID: PMC11758785 DOI: 10.1590/1984-3143-ar2024-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/10/2024] [Indexed: 01/28/2025] Open
Abstract
Somatic cell nuclear transfer (SCNT), or cloning, is used to reprogram cells and generate genetically identical embryos and animals. However, the cloning process is inefficient, limiting its application to producing valuable animals. In swine, cloning is mainly utilized to produce genetically modified animals. Indeed, recombinant DNA technologies have evolved considerably in recent years, with homologous recombination and gene editing technologies becoming more efficient and capable of recombining both alleles in a single cell. The selection of appropriate cells and their use as nuclear donors for SCNT is the most common method for generating edited and genetically modified animals for commercial and research purposes. This article reviews current applications of swine cloning and shares our personal experiences with the procedure in this species.
Collapse
|
Review |
1 |
|
18
|
Saraiva HFRDA, Sangalli JR, Alves L, da Silveira JC, Meirelles FV, Perecin F. NPPC and AREG supplementation in IVM systems alter mRNA translation and decay programs-related gene expression in bovine COC. Anim Reprod 2024; 21:e20230101. [PMID: 39021501 PMCID: PMC11253787 DOI: 10.1590/1984-3143-ar2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/29/2024] [Indexed: 07/20/2024] Open
Abstract
During oocyte meiosis resumption, a coordinated program of transcript translation and decay machinery promotes a remodeling of mRNA stores, which determines the success of the acquisition of competence and early embryo development. We investigated levels of two genes related to mRNA translation (CPEB1 and CPEB4) and two related to mRNA degradation (CNOT7 and ZFP36L2) machinery and found ZFP36L2 downregulated in in vitro-matured bovine oocytes compared to in vivo counterparts. Thereafter, we tested the effects of a pre-IVM step with NPPC and a modified IVM with AREG on the modulation of members of mRNA translation and degradation pathways in cumulus cells and oocytes. Our data showed a massive upregulation of genes associated with translational and decay processes in cumulus cells, promoted by NPPC and AREG supplementation, up to 9h of IVM. The oocytes were less affected by NPPC and AREG, and even though ZFP36L2 transcript and protein levels were downregulated at 9 and 19h of IVM, only one (KDM4C) from the ten target genes evaluated was differently expressed in these treatments. These data suggest that cumulus cells are more prone to respond to NPPC and AREG supplementation in vitro, regarding translational and mRNA decay programs. Given the important nursing role of these cells, further studies could contribute to a better understanding of the impact of these modulators in maternal mRNA modulation and improve IVM outcomes.
Collapse
|
research-article |
1 |
|
19
|
da Silva Rosa PM, Bridi A, de Ávila Ferronato G, Prado CM, Bastos NM, Sangalli JR, Meirelles FV, Perecin F, da Silveira JC. Corpus luteum presence in the bovine ovary increase intrafollicular progesterone concentration: consequences in follicular cells gene expression and follicular fluid small extracellular vesicles miRNA contents. J Ovarian Res 2024; 17:65. [PMID: 38500173 PMCID: PMC10946200 DOI: 10.1186/s13048-024-01387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND It is well described that circulating progesterone (P4) plays a key role in several reproductive events such as oocyte maturation. However, during diestrus, when circulating P4 is at the highest concentrations, little is known about its local impact on the follicular cells such as intrafollicular P4 concentration due to corpus luteum (CL) presence within the same ovary. Based on that, our hypothesis is that the CL presence in the ovary during diestrus alters intrafollicular P4 concentrations, oocyte competence acquisition, follicular cells gene expression, and small extracellular vesicles (sEVs) miRNAs contents. RESULTS P4 hormonal analysis revealed that ipsilateral to the CL follicular fluid (iFF) presented higher P4 concentration compared to contralateral follicular fluid (cFF). Furthermore, oocyte maturation and miRNA biogenesis pathways transcripts (ADAMTS-1 and AGO2, respectively) were increased in cumulus and granulosa cells of iFF, respectively. Nevertheless, a RT-PCR screening of 382 miRNAs showed that three miRNAs were upregulated and two exclusively expressed in sEVs from iFF and are predicted to regulate cell communication pathways. Similarly, seven miRNAs were higher and two exclusively expressed from cFF sEVs and are predicted to modulate proliferation signaling pathways. CONCLUSION In conclusion, intrafollicular P4 concentration is influenced by the presence of the CL and modulates biological processes related to follicular cell development and oocyte competence, which may influence the oocyte quality. Altogether, these results are crucial to improve our knowledge about the follicular microenvironment involved in oocyte competence acquisition.
Collapse
|
research-article |
1 |
|
20
|
Bridi A, Sangalli JR, Nociti RP, Dos Santos AC, Alves L, Bastos NM, Ferronato GDÁ, Rosa PMDS, Fiorenza MF, Pugliesi G, Meirelles FV, Chiaratti MR, da Silveira JC, Perecin F. Small extracellular vesicles derived from the crosstalk between early embryos and the endometrium potentially mediate corpus luteum function†. Biol Reprod 2025; 112:54-69. [PMID: 39388257 DOI: 10.1093/biolre/ioae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/10/2023] [Accepted: 10/08/2024] [Indexed: 10/15/2024] Open
Abstract
The first interactions among the embryo, endometrium, and corpus luteum are essential for pregnancy success. Small extracellular vesicles (sEVs) are part of these interactions. We previously demonstrated that small extracellular vesicles from in vivo- or in vitro-produced bovine embryos contain different miRNA cargos. Herein we show: (1) the presence and origin (in vivo or in vitro) of the blastocyst differentially reprograms endometrial transcriptional profiles; (2) the endometrial explant (EE) cultured with in vivo or in vitro embryos release small extracellular vesicles with different miRNA contents, and (3) the luteal explant (CLE) exposed to these small extracellular vesicles have distinct mRNA and miRNA profiles. To elucidate this, the endometrial explant were cultured in the presence or absence of a single Day-7 in vivo (EE-artificial insemination; EE-AI) or in vitro (EE-in vitro fertilization; EE-IVF) embryo. After of culture we found, in the endometrial explant, 45 and 211 differentially expressed genes associated with embryo presence and origin, respectively. Small extracellular vesicles were recovered from the conditioned media (CM) in which endometrial explant and embryos were co-cultured. Four miRNAs were differentially expressed between small extracellular vesicles from CC-EE-AI and CC-EE-IVF. Luteal explants exposed in culture to these small extracellular vesicles showed 1360 transcripts and 15 miRNAs differentially expressed. The differentially expressed genes associated with embryo presence and origin, modulating cells' proliferation, and survival. These results demonstrate that in vivo- or in vitro-produced bovine embryos induce molecular alterations in the endometrium; and that the embryo and endometrium release small extracellular vesicles capable of modifying the messenger RNA (mRNA) and miRNA profile in the corpus luteum. Therefore, the small extracellular vesicles-mediated embryo-endometrium-corpus luteum interactions possibly regulate the corpus luteum viability to ensure pregnancy success.
Collapse
|
|
1 |
|
21
|
Sangalli JR, Nociti RP, Chiaratti MR, Bridi A, Botigelli RC, Ambrizi DR, de Almeida Saraiva HFR, Perecin F, da Silveira JC, Ross PJ, Meirelles FV. Beta-hydroxybutyrate alters bovine preimplantation embryo development through transcriptional and epigenetic mechanisms†. Biol Reprod 2025; 112:253-272. [PMID: 39668404 DOI: 10.1093/biolre/ioae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/10/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024] Open
Abstract
Developing embryos are susceptible to fluctuations in the nutrients and metabolites concentrations within the reproductive tract, which can lead to alterations in their developmental trajectory. Ketotic dairy cows have diminished fertility, and elevated levels of the ketone body beta-hydroxybutyrate (BHB) have been associated with poor embryonic development. We used an in vitro model based on either in vitro fertilization (IVF) or parthenogenesis to investigate the effects of BHB on the preimplantation bovine embryo development, epigenome, and transcriptome. Embryo culture medium was supplemented with BHB at a similar concentration to that present in the blood of cows suffering with severe ketosis, followed by analysis of blastocysts formation rate, diameter, total number of cells, levels of H3K9 beta-hydroxybutyrylation (H3K9bhb), apoptosis, and transcriptional alterations. As a result, we observed that BHB reduced the blastocysts rates, the diameter and the total number of cells in both parthenotes and IVF embryos. Exposure to BHB for either 3 or 7 days greatly increased the H3K9bhb levels in parthenotes at the 8-cells and blastocyst stages, and affected the expression of HDAC1, TET1, DNMT1, KDM6B, NANOG, and MTHFD2 genes. Additionally, culture of IVF embryos with BHB for 7 days dramatically increased H3K9bhb and reduced NANOG in blastocysts. RNA-seq analysis of IVF blastocysts revealed that BHB modulated the expression of 118 genes, which were involved with biological processes such as embryonic development, implantation, reproduction, proliferation, and metabolism. These findings provided valuable insights into the mechanisms through which BHB disrupts preimplantation embryonic development and affects the fertility in dairy cows.
Collapse
|
|
1 |
|
22
|
Sangalli JR, Sampaio RV, De Bem THC, Smith LC, Meirelles FV. Cattle Cloning by Somatic Cell Nuclear Transfer. Methods Mol Biol 2023; 2647:225-244. [PMID: 37041338 DOI: 10.1007/978-1-0716-3064-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Cloning by somatic cell Nuclear Transfer (SCNT) is a powerful technology capable of reprograming terminally differentiated cells to totipotency for generating whole animals or pluripotent stem cells for use in cell therapy, drug screening, and other biotechnological applications. However, the broad usage of SCNT remains limited due to its high cost and low efficiency in obtaining live and healthy offspring. In this chapter, we first briefly discuss the epigenetic constraints responsible for the low efficiency of SCNT and current attempts to overcome them. We then describe our bovine SCNT protocol for delivering live cloned calves and addressing basic questions about nuclear reprogramming. Other research groups can benefit from our basic protocol and build up on it to improve SCNT in the future. Strategies to correct or mitigate epigenetic errors (e.g., correcting imprinting loci, overexpression of demethylases, chromatin-modifying drugs) can integrate the protocol described here.
Collapse
|
|
2 |
|