1
|
Isenberg JS, Martin-Manso G, Maxhimer JB, Roberts DD. Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nat Rev Cancer 2009; 9:182-94. [PMID: 19194382 PMCID: PMC2796182 DOI: 10.1038/nrc2561] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to long-term regulation of angiogenesis, angiogenic growth factor signalling through nitric oxide (NO) acutely controls blood flow and haemostasis. Inhibition of this pathway may account for the hypertensive and pro-thrombotic side effects of the vascular endothelial growth factor antagonists that are currently used for cancer treatment. The first identified endogenous angiogenesis inhibitor, thrombospondin 1, also controls tissue perfusion, haemostasis and radiosensitivity by antagonizing NO signalling. We examine the role of these and other emerging activities of thrombospondin 1 in cancer. Clarifying how endogenous and therapeutic angiogenesis inhibitors regulate vascular NO signalling could facilitate development of more selective inhibitors.
Collapse
|
Research Support, N.I.H., Intramural |
16 |
228 |
2
|
Maxhimer JB, Soto-Pantoja DR, Ridnour LA, Shih HB, DeGraff WG, Tsokos M, Wink DA, Isenberg JS, Roberts DD. Radioprotection in normal tissue and delayed tumor growth by blockade of CD47 signaling. Sci Transl Med 2009; 1:3ra7. [PMID: 20161613 PMCID: PMC2811586 DOI: 10.1126/scitranslmed.3000139] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Radiation-induced damage of normal tissues restricts the therapeutic doses of ionizing radiation that can be delivered to tumors and thereby limits the effectiveness of radiotherapy. Thrombospondin-1 signaling through its cell surface receptor CD47 limits recovery from several types of stress, and mice lacking either gene are profoundly resistant to radiation injury. We describe strategies to protect normal tissues from radiation damage using CD47 or thrombospondin-1 antibodies, a CD47-binding peptide, or antisense suppression of CD47. A morpholino oligonucleotide targeting CD47 confers radioresistance to human endothelial cells in vitro and protects soft tissue, bone marrow, and tumor-associated leukocytes in irradiated mice. In contrast, CD47 suppression in mice bearing melanoma or squamous lung tumors prior to irradiation result in 89% and 71% smaller tumors, respectively. Thus, inhibiting CD47 signaling maintains the viability of normal tissues following irradiation while increasing the radiosensitivity of tumors.
Collapse
|
research-article |
16 |
127 |
3
|
Maxhimer JB, Quiros RM, Stewart R, Dowlatshahi K, Gattuso P, Fan M, Prinz RA, Xu X. Heparanase-1 expression is associated with the metastatic potential of breast cancer. Surgery 2002; 132:326-33. [PMID: 12219030 DOI: 10.1067/msy.2002.125719] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Metastasis of malignant breast cells is in part mediated through degradation of the extra-cellular matrix by proteolysis, enabling malignant cells to migrate through the surrounding stroma. Heparanase-1 (HPR1) is an endoglycosidase that specifically degrades the heparan sulfate (HS) moiety of proteoglycans, a component of the extracellular matrix and basement membrane. METHODS Fifty-one primary breast tumors, 13 lymph node metastases, 4 ductal carcinoma in situ, 7 benign, and 5 normal specimens were examined for HPR1 expression using immunohistochemical staining. The functional role of HPR1 expression was determined by examining HS deposition using immunofluorescence staining. RESULTS Sixteen of 30 breast carcinomas (53%) with sentinel node metastasis expressed HPR1. In contrast, only 5 of 21 nonmetastatic primary breast carcinomas (23%) were HPR1 positive. Eighteen of 30 breast carcinomas between 1 and 5 cm expressed HPR1, compared with 3 of 21 HPR1-positive specimens in tumors < or =1 cm. Statistical analysis revealed that HPR1 expression was associated with breast tumor metastases (P =.04) and primary tumors between 1 and 5 cm (P =.002). Ninety percent of HPR1-positive tumors lacked HS deposition, suggesting an inverse correlation between HPR1 expression and HS deposition. CONCLUSIONS HPR1 expression correlates with the lack of HS deposition and with the metastatic potential of breast cancers. The frequency of HPR1 is significantly higher in breast tumors between 1 and 5 cm than in tumors < or =1 cm.
Collapse
|
|
23 |
116 |
4
|
Maxhimer JB, Somenek M, Rao G, Pesce CE, Baldwin D, Gattuso P, Schwartz MM, Lewis EJ, Prinz RA, Xu X. Heparanase-1 gene expression and regulation by high glucose in renal epithelial cells: a potential role in the pathogenesis of proteinuria in diabetic patients. Diabetes 2005; 54:2172-8. [PMID: 15983219 DOI: 10.2337/diabetes.54.7.2172] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The molecular mechanisms of heparan sulfate proteoglycan downregulation in the glomerular basement membrane (GBM) of the kidneys with diabetic nephropathy remain controversial. In the present study, we showed that the expression of heparanase-1 (HPR1), a heparan sulfate-degrading endoglycosidase, was upregulated in the renal epithelial cells in the kidney with diabetic nephropathy. Urinary HPR1 levels were elevated in patients with diabetic nephropathy. In vitro cell culture studies revealed that HPR1 promoter-driven luciferase reporter gene expression, HPR1 mRNA, and protein were upregulated in renal epithelial cells under high glucose conditions. Induction of HPR1 expression by high glucose led to decreased cell surface heparan sulfate expression. HPR1 inhibitors were able to restore cell surface heparan sulfate expression. Functional analysis revealed that renal epithelial cells grown under high glucose conditions resulted in an increase of basement membrane permeability to albumin. Our studies suggest that loss of heparan sulfate in the GBM with diabetic nephropathy is attributable to accelerated heparan sulfate degradation by increased HPR1 expression.
Collapse
|
|
20 |
90 |
5
|
Isenberg JS, Qin Y, Maxhimer JB, Sipes JM, Despres D, Schnermann J, Frazier WA, Roberts DD. Thrombospondin-1 and CD47 regulate blood pressure and cardiac responses to vasoactive stress. Matrix Biol 2009; 28:110-9. [PMID: 19284971 PMCID: PMC2663008 DOI: 10.1016/j.matbio.2009.01.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 12/17/2008] [Accepted: 01/05/2009] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) locally regulates vascular resistance and blood pressure by modulating blood vessel tone. Thrombospondin-1 signaling via its receptor CD47 locally limits the ability of NO to relax vascular smooth muscle cells and increase regional blood flow in ischemic tissues. To determine whether thrombospondin-1 plays a broader role in central cardiovascular physiology, we examined vasoactive stress responses in mice lacking thrombospondin-1 or CD47. Mice lacking thrombospondin-1 exhibit activity-associated increases in heart rate, central diastolic and mean arterial blood pressure and a constant decrease in pulse pressure. CD47-deficient mice have normal central pulse pressure but elevated resting peripheral blood pressure. Both null mice show exaggerated decreases in peripheral blood pressure and increased cardiac output and ejection fraction in response to NO. Autonomic blockade also induces exaggerated hypotensive responses in awake thrombospondin-1 null and CD47 null mice. Both null mice exhibit a greater hypotensive response to isoflurane, and autonomic blockage under isoflurane anesthesia leads to premature death of thrombospondin-1 null mice. Conversely, the hypertensive response to epinephrine is attenuated in thrombospondin-1 null mice. Thus, the matricellular protein thrombospondin-1 and its receptor CD47 serve as acute physiological regulators of blood pressure and exert a vasopressor activity to maintain global hemodynamics under stress.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
85 |
6
|
Isenberg JS, Maxhimer JB, Powers P, Tsokos M, Frazier WA, Roberts DD. Treatment of liver ischemia-reperfusion injury by limiting thrombospondin-1/CD47 signaling. Surgery 2008; 144:752-61. [PMID: 19081017 PMCID: PMC2635486 DOI: 10.1016/j.surg.2008.07.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Accepted: 07/10/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury remains a primary complication of transplant surgery, accounting for about 80% of liver transplant failures, and is a major source of morbidity in other pathologic conditions. Activation of endothelium and inflammatory cell recruitment are central to the initiation and promulgation of I/R injury, which can be limited by the bioactive gas nitric oxide (NO). The discovery that thrombsospondin-1 (TSP1), via CD47, limits NO signaling in vascular cells and ischemic injuries in vivo suggested that I/R injury could be another important target of this signaling pathway. METHODS Wild-type, TSP1-null, and CD47-null mice underwent liver I/R injury. Wild-type animals were pretreated with CD47 or control antibodies before liver I/R injury. Tissue perfusion via laser Doppler imaging, serum enzymes, histology, and immunohistology were assessed. RESULTS TSP1-null and CD47-null mice subjected to subtotal liver I/R injury showed improved perfusion relative to wild-type mice. Null mice subjected to liver I/R had decreased liver enzyme release and less histologic evidence of injury. Elevated TSP1 expression in liver tissue after I/R injury suggested that preventing its interaction with CD47 could be protective. Thus, pretreatment of wild-type mice using a blocking CD47 antibody improved recovery of tissue perfusion and preserved liver integrity after I/R injury. CONCLUSIONS Tissue survival and perfusion after liver I/R injury are limited by TSP1 and CD47. Targeting CD47 before I/R injury enhances tissue survival and perfusion in a model of liver I/R injury and suggests therapeutics for enhancing organ survival in transplantation surgery.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
65 |
7
|
Isenberg JS, Maxhimer JB, Hyodo F, Pendrak ML, Ridnour LA, DeGraff WG, Tsokos M, Wink DA, Roberts DD. Thrombospondin-1 and CD47 limit cell and tissue survival of radiation injury. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1100-12. [PMID: 18787106 DOI: 10.2353/ajpath.2008.080237] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Radiation, a primary mode of cancer therapy, acutely damages cellular macromolecules and DNA and elicits stress responses that lead to cell death. The known cytoprotective activity of nitric oxide (NO) is blocked by thrombospondin-1, a potent antagonist of NO/cGMP signaling in ischemic soft tissues, suggesting that thrombospondin-1 signaling via its receptor CD47 could correspondingly increase radiosensitivity. We show here that soft tissues in thrombospondin-1-null mice are remarkably resistant to radiation injury. Twelve hours after 25-Gy hindlimb irradiation, thrombospondin-1-null mice showed significantly less cell death in both muscle and bone marrow. Two months after irradiation, skin and muscle units in null mice showed minimal histological evidence of radiation injury and near full retention of mitochondrial function. Additionally, both tissue perfusion and acute vascular responses to NO were preserved in irradiated thrombospondin-1-null hindlimbs. The role of thrombospondin-1 in radiosensitization is specific because thrombospondin-2-null mice were not protected. However, mice lacking CD47 showed radioresistance similar to thrombospondin-1-null mice. Both thrombospondin-1- and CD47-dependent radiosensitization is cell autonomous because vascular cells isolated from the respective null mice showed dramatically increased survival and improved proliferative capacity after irradiation in vitro. Therefore, thrombospondin-1/CD47 antagonists may have selective radioprotective activity for normal tissues.
Collapse
|
Research Support, N.I.H., Intramural |
17 |
64 |
8
|
Isenberg JS, Romeo MJ, Maxhimer JB, Smedley J, Frazier WA, Roberts DD. Gene silencing of CD47 and antibody ligation of thrombospondin-1 enhance ischemic tissue survival in a porcine model: implications for human disease. Ann Surg 2008; 247:860-8. [PMID: 18438125 PMCID: PMC2430143 DOI: 10.1097/sla.0b013e31816c4006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Insufficient tissue perfusion underlies many acute and chronic diseases. Tissue perfusion in turn requires adequate blood flow, determined in large part by the relative state of relaxation or constriction of arterial vessels. Nitric oxide (NO) produced by vascular cells modulates blood flow and tissue perfusion by relaxing and dilating arteries. Recently, we reported that the secreted protein thrombospondin-1 (TSP1), through its cell surface receptor CD47, limits the ability of NO to relax and dilate blood vessels and thus decreases tissue perfusion. In the present study, we tested the hypothesis that blocking TSP1-CD47 signaling increases ischemic tissue survival in random cutaneous porcine flaps. METHODS Random cutaneous flaps 2 x 10 cm2 were raised in white hairless Yucatan miniature pigs and were treated with a monoclonal antibody to TSP1, an antisense morpholino oligonucleotide to CD47 or control agents and tissue survival assessed. Primary vascular smooth muscle cell cultured from Yucatan pigs were also treated with the same agents +/- and an NO donor (DEA/NO) and cGMP quantified. RESULTS Antibody blockade of TSP1 or morpholino suppression of CD47 dramatically enhanced survival of random tissue flaps. These responses correlated with increased blood vessel patency and tissue blood flow on vessel injection studies. NO-stimulated cGMP flux in Yucatan vascular smooth muscle cell was abrogated after antibody or morpholino treatment. CONCLUSION Antibody ligation of TSP1 or antisense morpholino knock down of CD47 greatly increased tissue survival to ischemia. Given the similarity between porcine and human soft tissues these results suggest significant therapeutic potential for people.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
48 |
9
|
Soto-Pantoja DR, Shih HB, Maxhimer JB, Cook KL, Ghosh A, Isenberg JS, Roberts DD. Thrombospondin-1 and CD47 signaling regulate healing of thermal injury in mice. Matrix Biol 2014; 37:25-34. [PMID: 24840925 PMCID: PMC4955854 DOI: 10.1016/j.matbio.2014.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 02/04/2023]
Abstract
More than 2.5 million Americans suffer from burn injuries annually, and burn management is a major public health problem. Treatments have been developed to manage wound injuries employing skin grafts, various dressings and topical and systemic agents. However, these often achieve limited degrees of success. We previously reported that targeting the interaction of thrombospondin-1 with its signaling receptor CD47 or deletion of the genes encoding either of these proteins in mice improves recovery from soft tissue ischemic injuries as well as tissue injuries caused by ionizing radiation. We now demonstrate that the absence of CD47 improves the rate of wound closure for a focal dermal second-degree thermal injury, whereas lack of thrombospondin-1 initially delays wound closure compared to healing in wild type mice. Doppler analysis of the wounded area showed increased blood flow in both CD47 and thrombospondin-1 null mice. Accelerated wound closure in the CD47 null mice was associated with increased fibrosis as demonstrated by a 4-fold increase in collagen fraction. Wound tissue of CD47 null mice showed increased thrombospondin-1 mRNA and protein expression and TGF-β1 mRNA levels. Activation of latent TGF-β1 was increased in thermally injured CD47-null tissue as assessed by phosphorylation of the TGF-β1 receptor-regulated transcription factors SMAD-2 and -3. Overall these results indicate that targeting CD47 may improve the speed of healing thermal injuries, but some level of CD47 expression may be required to limit the long term TGF-β1-dependent fibrosis of these wounds.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
46 |
10
|
Maxhimer JB, Shih HB, Isenberg JS, Miller TW, Roberts DD. Thrombospondin-1/CD47 blockade following ischemia-reperfusion injury is tissue protective. Plast Reconstr Surg 2009; 124:1880-1889. [PMID: 19952644 PMCID: PMC2794041 DOI: 10.1097/prs.0b013e3181bceec3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Nitric oxide has prosurvival effects that can limit ischemia-reperfusion injuries. However, the matrix glycoprotein thrombospondin-1 is induced following ischemia-reperfusion injury and limits nitric oxide signaling by engaging its cell surface receptor CD47. In this article, the authors examine whether postinjury blocking of this inhibitory signal can protect from ischemia-reperfusion injury in a rat flap model. METHODS A total of 40 tissue flaps were created in rats based solely on the deep inferior epigastric vessels. Microvascular clamps were used to create 45 minutes of ischemia time to the flaps. The flaps were then treated using a monoclonal antibody to CD47 or an isotype-matched control immunoglobulin G1 5 or 30 minutes after clamp removal. Twenty-four or 72 hours postoperatively, the necrotic area of the flap was determined, and serum, deep inferior epigastric vessels, and flaps were harvested for analysis from five rats in each respective group. RESULTS Treatment with a CD47 antibody 5 minutes after reperfusion significantly reduces flap necrosis compared with immunoglobulin G1 control (9 percent versus 43 percent; p < 0.01). The protective effect is even more dramatic when treatment is delayed until 30 minutes after reperfusion (10 percent versus 88 percent for control; p < 0.01). Markers of neutrophil and endothelial cell activation along with total leukocytes are reduced in CD47 antibody-treated flaps, as are tissue malondialdehyde levels. Levels of cyclic guanosine monophosphate are elevated 72 hours postoperatively in the CD47 antibody-treated deep inferior epigastric vessels versus the control flaps. CONCLUSIONS Therapies targeting the thrombospondin-1 receptor CD47 offer potential for increasing tissue survival in ischemia-reperfusion injuries. The ability to protect when given after ischemia-reperfusion injury enables a broader clinical applicability.
Collapse
|
Comparative Study |
16 |
46 |
11
|
Rao G, Ding HG, Huang W, Le D, Maxhimer JB, Oosterhof A, van Kuppevelt T, Lum H, Lewis EJ, Reddy V, Prinz RA, Xu X. Reactive oxygen species mediate high glucose-induced heparanase-1 production and heparan sulphate proteoglycan degradation in human and rat endothelial cells: a potential role in the pathogenesis of atherosclerosis. Diabetologia 2011; 54:1527-38. [PMID: 21424539 DOI: 10.1007/s00125-011-2110-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/01/2011] [Indexed: 01/10/2023]
Abstract
AIMS/HYPOTHESIS The content of heparan sulphate is reduced in the endothelium under hyperglycaemic conditions and may contribute to the pathogenesis of atherosclerosis. Heparanase-1 (HPR1) specifically degrades heparan sulphate proteoglycans. We therefore sought to determine whether: (1) heparan sulphate reduction in endothelial cells is due to increased HPR1 production through increased reactive oxygen species (ROS) production; and (2) HPR1 production is increased in vivo in endothelial cells under hyperglycaemic and/or atherosclerotic conditions. METHODS HPR1 mRNA and protein levels in endothelial cells were analysed by RT-PCR and Western blot or HPR1 enzymatic activity assay, respectively. Cell surface heparan sulphate levels were analysed by FACS. HPR1 in the artery from control rats and a rat model of diabetes, and from patients under hyperglycaemic and/or atherosclerotic conditions was immunohistochemically examined. RESULTS High-glucose-induced HPR1 production and heparan sulphate degradation in three human endothelial cell lines, both of which were blocked by ROS scavengers, glutathione and N-acetylcysteine. Exogenous H(2)O(2) induced HPR1 production, subsequently leading to decreased cell surface heparan sulphate levels. HPR1 content was significantly increased in endothelial cells in the arterial walls of a rat model of diabetes. Clinical studies revealed that HPR1 production was increased in endothelial cells under hyperglycaemic conditions, and in endothelial cells and macrophages in atherosclerotic lesions. CONCLUSIONS/INTERPRETATION Hyperglycaemia induces HPR1 production and heparan sulphate degradation in endothelial cells through ROS. HPR1 production is increased in endothelial cells from a rat model of diabetes, and in macrophages in the atherosclerotic lesions of diabetic and non-diabetic patients. Increased HPR1 production may contribute to the pathogenesis and progression of atherosclerosis.
Collapse
|
|
14 |
45 |
12
|
Ziauddin MF, Yeow WS, Maxhimer JB, Baras A, Chua A, Reddy RM, Tsai W, Cole GW, Schrump DS, Nguyen DM. Valproic acid, an antiepileptic drug with histone deacetylase inhibitory activity, potentiates the cytotoxic effect of Apo2L/TRAIL on cultured thoracic cancer cells through mitochondria-dependent caspase activation. Neoplasia 2006; 8:446-57. [PMID: 16820090 PMCID: PMC1601472 DOI: 10.1593/neo.05823] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inhibitors of histone deacetylases have been shown to enhance the sensitivity of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand TRAIL-mediated cytotoxicity. Valproic acid (VA), a commonly used antiepileptic agent whose pharmacokinetics and toxicity profiles are well described, is a histone deacetylase inhibitor. This project aims to evaluate if VA can potentiate Apo2L/TRAIL-mediated cytotoxicity in cultured thoracic cancer cells and to elucidate the underlying molecular mechanism responsible for this effect. VA sensitized cultured thoracic cancer cells to Apo2L/TRAIL, as indicated by a 4-fold to a >20-fold reduction of Apo2L/TRAIL IC50 values in combination-treated cells. Although VA (0.5-5 mM) or Apo2L/TRAIL (20 ng/ml) induced less than 20% cell death, VA + Apo2L/TRAIL combinations caused 60% to 90% apoptosis of cancer cells. Moreover, substantial activation of caspases 8, 9, and 3, which was observed only in cells treated with the drug combination, was completely suppressed by Bcl2 overexpression or by the caspase 9 inhibitor. Both the caspase 9 inhibitor and Bcl2 completely abrogated the substantial cytotoxicity and apoptosis induced by this combination, thus highlighting the pivotal role of the type II pathway in this process. These findings provide a rationale for the development of VA and Apo2L/TRAIL combination as a novel molecular therapeutic for thoracic cancers.
Collapse
|
Research Support, N.I.H., Intramural |
19 |
44 |
13
|
Kim AW, Quiros RM, Maxhimer JB, El-Ganzouri AR, Prinz RA. Outcome of Laparoscopic Adrenalectomy for Pheochromocytomas vs Aldosteronomas. ACTA ACUST UNITED AC 2004; 139:526-9; discussion 529-31. [PMID: 15136353 DOI: 10.1001/archsurg.139.5.526] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
HYPOTHESIS Laparoscopic adrenalectomy (LA) is most commonly performed for pheochromocytomas (PHEs) and aldosteronomas (ALDs). We hypothesize that LA for these differing tumor types is associated with different operative courses and outcomes. DESIGN Retrospective study of a 10-year experience with LA. SETTING University teaching hospital. PATIENTS Laparoscopic adrenalectomy was performed on 149 patients. During data analysis, the initial 35 LAs performed for various adrenal lesions were excluded to account for the learning curve. Twenty-six of 30 PHEs and 34 of 45 ALDs were included. MAIN OUTCOME MEASURES Analysis of variance was used to compare operative time, tumor size, estimated blood loss, and postoperative length of hospital stay between the PHE and ALD groups and subsets of these groups. chi(2) Analysis was used to compare tumor location, transfusion requirements, conversion to open procedures, and incidence of major complications. RESULTS Right-sided lesions occurred in 19 of 26 PHEs, and left-sided lesions occurred in 28 of 34 ALDs (P <.001). Mean +/- SD tumor size of PHEs (4.9 +/- 1.8 cm) was larger than that of ALDs (2.7 +/- 1.7 cm) (P <.001). Mean +/- SD operative time for PHEs vs ALDs was 191 +/- 49 vs 162 +/- 48 minutes (P =.02). Mean +/- SD estimated blood loss was greater for PHEs (276 +/- 298 mL) than for ALDs (196 +/- 324 mL) (P =.33). Subset analysis revealed that the mean +/- SD size of right-sided PHEs (5.3 +/- 1.8 cm) was significantly larger than that of right-sided ALDs (3.0 +/- 1.5 cm) (P=.001). Mean +/- SD operative time for right-sided PHEs (198 +/- 44 minutes) was longer than that for right-sided ALDs (145 +/- 37 minutes) (P=.005). Six PHE patients required blood transfusions vs 2 ALD patients (P =.05). Two LAs, 1 PHE and ALD, were converted to open procedures. Mean +/- SD length of hospital stay was longer for PHE patients vs ALD patients (4 +/- 4 vs 2 +/- 3 days; P =.08). Six PHE patients had complications vs 3 ALD patients (P =.13). CONCLUSIONS For PHEs, LA was associated with the removal of more right-sided lesions, larger tumors, longer operative times, and more complications. Trends toward greater estimated blood losses and longer hospital stays were observed for PHEs vs ALDs. Despite the advanced skills of an experienced surgeon, LA for PHEs is associated with a more complex course than for ALDs. Surgeons should begin performing LA for ALD early in their experience to avoid the potential pitfalls associated with PHEs.
Collapse
|
|
21 |
43 |
14
|
Christein JD, Kim AW, Golshan MA, Maxhimer J, Deziel DJ, Prinz RA. Central pancreatectomy for the resection of benign or low malignant potential neoplasms. World J Surg 2003; 27:595-8. [PMID: 12715230 DOI: 10.1007/s00268-003-6848-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Central pancreatectomy is an uncommonly performed procedure that may be particularly useful for the removal of benign and low malignant potential lesions in the neck and body of the pancreas. This procedure may have fewer major complications and better preserve endocrine and exocrine function than the more commonly performed pancreaticoduodenectomy or distal pancreatectomy. We report our recent experience with central pancreatectomy and review the literature on this topic.
Collapse
|
Case Reports |
22 |
31 |
15
|
Yeow WS, Ziauddin MF, Maxhimer JB, Shamimi-Noori S, Baras A, Chua A, Schrump DS, Nguyen DM. Potentiation of the anticancer effect of valproic acid, an antiepileptic agent with histone deacetylase inhibitory activity, by the kinase inhibitor Staurosporine or its clinically relevant analogue UCN-01. Br J Cancer 2006; 94:1436-45. [PMID: 16705314 PMCID: PMC2361280 DOI: 10.1038/sj.bjc.6603132] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) are novel anticancer agents with potent cytotoxicity against a wide range of malignancies. We have previously demonstrated that either Calphostin C (CC) (a protein kinase C (PKC) inhibitor) or Parthenolide (an NF-kappaB inhibitor) abrogates HDACI-induced transcriptional activation of NF-kappaB and p21, which is associated with profound potentiation of HDACI-mediated induction of apoptosis. Valproic acid (VA), a commonly used antiepileptic agent, has recently been shown to be an HDACI. This study was aimed to evaluate the anticancer property of VA in thoracic cancer cells and the development of clinically relevant strategies to enhance VA-mediated induction of apoptosis using kinase inhibitors Staurosporine (STP) or its analogue UCN-01. Treating cultured thoracic cancer cells with VA (0.62-10.0 mM) resulted in significant cell line- and dose-dependent growth inhibition (IC(50) values: 4.1-6.0 mM) and cell cycle arrest at G1/S checkpoint with profound accumulation of cells at G0/G1 phase but little induction of apoptosis. Valproic acid, being an HDACI, caused significant dose-dependent accumulation of hyperacetylated histones, following 24 h of treatment. Valproic acid-mediated 5-20-fold upregulation of transcriptional activity of NF-kappaB was substantially (50-90%) suppressed by cotreatment with CC, STP or UCN-01. Whereas minimal death (<20%) was observed in cells treated with either VA (1.0 or 5.0 mM) alone or kinase inhibitors alone, 60-90% of cells underwent apoptosis following exposure to combinations of VA+kinase inhibitors. Kinase inhibitor-mediated suppression of NF-kappaB transcriptional activity played an important role in sensitising cancer cells to VA as direct inhibition of NF-kappaB by Parthenolide drastically synergised with VA to induce apoptosis (VA+Parthenolide: 60-90% compared to <20% following single-drug treatments). In conclusion, VA, a well-known antiepileptic drug, has mild growth-inhibitory activity on cultured cancer cells. The weak VA-mediated induction of apoptosis of thoracic cancer cells can be profoundly enhanced either by Parthenolide, a pharmacologic inhibitor of NF-kappaB, or by UCN-01 a kinase inhibitor that has already undergone phase I clinical development. Combinations of VA with either a PKC inhibitor or an NF-kappaB inhibitor are promising novel molecularly targeted therapeutics for thoracic cancers.
Collapse
|
Research Support, N.I.H., Intramural |
19 |
31 |
16
|
Maxhimer JB, Pesce CE, Stewart RA, Gattuso P, Prinz RA, Xu X. Ductal carcinoma in situ of the breast and heparanase-1 expression: A molecular explanation for more aggressive subtypes. J Am Coll Surg 2005; 200:328-35. [PMID: 15737842 DOI: 10.1016/j.jamcollsurg.2004.10.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 09/21/2004] [Accepted: 10/27/2004] [Indexed: 10/25/2022]
Abstract
BACKGROUND Ductal carcinoma in situ of the breast (DCIS) forms a heterogeneous group of lesions with varying invasive potential. This study tested whether heparanase-1 (HPR1), an endoglycosidase that specifically degrades the heparan sulfate (HS) proteoglycans in the breast extracellular matrix, was associated with the most aggressive DCIS subtypes. STUDY DESIGN Fifty-seven DCIS specimens and 10 normal breast specimens were examined for HPR1 expression using immunohistochemical staining. Twenty-seven arbitrarily selected specimens were also examined for HS deposition by immunofluorescence staining, confirming HPR1 activity. Patient medical records were obtained to explore a possible association between biologic potential using Van Nuys Prognostic Index (VNPI) and HPR1 expression. RESULTS Twenty-one (75%) of 28 comedo and microinvasive DCIS specimens stained HPR1 positive; 4 (14%) of 29 other subtypes (papillary, cribriform, and solid subtypes) stained HPR1 positive on immunohistochemistry (p = 0.003). Among 27 DCIS stained for HS, we found that 8 (67%) of 12 HPR1-negative DCIS had intact HS deposition in the extracellular basement membrane; none of the 15 HPR1-positive DCIS stained HS positive. Six (86%) of seven DCIS with VNPI scores 8 to 9 and 14 (50%) of 28 DCIS with VNPI scores 5 to 7 were HPR1 positive; only 3 (17%) of 18 DCIS with VNPI scores 3 to 4 were HPR1 positive. Median VNPI score in patients with HPR1-positive DCIS was 7 (range 3 to 9), compared with 4.5 (range 3 to 7) in patients with HPR1-negative DCIS (p < 0.001). CONCLUSIONS HPR1 was expressed at a significantly higher frequency in the invasive comedo and DCIS with microinvasion subtypes than in the noninvasive subtypes. HPR1 expression was inversely associated with HS deposition in the extracellular basement membrane of the DCIS. HPR1 expression was associated with a higher VNPI score. These observations suggest that HPR1 expression in DCIS can play an important role in development of DCIS into an invasive breast cancer.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Neoplasm/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma in Situ/enzymology
- Carcinoma in Situ/genetics
- Carcinoma in Situ/pathology
- Carcinoma, Ductal, Breast/enzymology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Extracellular Matrix/metabolism
- Female
- Fluorescent Antibody Technique
- Follow-Up Studies
- Gene Expression/physiology
- Heparin/analogs & derivatives
- Heparin/metabolism
- Humans
- Immunohistochemistry
- Polysaccharide-Lyases/genetics
- Polysaccharide-Lyases/immunology
- Polysaccharide-Lyases/metabolism
- Prognosis
- Proteoglycans/metabolism
- Severity of Illness Index
Collapse
|
|
20 |
28 |
17
|
Reddy RM, Yeow WS, Chua A, Nguyen DM, Baras A, Ziauddin MF, Shamimi-Noori SM, Maxhimer JB, Schrump DS, Nguyen DM. Rapid and profound potentiation of Apo2L/TRAIL-mediated cytotoxicity and apoptosis in thoracic cancer cells by the histone deacetylase inhibitor Trichostatin A: the essential role of the mitochondria-mediated caspase activation cascade. Apoptosis 2007; 12:55-71. [PMID: 17136498 DOI: 10.1007/s10495-006-0484-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Apo2L/TRAIL is actively investigated as a novel targeted agent to directly induce apoptosis of susceptible cancer cells. Apo2L/TRAIL-refractory cells can be sensitized to the cytotoxic effect of this ligand by cytotoxic chemotherapeutics. The aim of this study was to evaluate the in vitro tumoricidal activity of the Apo2L/TRAIL + Trichostatin A in cultured thoracic cancer cells and to elucidate the molecular basis of the synergistic cytotoxicity of this combination. Concurrent exposure of cultured cancer cells to sublethal concentrations of Apo2L/TRAIL and Trichostatin A resulted in profound enhancement of Apo2L/TRAIL-mediated cytotoxicity in all cell lines regardless of their intrinsic susceptibility to this ligand. This combination was not toxic to primary normal cells. While Apo2L/TRAIL alone or Trichostatin A alone mediated < 20% cell death, 60 to 90% of cancer cells were apoptotic following treatment with TSA + Apo2L/TRAIL combinations. Complete translocation of Bax from the cytosol to the mitochondria compartment was mainly observed in combination-treated cells and this was correlated with robust elevation of caspase 9 proteolytic activity indicative of activation of the mitochondria apoptogenic effect. Profound TSA + Apo2L/TRAIL-mediated cytotoxicity and apoptosis were completely abrogated by either Bcl2 over-expression or by the selective caspase 9 inhibitor, highlighting the essential role of mitochondria-dependent apoptosis signaling cascade in this process. Moreover, increased caspase 8 activity observed in cells treated with the TSA + Apo2L/TRAIL combination was completely suppressed by Bcl-2 over-expression or by the selective caspase 9 inhibitor indicating that the elevated caspase 8 activity in combination-treated cells was secondary to a mitochondria-mediated amplification feedback loop of caspase activation. These finding form the basis for further development of HDAC inhibitors + Apo2L/TRAIL combination as novel targeted therapy for thoracic malignancies.
Collapse
|
Research Support, N.I.H., Intramural |
18 |
28 |
18
|
Kim AW, McCarthy WJ, Maxhimer JB, Quiros RM, Hollinger EF, Doolas A, Millikan KW, Deziel DJ, Godellas CV, Prinz RA. Vascular complications associated with pancreaticoduodenectomy adversely affect clinical outcome. Surgery 2002; 132:738-44; discussion 744-7. [PMID: 12407360 DOI: 10.1067/msy.2002.127688] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Early survival after pancreaticoduodenectomy has improved, but its morbidity remains high. The purpose of this study is to determine how the intra-operative (OR) occurrence of major vascular complications affects the outcome of pancreaticoduodenectomy. METHODS The medical records of 180 consecutive patients having pancreaticoduodenectomy from 1991 to 2001 were reviewed. Vascular complications were defined as "an unanticipated injury or thrombosis of a major vessel necessitating intervention." Age, sex, type of pancreaticoduodenectomy, tumor size, estimated blood loss, OR time, time in intensive care, post-OR hospitalization, and survival were compared. RESULTS Eighteen vascular complications were identified. Differences in age, sex, and type of resection between patients with or without vascular complications were not significant. OR time, estimated blood loss, blood transfusions, tumor size, time in intensive care, and post-OR hospitalization were all significantly greater in patients with vascular complications. Median survival for patients with vascular complications was significantly shorter than for patients without vascular complications. Thirty-day mortality was greater in patients with vascular complications. CONCLUSION Vascular complications significantly affect the outcome of pancreaticoduodenectomy increasing OR time, estimated blood loss, blood transfusion requirements, time in intensive care, post-OR hospitalization, and mortality.
Collapse
|
Comparative Study |
23 |
25 |
19
|
Maxhimer JB, Bradley JP, Lee JC. Signaling pathways in osteogenesis and osteoclastogenesis: Lessons from cranial sutures and applications to regenerative medicine. Genes Dis 2015; 2:57-68. [PMID: 25961069 PMCID: PMC4425620 DOI: 10.1016/j.gendis.2014.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
One of the simplest models for examining the interplay between bone formation and resorption is the junction between the cranial bones. Although only roughly a quarter of patients diagnosed with craniosynostosis have been linked to known genetic disturbances, the molecular mechanisms elucidated from these studies have provided basic knowledge of bone homeostasis. This work has translated to methods and advances in bone tissue engineering. In this review, we examine the current knowledge of cranial suture biology derived from human craniosynostosis syndromes and discuss its application to regenerative medicine.
Collapse
|
Journal Article |
10 |
19 |
20
|
Maxhimer JB, Reddy RM, Zuo J, Cole GW, Schrump DS, Nguyen DM. Induction of apoptosis of lung and esophageal cancer cells treated with the combination of histone deacetylase inhibitor (trichostatin A) and protein kinase C inhibitor (calphostin C). J Thorac Cardiovasc Surg 2005; 129:53-63. [PMID: 15632825 DOI: 10.1016/j.jtcvs.2004.07.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Histone deacetylase inhibitors mediate a potent growth-inhibitory effect in cancer cells through induction of cell-cycle arrest and apoptosis. Moreover, these agents significantly induce transcriptional activation of nuclear factor kappaB, as well as p21 regulated by protein kinase C, and are thought to negatively influence the ability of histone deacetylase inhibitor to effectively mediate apoptosis. This study aimed to evaluate the effect of calphostin C (a protein kinase C inhibitor) on trichostatin A (a histone deacetylase inhibitor)-mediated upregulation of nuclear factor kappaB and p21 promotor transcriptional activity, as well as induction of apoptosis in lung and esophageal cancer cells. METHODS Cultured lung and esophageal cancer cells were treated with calphostin C and trichostatin A. Nuclear factor kappaB transcriptional activity was quantitated by using the nuclear factor kappaB-luciferase assay. Transcription of p21 gene and p21 protein levels was evaluated by using the p21 promoter-luciferase assay and the p21 enzyme-linked immunoassay, respectively. Apoptosis was evaluated by using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-based ApoBrdU assay. Levels of expression of nuclear factor kappaB-dependent antiapoptotic and proapoptotic proteins were evaluated by means of Western blotting. RESULTS Exposure of lung or esophageal cancer cells to trichostatin A resulted in a dose- and cell-dependent 2-fold to greater than 20-fold increase of nuclear factor kappaB and p21 transcriptional activity. Treatment with trichostatin A and calphostin C led to a 50% to 90% decrease of trichostatin A- mediated upregulation of nuclear factor kappaB and p21 activation. Inhibition of nuclear factor kappaB activity resulted in significant reduction (30% to >99%) of trichostatin A- mediated activation of not only nuclear factor kappaB transcription but also p21 promotor activity. Importantly, 90% to 96% of thoracic cancer cells under-went apoptosis after exposure to the combination of trichostatin A plus calphostin C. CONCLUSION Inhibition of protein kinase C abrogates trichostatin A-mediated upregulation of nuclear factor kappaB transcriptional activity and p21 expression that is associated with profound induction of apoptosis in lung or esophageal cancer cells. Protein kinase C might be a novel target for enhancing the efficacy of histone deacetylase inhibitor in cancer therapy.
Collapse
|
|
20 |
17 |
21
|
Kim AW, Maxhimer JB, Quiros RM, Weber K, Prinz RA. Surgical management of well-differentiated thyroid cancer locally invasive to the respiratory tract. J Am Coll Surg 2005; 201:619-27. [PMID: 16183503 DOI: 10.1016/j.jamcollsurg.2005.05.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 05/24/2005] [Indexed: 11/17/2022]
|
Review |
20 |
15 |
22
|
Cook KE, Maxhimer J, Leonard DJ, Mavroudis C, Backer CL, Mockros LF. Platelet and leukocyte activation and design consequences for thoracic artificial lungs. ASAIO J 2002; 48:620-30. [PMID: 12455772 DOI: 10.1097/00002480-200211000-00008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Blood contact with the prosthetic surfaces of artificial lungs causes extensive activation of molecular and cellular mediators of coagulation and inflammation that can lead to patient morbidity and mortality. To determine the effects of artificial lung fiber bundle shear stress and surface area on blood activation, porcine blood was recirculated for 4 hours through circuits containing mock artificial lungs with bundle shear stresses of 11.6, 7.3, and 3.9 dynes/cm2 and surface areas of 5.2, 3.5, and 1.7 cm2/ml of circuit volume. Blood from these circuits was assayed for platelet and leukocyte counts, soluble P-selectin concentrations, and lactoferrin concentrations to determine the level of platelet and leukocyte adherence to the circuit, platelet activation, and leukocyte activation, respectively. Neither platelet nor leukocyte counts were significantly affected by shear stress or surface area. P-selectin and lactoferrin concentrations were significantly greater at a fiber bundle shear stress of 11.6 dynes/ cm2. P-selectin and lactoferrin concentrations were significantly greater at a fiber bundle surface area of 5.2 cm2/ml of circuit volume. Artificial lungs, therefore, should be designed with average bundle shear stresses < 11.6 dynes/cm2 and with surface areas < 5.2 cm2/ml of circuit volume. Current thoracic artificial lungs meet both these requirements.
Collapse
|
|
23 |
14 |
23
|
Quiros RM, Kim AW, Maxhimer J, Gattuso P, Xu X, Prinz RA. Differential heparanase-1 expression in malignant and benign pheochromocytomas. J Surg Res 2002; 108:44-50. [PMID: 12443714 DOI: 10.1006/jsre.2002.6451] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Extracellular matrix (ECM) degradation is an essential step that allows tumor cells to penetrate a tissue barrier and become metastatic. Heparanase-1 (HPR) is an endoglycosidase that specifically degrades heparan sulfate proteoglycans, a chief component of the ECM. Previous studies have demonstrated HPR expression in various malignancies and that there is differential HPR expression between benign and malignant tumors. Currently, there is no technique that can reliably predict the malignant behavior of some pheochromocytomas. This study tests whether HPR is differentially expressed in malignant and benign pheochromocytomas. METHODS Paraffin-embedded specimens from 29 pheochromocytomas were evaluated. The tissues were collected from surgical specimens over a 10-year period from 26 patients (8 males, 18 females) with a mean age of 47 years (range 19-78 years, median 47 years). One female patient underwent 3 separate operations for malignant pheochromocytoma and thus provided 3 specimens. Another female patient had both the primary tumor and a liver metastasis processed, and therefore provided 2 specimens. Patient charts and pathology reports were reviewed to classify the pheochromocytomas as either benign or malignant. Based on clinical behavior and/or pathological evidence of metastasis or invasion into surrounding tissues, 10 specimens were malignant and 19 had benign behavior. As a control, normal adrenal tissue from 3 nephrectomy specimens was included in the study, as was tissue from 1 adrenocortical adenoma. All 33 specimens were tested for HPR gene expression by in situ hybridization (ISH) with an antisense RNA probe and immunohistochemistry (IHC) with an anti-HPR antibody. Statistical analysis was done using the chi(2) test of proportions to determine if HPR expression correlated with malignancy using ISH, IHC, or both tests together. RESULTS Using ISH, the percentage of HPR expression in the malignant pheochromocytomas was 50% while HPR expression in the benign tumors was 21% (P = 0.11). Using IHC, the percentage of HPR expression in the malignant pheochromocytomas was 80% while HPR expression in the benign tumors was 32% (P = 0.01). Considering both tests cumulatively, all 10 malignant pheochromocytomas stained positive for HPR by ISH and IHC, while only 37% of the benign tumors were positive for HPR expression (P = 0.001). The one adrenal adenoma and the 3 normal adrenal glands processed stained negative for HPR expression by both ISH and IHC. CONCLUSIONS HPR expression is higher in malignant pheochromocytomas than in benign pheochromocytomas or normal tissue. HPR may contribute to the invasive characteristics of malignant pheochromocytomas and might be used as a marker to distinguish malignant from benign pheochromocytomas. HPR expression might also be used as a prognostic tool in guiding long-term patient follow-up.
Collapse
|
|
23 |
14 |
24
|
Cole GW, Alleva AM, Reddy RM, Maxhimer JB, Zuo J, Schrump DS, Nguyen DM. The selective epidermal growth factor receptor tyrosine kinase inhibitor PD153035 suppresses expression of prometastasis phenotypes in malignant pleural mesothelioma cells in vitro. J Thorac Cardiovasc Surg 2005; 129:1010-7. [PMID: 15867774 DOI: 10.1016/j.jtcvs.2004.10.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Malignant pleural mesothelioma is notoriously refractory to aggressive multimodality therapy. Epidermal growth factor receptor expression has been observed on malignant pleural mesothelioma cells. Epidermal growth factor receptor-mediated signaling promotes tumorigenesis and metastasis of cancer cells. The purpose of this study is to evaluate the ability of the epidermal growth factor receptor tyrosine kinase inhibitor PD153035 to abrogate the expression of prometastasis phenotypes in malignant pleural mesothelioma cells in vitro. METHODS Epidermal growth factor receptor expression of malignant pleural mesothelioma cells and primary normal cells was quantitated by means of flow cytometry. PD153035-mediated growth inhibition was determined by means of 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan and clonogenic assays. Cell motility and invasion of extracellular matrix was evaluated with in vitro wound-healing and Matrigel invasion assays, respectively. Vascular epidermal growth factor levels in conditioned media were measured by using enzyme-linked immunosorbent assay. RESULTS Epidermal growth factor receptor expression was detected on all 6 cultured malignant pleural mesothelioma cells, with 4 of 6 having normal receptor expression and 2 of 6 overexpressing the receptor. PD153035 suppressed cell motility and cell invasion through a Matrigel membrane, regardless of the baseline epidermal growth factor receptor expression. Decreased vascular epidermal growth factor production and significant inhibition of growth only occurred in malignant pleural mesothelioma cells that overexpress epidermal growth factor receptor. CONCLUSIONS Epidermal growth factor receptor tyrosine kinase inhibitor PD153035 significantly inhibited motility and invasion in malignant pleural mesothelioma cells in vitro, regardless of their epidermal growth factor receptor expression levels. Inhibition of epidermal growth factor receptor-dependent signaling might be a useful strategy to diminish malignant pleural mesothelioma recurrence after aggressive cytoreductive surgery.
Collapse
|
Journal Article |
20 |
14 |
25
|
Reddy RM, Tsai WS, Ziauddin MF, Zuo J, Cole GW, Maxhimer JB, Fang B, Schrump DS, Nguyen DM. Cisplatin enhances apoptosis induced by a tumor-selective adenovirus expressing tumor necrosis factor–related apoptosis-inducing ligand. J Thorac Cardiovasc Surg 2004; 128:883-91. [PMID: 15573073 DOI: 10.1016/j.jtcvs.2004.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cancer cells frequently exhibit resistance to the cytotoxic effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Pretreatment of TRAIL-resistant cells with cisplatin sensitizes them to this ligand. Cisplatin also has been shown to enhance adenoviral transgene expression. OBJECTIVE This study aims to evaluate the ability of cisplatin to enhance the expression and the cytotoxic effect of the tumor-specific adenoviral vector Ad/gTRAIL, which expresses a green fluorescent protein-TRAIL fusion protein. METHODS Cultured cancer cells and normal human cells were infected with Ad/gTRAIL with or without cisplatin pretreatment. Adenoviral transgene expression was determined by using flow cytometry to measure green fluorescent protein fluorescence. Cytotoxicity was measured by using thiazolyl blue tetrazolium bromide assays and an apoptosis enzyme-linked immunosorbent assay kit. RESULTS Green fluorescent protein-TRAIL fusion protein expression was significantly enhanced by cisplatin pretreatment in cancer cells. Cisplatin treatment before Ad/gTRAIL infection resulted in a 2- to 12-fold increase in green fluorescent protein fluorescence intensity across cancer lines. Although Ad/gTRAIL induced mild cytotoxicity in all cancer lines (inhibitory concentration of 50% values of >500 pfu/cell), pretreatment with cisplatin resulted in a dose-dependent enhancement of Ad/gTRAIL-mediated cytotoxicity, as indicated by the drastic reduction of inhibitory concentration of 50% values to 4 to 42 pfu/cell in all cell lines. There was no cytotoxicity noted in normal cells treated with both cisplatin and Ad/gTRAIL. CONCLUSION Cisplatin pretreatment enhances Ad/gTRAIL cytotoxicity in malignant cells while not affecting normal cells. The mechanisms underlying this effect might include both enhancement of the susceptibility of cisplatin-treated cells to TRAIL and cisplatin-mediated enhancement of TRAIL expression in Ad/gTRAIL infected cells. These findings provide a rationale for development of Ad/gTRAIL-based therapy for thoracic malignancies.
Collapse
|
|
21 |
8 |