1
|
Tavares LP, Negreiros-Lima GL, Lima KM, E Silva PMR, Pinho V, Teixeira MM, Sousa LP. Blame the signaling: Role of cAMP for the resolution of inflammation. Pharmacol Res 2020; 159:105030. [PMID: 32562817 DOI: 10.1016/j.phrs.2020.105030] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
A complex intracellular signaling governs different cellular responses in inflammation. Extracellular stimuli are sensed, amplified, and transduced through a dynamic cellular network of messengers converting the first signal into a proper response: production of specific mediators, cell activation, survival, or death. Several overlapping pathways are coordinated to ensure specific and timely induction of inflammation to neutralize potential harms to the tissue. Ideally, the inflammatory response must be controlled and self-limited. Resolution of inflammation is an active process that culminates with termination of inflammation and restoration of tissue homeostasis. Comparably to the onset of inflammation, resolution responses are triggered by coordinated intracellular signaling pathways that transduce the message to the nucleus. However, the key messengers and pathways involved in signaling transduction for resolution are still poorly understood in comparison to the inflammatory network. cAMP has long been recognized as an inducer of anti-inflammatory responses and cAMP-dependent pathways have been extensively exploited pharmacologically to treat inflammatory diseases. Recently, cAMP has been pointed out as coordinator of key steps of resolution of inflammation. Here, we summarize the evidence for the role of cAMP at inducing important features of resolution of inflammation.
Collapse
|
Review |
5 |
91 |
2
|
Vago JP, Tavares LP, Garcia CC, Lima KM, Perucci LO, Vieira ÉL, Nogueira CRC, Soriani FM, Martins JO, Silva PMR, Gomes KB, Pinho V, Bruscoli S, Riccardi C, Beaulieu E, Morand EF, Teixeira MM, Sousa LP. The role and effects of glucocorticoid-induced leucine zipper in the context of inflammation resolution. THE JOURNAL OF IMMUNOLOGY 2015; 194:4940-50. [PMID: 25876761 DOI: 10.4049/jimmunol.1401722] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 03/06/2015] [Indexed: 12/19/2022]
Abstract
Glucocorticoid (GC)-induced leucine zipper (GILZ) has been shown to mediate or mimic several actions of GC. This study assessed the role of GILZ in self-resolving and GC-induced resolution of neutrophilic inflammation induced by LPS in mice. GILZ expression was increased during the resolution phase of LPS-induced pleurisy, especially in macrophages with resolving phenotypes. Pretreating LPS-injected mice with trans-activator of transcription peptide (TAT)-GILZ, a cell-permeable GILZ fusion protein, shortened resolution intervals and improved resolution indices. Therapeutic administration of TAT-GILZ induced inflammation resolution, decreased cytokine levels, and promoted caspase-dependent neutrophil apoptosis. TAT-GILZ also modulated the activation of the survival-controlling proteins ERK1/2, NF-κB and Mcl-1. GILZ deficiency was associated with an early increase of annexin A1 (AnxA1) and did not modify the course of neutrophil influx induced by LPS. Dexamethasone treatment resolved inflammation and induced GILZ expression that was dependent on AnxA1. Dexamethasone-induced resolution was not altered in GILZ(-/-) mice due to compensatory expression and action of AnxA1. Our results show that therapeutic administration of GILZ efficiently induces a proapoptotic program that promotes resolution of neutrophilic inflammation induced by LPS. Alternatively, a lack of endogenous GILZ during the resolution of inflammation is compensated by AnxA1 overexpression.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
79 |
3
|
Lima KM, Santos SA, Lima VMF, Coelho-Castelo AAM, Rodrigues JM, Silva CL. Single dose of a vaccine based on DNA encoding mycobacterial hsp65 protein plus TDM-loaded PLGA microspheres protects mice against a virulent strain of Mycobacterium tuberculosis. Gene Ther 2003; 10:678-85. [PMID: 12692596 DOI: 10.1038/sj.gt.3301908] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The high incidence of tuberculosis around the world and the inability of BCG to protect certain populations clearly indicate that an improved vaccine against tuberculosis is needed. A single antigen, the mycobacterial heat shock protein hsp65, is sufficient to protect BALB/c mice against challenge infection when administered as DNA vaccine in a three-dose-based schedule. In order to simplify the vaccination schedule, we coencapsulated hsp65-DNA and trehalose dimicolate (TDM) into biodegradable poly(DL-lactide-co-glycolide) (PLGA) microspheres. BALB/c mice immunized with a single dose of DNA-hsp65/TDM-loaded microspheres produced high levels of IgG2a subtype antibody and high amounts of IFN-gamma in the supernatant of spleen cell cultures. DNA-hsp65/TDM-loaded microspheres were also able to induce high IFN-gamma production in bulk lung cells from challenged mice and confer protection as effective as that attained after three doses of naked DNA administration. This new formulation also allowed a ten-fold reduction in the DNA dose when compared to naked DNA. Thus, this combination of DNA vaccine and adjuvants with immunomodulatory and carrier properties holds the potential for an improved vaccine against tuberculosis.
Collapse
|
|
22 |
70 |
4
|
Lima VM, Bonato VL, Lima KM, Dos Santos SA, Dos Santos RR, Gonçalves ED, Faccioli LH, Brandão IT, Rodrigues-Junior JM, Silva CL. Role of trehalose dimycolate in recruitment of cells and modulation of production of cytokines and NO in tuberculosis. Infect Immun 2001; 69:5305-12. [PMID: 11500399 PMCID: PMC98639 DOI: 10.1128/iai.69.9.5305-5312.2001] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mice treated with viable Mycobacterium tuberculosis with no glycolipid trehalose dimycolate (TDM) on the outer cell wall (delipidated M. tuberculosis) by intraperitoneal or intratracheal inoculation presented an intense recruitment of polymorphonuclear cells into the peritoneal cavity and an acute inflammatory reaction in the lungs, respectively. In addition, lung lesions were resolved around the 32nd day after intratracheal inoculation. TDM-loaded biodegradable poly-DL-lactide-coglycolide microspheres as well as TDM-coated charcoal particles induced an intense inflammatory reaction. In addition, high levels of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-alpha), IL-12, IL-10, gamma interferon (IFN-gamma), and IL-4 production were detected in lung cells, and nitric oxide (NO) production was high in culture supernatants of bronchoalveolar lavage cells. These in vivo data were confirmed by in vitro experiments using peritoneal macrophages cultured in the presence of TDM adsorbed onto coverslips. High levels of IFN-gamma, IL-6, TNF-alpha, IL-12, IL-10, and NO were detected in the culture supernatants. Our results suggest that TDM contributes to persistence of infection through production of cytokines, which are important for the recruitment of inflammatory cells and maintenance of a granulomatous reaction. In addition, our findings are important for a better understanding of the immunostimulatory activity of TDM and its possible use as an adjuvant in experiments using DNA vaccine or gene therapy against tuberculosis.
Collapse
|
research-article |
24 |
65 |
5
|
Bastida F, Jehmlich N, Lima K, Morris BEL, Richnow HH, Hernández T, von Bergen M, García C. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. J Proteomics 2015. [PMID: 26225916 DOI: 10.1016/j.jprot.2015.07.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The linkage between phylogenetic and functional processes may provide profound insights into the effects of hydrocarbon contamination and biodegradation processes in high-diversity environments. Here, the impacts of petroleum contamination and the bioremediation potential of compost amendment, as enhancer of the microbial activity in semiarid soils, were evaluated in a model experiment. The analysis of phospholipid fatty-acids (PLFAs) and metaproteomics allowed the study of biomass, phylogenetic and physiological responses of the microbial community in polluted semiarid soils. Petroleum pollution induced an increase of proteobacterial proteins during the contamination, while the relative abundance of Rhizobiales lowered in comparison to the non-contaminated soil. Despite only 0.55% of the metaproteome of the compost-treated soil was involved in biodegradation processes, the addition of compost promoted the removal of polycyclic aromatic hydrocarbons (PAHs) and alkanes up to 88% after 50 days. However, natural biodegradation of hydrocarbons was not significant in soils without compost. Compost-assisted bioremediation was mainly driven by Sphingomonadales and uncultured bacteria that showed an increased abundance of catabolic enzymes such as catechol 2,3-dioxygenases, cis-dihydrodiol dehydrogenase and 2-hydroxymuconic semialdehyde. For the first time, metaproteomics revealed the functional and phylogenetic relationships of petroleum contamination in soil and the microbial key players involved in the compost-assisted bioremediation.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
62 |
6
|
Silva CL, Bonato VLD, Coelho-Castelo AAM, De Souza AO, Santos SA, Lima KM, Faccioli LH, Rodrigues JM. Immunotherapy with plasmid DNA encoding mycobacterial hsp65 in association with chemotherapy is a more rapid and efficient form of treatment for tuberculosis in mice. Gene Ther 2005; 12:281-7. [PMID: 15526006 DOI: 10.1038/sj.gt.3302418] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tuberculosis (TB) remains a threat for public health, killing around 3 million people a year. Despite the fact that most cases can be cured with antibiotics, the treatment is long and patients relapse if chemotherapy is not continued for at least 6 months. Thus, a better characterization of the working principles of the immune system in TB and identification of new immunotherapeutic products for the development of shorter regimens of treatment are essential to achieve an effective management of this disease. In the present work, we demonstrate that immunotherapy with a plasmid DNA encoding the Mycobacterium leprae 65 kDa heat-shock protein (hsp65) in order to boost the efficiency of the immune system, is a valuable adjunct to antibacterial chemotherapy to shorten the duration of treatment, improve the treatment of latent TB infection and be effective against multidrug-resistant bacilli (MDR-TB). We also showed that the use of DNA-hsp65 alone or in combination with other drugs influence the pathway of the immune response or other types of inflammatory responses and should augment our ability to alter the course of immune response/inflammation as needed, evidencing an important target for immunization or drug intervention.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
60 |
7
|
Vago JP, Sugimoto MA, Lima KM, Negreiros-Lima GL, Baik N, Teixeira MM, Perretti M, Parmer RJ, Miles LA, Sousa LP. Plasminogen and the Plasminogen Receptor, Plg-R KT, Regulate Macrophage Phenotypic, and Functional Changes. Front Immunol 2019; 10:1458. [PMID: 31316511 PMCID: PMC6611080 DOI: 10.3389/fimmu.2019.01458] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/10/2019] [Indexed: 01/31/2023] Open
Abstract
Inflammation resolution is an active process that functions to restore tissue homeostasis. Clearance of apoptotic leukocytes by efferocytosis at inflammatory sites plays an important role in inflammation resolution and induces remarkable macrophage phenotypic and functional changes. Here, we investigated the effects of deletion of either plasminogen (Plg) or the Plg receptor, Plg-RKT, on the resolution of inflammation. In a murine model of pleurisy, the numbers of total mononuclear cells recruited to the pleural cavity were significantly decreased in both Plg−/− and Plg-RKT−/− mice, a response associated with decreased levels of the chemokine CCL2 in pleural exudates. Increased percentages of M1-like macrophages were determined in pleural lavages of Plg−/− and Plg-RKT−/− mice without significant changes in M2-like macrophage percentages. In vitro, Plg and plasmin (Pla) increased CD206/Arginase-1 expression and the levels of IL-10/TGF-β (M2 markers) while decreasing IFN/LPS-induced M1 markers in murine bone-marrow-derived macrophages (BMDMs) and human macrophages. Furthermore, IL4-induced M2-like polarization was defective in BMDMs from both Plg−/− and Plg-RKT−/− mice. Mechanistically, Plg and Pla induced transient STAT3 phosphorylation, which was decreased in Plg−/− and Plg-RKT−/− BMDMs after IL-4 or IL-10 stimulation. The extents of expression of CD206 and Annexin A1 (important for clearance of apoptotic cells) were reduced in Plg−/− and Plg-RKT−/− macrophage populations, which exhibited decreased phagocytosis of apoptotic neutrophils (efferocytosis) in vivo and in vitro. Taken together, these results suggest that Plg and its receptor, Plg-RKT, regulate macrophage polarization and efferocytosis, as key contributors to the resolution of inflammation.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
53 |
8
|
Negreiros-Lima GL, Lima KM, Moreira IZ, Jardim BLO, Vago JP, Galvão I, Teixeira LCR, Pinho V, Teixeira MM, Sugimoto MA, Sousa LP. Cyclic AMP Regulates Key Features of Macrophages via PKA: Recruitment, Reprogramming and Efferocytosis. Cells 2020; 9:E128. [PMID: 31935860 PMCID: PMC7017228 DOI: 10.3390/cells9010128] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are central to inflammation resolution, an active process aimed at restoring tissue homeostasis following an inflammatory response. Here, the effects of db-cAMP on macrophage phenotype and function were investigated. Injection of db-cAMP into the pleural cavity of mice induced monocytes recruitment in a manner dependent on PKA and CCR2/CCL2 pathways. Furthermore, db-cAMP promoted reprogramming of bone-marrow-derived macrophages to a M2 phenotype as seen by increased Arg-1/CD206/Ym-1 expression and IL-10 levels (M2 markers). Db-cAMP also showed a synergistic effect with IL-4 in inducing STAT-3 phosphorylation and Arg-1 expression. Importantly, db-cAMP prevented IFN-γ/LPS-induced macrophage polarization to M1-like as shown by increased Arg-1 associated to lower levels of M1 cytokines (TNF-α/IL-6) and p-STAT1. In vivo, db-cAMP reduced the number of M1 macrophages induced by LPS injection without changes in M2 and Mres numbers. Moreover, db-cAMP enhanced efferocytosis of apoptotic neutrophils in a PKA-dependent manner and increased the expression of Annexin A1 and CD36, two molecules associated with efferocytosis. Finally, inhibition of endogenous PKA during LPS-induced pleurisy impaired the physiological resolution of inflammation. Taken together, the results suggest that cAMP is involved in the major functions of macrophages, such as nonphlogistic recruitment, reprogramming and efferocytosis, all key processes for inflammation resolution.
Collapse
|
research-article |
5 |
45 |
9
|
Lima KM, Rodrigues Júnior JM. Poly-DL-lactide-co-glycolide microspheres as a controlled release antigen delivery system. Braz J Med Biol Res 1999; 32:171-80. [PMID: 10347752 DOI: 10.1590/s0100-879x1999000200005] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Successful vaccine application means maximum protection with minimal number of administrations. A rational development of vaccines involves studies of the nature of the antigen as well as of the adjuvant to be used to improve the immune responses. This has provided the impetus for studies to design the degradable devices and for different approaches to antigen delivery by different routes of administration. The development of controlled release systems based on polymeric devices that permit a sustained or pulsed release of encapsulated antigens has attracted much interest. Polymeric delivery systems consist of polymers that release their content continuously in a controlled manner over a period of time. The development of a biocompatible delivery system for parenteral administration offers several advantages in terms of immunoadjuvanticity over other compounds. It was found that, in contrast to other carriers, microspheres are more stable, thus permitting administration by the oral or parenteral route. In the present study, we describe the main characteristics and potentialities of this new immunoadjuvant for oral and parenteral administration.
Collapse
|
Review |
26 |
42 |
10
|
Wolff ASB, Oftedal BEV, Kisand K, Ersvaer E, Lima K, Husebye ES. Flow cytometry study of blood cell subtypes reflects autoimmune and inflammatory processes in autoimmune polyendocrine syndrome type I. Scand J Immunol 2010; 71:459-67. [PMID: 20500699 DOI: 10.1111/j.1365-3083.2010.02397.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Autoimmune polyendocrine syndrome type I (APS I) is a recessive disorder caused by mutations in the autoimmune regulator (AIRE) gene. AIRE is expressed in medullary epithelial cells where it activates transcription of organ-specific proteins in thymus, thereby regulating autoimmunity. Patients with APS I have, in addition to autoimmune manifestations in endocrine organs, also often ectodermal dystrophies and chronic mucocutaneous candidiasis. The aim of this study was to characterize immune cell subpopulations in patients with APS I and their close relatives. Extensive blood mononuclear cell immunophenotyping was carried out on 19 patients with APS I, 18 first grade relatives and corresponding sex- and age-matched healthy controls using flow cytometry. We found a significant relative reduction in T helper cells coexpressing CCR6 and CXCR3 in patients with APS I compared to controls (mean = 4.10% versus 5.94% respectively, P = 0.035). The pools of CD16(+) monocytes and regulatory T cells (Tregs) were also lower in patients compared with healthy individuals (mean = 15.75% versus 26.78%, P = 0.028 and mean = 4.12% versus 6.73%, P = 0.029, respectively). This is the first report describing reduced numbers of CCR6(+)CXCR3(+) T helper cells and CD16(+) monocytes in patients with APS I We further confirm previous findings of reduced numbers of Tregs in these patients.
Collapse
|
|
15 |
38 |
11
|
Lima KM, Vago JP, Caux TR, Negreiros-Lima GL, Sugimoto MA, Tavares LP, Arribada RG, Carmo AAF, Galvão I, Costa BRC, Soriani FM, Pinho V, Solito E, Perretti M, Teixeira MM, Sousa LP. The resolution of acute inflammation induced by cyclic AMP is dependent on annexin A1. J Biol Chem 2017; 292:13758-13773. [PMID: 28655761 DOI: 10.1074/jbc.m117.800391] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Indexed: 12/17/2022] Open
Abstract
Annexin A1 (AnxA1) is a glucocorticoid-regulated protein known for its anti-inflammatory and pro-resolving effects. We have shown previously that the cAMP-enhancing compounds rolipram (ROL; a PDE4 inhibitor) and Bt2cAMP (a cAMP mimetic) drive caspase-dependent resolution of neutrophilic inflammation. In this follow-up study, we investigated whether AnxA1 could be involved in the pro-resolving properties of these compounds using a model of LPS-induced inflammation in BALB/c mice. The treatment with ROL or Bt2cAMP at the peak of inflammation shortened resolution intervals, improved resolution indices, and increased AnxA1 expression. In vitro studies showed that ROL and Bt2cAMP induced AnxA1 expression and phosphorylation, and this effect was prevented by PKA inhibitors, suggesting the involvement of PKA in ROL-induced AnxA1 expression. Akin to these in vitro findings, H89 prevented ROL- and Bt2cAMP-induced resolution of inflammation, and it was associated with decreased levels of intact AnxA1. Moreover, two different strategies to block the AnxA1 pathway (by using N-t-Boc-Met-Leu-Phe, a nonselective AnxA1 receptor antagonist, or by using an anti-AnxA1 neutralizing antiserum) prevented ROL- and Bt2cAMP-induced resolution and neutrophil apoptosis. Likewise, the ability of ROL or Bt2cAMP to induce neutrophil apoptosis was impaired in AnxA-knock-out mice. Finally, in in vitro settings, ROL and Bt2cAMP overrode the survival-inducing effect of LPS in human neutrophils in an AnxA1-dependent manner. Our results show that AnxA1 is at least one of the endogenous determinants mediating the pro-resolving properties of cAMP-elevating agents and cAMP-mimetic drugs.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
37 |
12
|
Vago JP, Tavares LP, Sugimoto MA, Lima GLN, Galvão I, de Caux TR, Lima KM, Ribeiro ALC, Carneiro FS, Nunes FFC, Pinho V, Perretti M, Teixeira MM, Sousa LP. Proresolving Actions of Synthetic and Natural Protease Inhibitors Are Mediated by Annexin A1. THE JOURNAL OF IMMUNOLOGY 2016; 196:1922-32. [PMID: 26800869 DOI: 10.4049/jimmunol.1500886] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 12/14/2015] [Indexed: 12/20/2022]
Abstract
Annexin A1 (AnxA1) is a glucocorticoid-regulated protein endowed with anti-inflammatory and proresolving properties. Intact AnxA1 is a 37-kDa protein that may be cleaved in vivo at the N-terminal region by neutrophil proteases including elastase and proteinase-3, generating the 33-kDa isoform that is largely inactive. In this study, we investigated the dynamics of AnxA1 expression and the effects of synthetic (sivelestat [SIV]; Eglin) and natural (secretory leukocyte protease inhibitor [SLPI]; Elafin) protease inhibitors on the resolution of LPS-induced inflammation. During the settings of LPS inflammation AnxA1 cleavage associated closely with the peak of neutrophil and elastase expression and activity. SLPI expression increased during resolving phase of the pleurisy. Therapeutic treatment of LPS-challenge mice with recombinant human SLPI or Elafin accelerated resolution, an effect associated with increased numbers of apoptotic neutrophils in the pleural exudates, inhibition of elastase, and modulation of the survival-controlling proteins NF-κB and Mcl-1. Similar effects were observed with SIV, which dose-dependently inhibited neutrophil elastase and shortened resolution intervals. Mechanistically, SIV-induced resolution was caspase-dependent, associated to increased levels of intact AnxA1 and decreased expression of NF-κB and Mcl-1. The proresolving effect of antiproteases was also observed in a model of monosodium urate crystals-induced inflammation. SIV skewed macrophages toward resolving phenotypes and enhanced efferocytosis of apoptotic neutrophils. A neutralizing antiserum against AnxA1 and a nonselective antagonist of AnxA1 receptor abolished the accelerated resolution promoted by SIV. Collectively, these results show that elastase inhibition not only inhibits inflammation but actually promotes resolution, and this response is mediated by protection of endogenous intact AnxA1 with ensuing augmentation of neutrophil apoptosis.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
35 |
13
|
Lima K, Abrahamsen TG, Foelling I, Natvig S, Ryder LP, Olaussen RW. Low thymic output in the 22q11.2 deletion syndrome measured by CCR9+CD45RA+ T cell counts and T cell receptor rearrangement excision circles. Clin Exp Immunol 2010; 161:98-107. [PMID: 20491792 DOI: 10.1111/j.1365-2249.2010.04152.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Thymic hypoplasia is a frequent feature of the 22q11.2 deletion syndrome, but we know little about patients' age-related thymic output and long-term consequences for their immune system. We measured the expression of T cell receptor rearrangement excision circles (TREC) and used flow cytometry for direct subtyping of recent thymic emigrant (RTE)-related T cells in 43 patients (aged 1-54 years; median 9 years) from all over Norway and in age-matched healthy controls. Thymic volumes were estimated by ultrasound in patients. TREC levels correlated well with RTE-related T cells defined by co-expression of CD3, CD45RA and CCR9 (r=0.84) as well as with the CD4+ and CD8+ T cell subtypes. RTE-related T cell counts also paralleled age-related TREC reductions. CD45RA+ T cells correlated well with absolute counts of CD4+ (r=0.87) and CD8+ (r=0.75) RTE-related T cells. Apart from CD45RA- T cells, all T cell subsets were lower in patients than in controls. Thymic volumes correlated better with RTE-related cells (r=0.46) than with TREC levels (r=0.38). RTE-related T cells and TREC levels also correlated well (r=0.88) in patients without an identifiable thymus. Production of RTEs is impaired in patients with a 22q11.2 deletion, and CCR9 appears to be a good marker for RTE-related T cells.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
29 |
14
|
Vago JP, Galvão I, Negreiros-Lima GL, Teixeira LCR, Lima KM, Sugimoto MA, Moreira IZ, Jones SA, Lang T, Riccardi C, Teixeira MM, Harris J, Morand EF, Sousa LP. Glucocorticoid-induced leucine zipper modulates macrophage polarization and apoptotic cell clearance. Pharmacol Res 2020; 158:104842. [PMID: 32413484 DOI: 10.1016/j.phrs.2020.104842] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Macrophages are professional phagocytes that display remarkable plasticity, with a range of phenotypes that can be broadly characterized by the M1/M2 dichotomy. Glucocorticoid (GC)-induced leucine zipper (GILZ) is a protein known to mediate anti-inflammatory and some pro-resolving actions, including as neutrophil apoptosis. However, the role of GILZ in key macrophage function is not well understood. Here, we investigated the role of GILZ on macrophage reprogramming and efferocytosis. Using murine bone-marrow-derived macrophages (BMDMs), we found that GILZ was expressed in naive BMDMs and exhibited increased expression in M2-like macrophages (IL4-differentiated). M1-like macrophages (IFN/LPS-differentiated) from GILZ-/- mice showed higher expression of the M1 markers CD86, MHC class II, iNOS, IL-6 and TNF-α, associated with increased levels of phosphorylated STAT1 and lower IL-10 levels, compared to M1-differentiated cells from WT mice. There were no changes in the M2 markers CD206 and arginase-1 in macrophages from GILZ-/- mice differentiated with IL-4, compared to cells from WT animals. Treatment of M1-like macrophages with TAT-GILZ, a cell-permeable GILZ fusion protein, decreased the levels of CD86 and MHC class II in M1-like macrophages without modifying CD206 levels in M2-like macrophages. In line with the in vitro data, increased numbers of M1-like macrophages were found into the pleural cavity of GILZ-/- mice after LPS-injection, compared to WT mice. Moreover, efferocytosis was defective in the context of GILZ deficiency, both in vitro and in vivo. Conversely, treatment of LPS-injected mice with TAT-GILZ promoted inflammation resolution, associated with lower numbers of M1-like macrophages and increased efferocytosis. Collectively, these data indicate that GILZ is a regulator of important macrophage functions, contributing to macrophage reprogramming and efferocytosis, both key steps for the resolution of inflammation.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
23 |
15
|
Lima KM, dos Santos SA, Santos RR, Brandão IT, Rodrigues JM, Silva CL. Efficacy of DNA–hsp65 vaccination for tuberculosis varies with method of DNA introduction in vivo. Vaccine 2003; 22:49-56. [PMID: 14604570 DOI: 10.1016/s0264-410x(03)00543-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A DNA vaccine codifying the mycobacterial hsp65 can prevent infection with Mycobacterium tuberculosis in a prophylactic setting and also therapeutically reduce the number of bacteria in infected mice. The protective mechanism is thought to be related to Th1-mediated events that result in bacterial killing. To determine the best method of hsp65 introduction for vaccination efficacy against tuberculosis (TB), we evaluated the immunogenicity and protection of DNA-hsp65 administered by gene gun bombardment or intramuscular (i.m.) injection of naked DNA. Immunization by gene gun induced immune response with plasmid doses 100-fold lower than those required for intramuscular immunization. However, in contrast to intramuscular immunization, which was protective in these studies, gene gun immunization did not protect BALB/c mice against challenge infection.
Collapse
|
|
22 |
23 |
16
|
Lima KM, Bonato VL, Faccioli LH, Brandão IT, dos Santos SA, Coelho-Castelo AA, Leão SC, Silva CL. Comparison of different delivery systems of vaccination for the induction of protection against tuberculosis in mice. Vaccine 2001; 19:3518-25. [PMID: 11348719 DOI: 10.1016/s0264-410x(01)00042-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The way to deliver antigens and cellular requirements for long-lasting protection against tuberculosis are not known. Immunizations with mycobacterial 65 kDa heat shock protein (hsp65) expressed from J774-hsp65 cells (antigen-presenting cells that endogenously produce hsp65 antigen) or from plasmid DNA, or with the protein entrapped in cationic liposomes, can each give protective immunity similar to that obtained from live Bacillus Calmette Guérin (BCG), whereas injecting the protein in Freund's incomplete adjuvant (FIA) has minimal effect. Protective procedures elicited high frequencies of antigen-reactive alphabeta T cells with CD4+/CD8- and CD8+/CD4- phenotypes. Protection correlated with the abundance of hsp65-dependent cytotoxic CD8+/CD4-/CD44hi cells. The frequency of these cells and the level of protection declined during 8 months after J774-hsp65 or liposome-mediated immunization with hsp65 protein but were sustained or steadily increased over this period after hsp65-DNA or BCG immunizations. IFN-gamma predominated over IL-4 among the hsp65-reactive CD8+/CD4- and CD4+/CD8- populations after J774-hsp65-, hsp65-liposome-, and hsp65-DNA-mediated immunizations, but similar levels of these cytokines prevailed after BCG vaccination.
Collapse
|
|
24 |
20 |
17
|
Silva CL, Bonato VL, Lima KM, Coelho-Castelo AA, Faccioli LH, Sartori A, De Souza AO, Leão SC. Cytotoxic T cells and mycobacteria. FEMS Microbiol Lett 2001; 197:11-8. [PMID: 11287139 DOI: 10.1111/j.1574-6968.2001.tb10575.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
How the immune system kills Mycobacterium tuberculosis is still a puzzle. The classical picture of killing due to phagocytosis by activated macrophages may be only partly correct. Based on recent evidence, we express here the view that cytotoxic T lymphocytes also make an important contribution and suggest that DNA vaccines might be a good way to enhance this.
Collapse
|
Review |
24 |
18 |
18
|
Barr NB, Ruiz-Arce R, Farris RE, Silva JG, Lima KM, Dutra VS, Ronchi-Teles B, Kerr PH, Norrbom AL, Nolazco N, Thomas DB. Identifying Anastrepha (Diptera; Tephritidae) Species Using DNA Barcodes. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:405-421. [PMID: 29202187 DOI: 10.1093/jee/tox300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Indexed: 06/07/2023]
Abstract
Molecular identification of fruit flies in the genus Anastrepha (Diptera; Tephritidae) is important to support plant pest exclusion, suppression, and outbreak eradication. Morphological methods of identification of this economically important genus are often not sufficient to identify species when detected as immature life stages. DNA barcoding a segment of the mitochondrial cytochrome oxidase I gene has been proposed as a method to identify pests in the genus. The identification process for these fruit flies, however, has not been explained in prior DNA barcode studies. DNA barcode methods assume that available DNA sequence records are biologically meaningful. These records, however, can be limited to the most common species or lack population-level measurements of diversity for pests. In such cases, the available data used as a reference are insufficient for completing an accurate identification. Using 539 DNA sequence records from 74 species of Anastrepha, we demonstrate that our barcoding data can distinguish four plant pests: Anastrepha grandis (Macquart) (Diptera; Tephritidae), Anastrepha ludens (Loew), Anastrepha serpentina (Wiedemann), and Anastrepha striata Schiner. This is based on genetic distances of barcode records for the pests and expert evaluation of species and population representation in the data set. DNA barcoding of the cytochrome oxidase I gene alone cannot reliably diagnose the pests Anastrepha fraterculus (Wiedemann), Anastrepha obliqua (Macquart), and Anastrepha suspensa (Loew).
Collapse
|
|
7 |
14 |
19
|
Zaidan I, Tavares LP, Sugimoto MA, Lima KM, Negreiros-Lima GL, Teixeira LC, Miranda TC, Valiate BV, Cramer A, Vago JP, Campolina-Silva GH, Souza JA, Grossi LC, Pinho V, Campagnole-Santos MJ, Santos RAS, Teixeira MM, Galvão I, Sousa LP. Angiotensin-(1-7)/MasR axis promotes migration of monocytes/macrophages with a regulatory phenotype to perform phagocytosis and efferocytosis. JCI Insight 2021; 7:147819. [PMID: 34874920 PMCID: PMC8765051 DOI: 10.1172/jci.insight.147819] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Nonphlogistic migration of macrophages contributes to the clearance of pathogens and apoptotic cells, a critical step for the resolution of inflammation and return to homeostasis. Angiotensin-(1-7) [Ang-(1-7)] is a heptapeptide of the renin-angiotensin system that acts through Mas receptor (MasR). Ang-(1-7) has recently emerged as a novel proresolving mediator, yet Ang-(1-7) resolution mechanisms are not fully determined. Herein, Ang-(1-7) stimulated migration of human and murine monocytes/macrophages in a MasR-, CCR2-, and MEK/ERK1/2–dependent manner. Pleural injection of Ang-(1-7) promoted nonphlogistic mononuclear cell influx alongside increased levels of CCL2, IL-10, and macrophage polarization toward a regulatory phenotype. Ang-(1-7) induction of CCL2 and mononuclear cell migration was also dependent on MasR and MEK/ERK. Of note, MasR was upregulated during the resolution phase of inflammation, and its pharmacological inhibition or genetic deficiency impaired mononuclear cell recruitment during self-resolving models of LPS pleurisy and E. coli peritonitis. Inhibition/absence of MasR was associated with reduced CCL2 levels, impaired phagocytosis of bacteria, efferocytosis, and delayed resolution of inflammation. In summary, we have uncovered a potentially novel proresolving feature of Ang-(1-7), namely the recruitment of mononuclear cells favoring efferocytosis, phagocytosis, and resolution of inflammation. Mechanistically, cell migration was dependent on MasR, CCR2, and the MEK/ERK pathway.
Collapse
|
|
4 |
12 |
20
|
Luna E, Postol E, Caldas C, Benvenuti LA, Rodrigues JM, Lima K, Kalil J, Coelho V. Treatment with encapsulated Hsp60 peptide (p277) prolongs skin graft survival in a murine model of minor antigen disparity. Scand J Immunol 2007; 66:62-70. [PMID: 17587347 DOI: 10.1111/j.1365-3083.2007.01951.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The increased expression of heat shock protein (Hsp)60 in different kinds of graft tissues has been associated with a proinflammatory role and rejection. However, there are very few reports in which treatment with Hsp60 delays skin allograft rejection. The aim of this work was to evaluate the capacity of encapsulated human Hsp60-derived peptide p277 to delay graft rejection in two murine models of skin transplantation with minor antigen disparities. Briefly, BALB/c mice and C57BL/6 were intranasally pre-treated with five doses of Hsp60 p277 peptide encapsulated in polylactide-co-glycolide acid microspheres (PLGM), and received skin grafts from DBA2 mice and 129/B6 (F1) mice respectively. The treatment with the peptide increased skin graft survival more than 20 days in both the mouse strains, mainly in C57BL/6 recipients (P < 0.05). Also, p277-treated BALB/c and C57BL/6 mice showed IL-10 and IFN-gamma production, induced by p277 peptide. For the first time, a mucosal schedule using the Hsp60 C-terminal peptide p277 encapsulated in PLGM showed some survival prolongation of skin grafts bearing minor antigen disparities. Our results suggest a potential role for Hsp60-based therapy and the mucosal route as a useful tool to control the inflammatory response to allografts.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
9 |
21
|
Aresvik DM, Lima K, Øverland T, Mollnes TE, Abrahamsen TG. Increased Levels of Interferon-Inducible Protein 10 (IP-10) in 22q11.2 Deletion Syndrome. Scand J Immunol 2016; 83:188-94. [PMID: 26708691 DOI: 10.1111/sji.12406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022]
Abstract
The 22q11.2 deletion syndrome (22q11.2 DS), also known as DiGeorge syndrome, is a genetic disorder with an estimated incidence of 1:4000 births. These patients may suffer from affection of many organ systems with cardiac malformations, thymic hypoplasia or aplasia, hypoparathyroidism, palate anomalies and psychiatric disorders being the most frequent. The incidence of autoimmune diseases is increased in older patients. The aim of the present study was to examine a cytokine profile in patients with 22q11.2 DS by measuring a broad spectrum of serum cytokines. Patients with a proven deletion of chromosome 22q11.2 (n = 55) and healthy individuals (n = 54) recruited from an age- and sex-comparable group were included in the study. Serum levels of 27 cytokines, including chemokines and growth factors, were analysed using multiplex technology. Interferon-inducible protein 10 (IP-10) was also measured by ELISA to confirm the multiplex results. The 22q11.2 DS patients had distinctly and significantly raised levels of pro-inflammatory and angiostatic chemokine IP-10 (P < 0.001) compared to controls. The patients with congenital heart defects (n = 31) had significantly (P = 0.018) raised serum levels of IP-10 compared to patients born without heart defects (n = 24). The other cytokines investigated were either not detectable or did not differ between patients and controls.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
5 |
22
|
Passos JF, Nascimento DB, Menezes RST, Adaime R, Araujo EL, Lima KM, Zucchi RA, Teles BR, Nascimento RR, Arce RR, Barr NB, McPheron BA, Silva JG. Genetic structure and diversity in Brazilian populations of Anastrepha obliqua (Diptera: Tephritidae). PLoS One 2018; 13:e0208997. [PMID: 30571687 PMCID: PMC6301665 DOI: 10.1371/journal.pone.0208997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/28/2018] [Indexed: 11/26/2022] Open
Abstract
Anastrepha obliqua (Macquart), the West Indian fruit fly, is one of the most economically important pest species in the Neotropical region. It infests an extensive range of host plants that include over 60 species. The geographic range of A. obliqua is from northern Mexico to southern Brazil and includes the Caribbean Islands. Previous molecular studies have revealed significant genetic structure among populations. We used sequences from a fragment of the mitochondrial protein-coding gene cytochrome c oxidase I to estimate structure and genetic diversity of A. obliqua populations from Brazil. We analyzed a total of 153 specimens from the Amazon Forest, Atlantic Forest, Cerrado, and Caatinga biomes. Our study revealed weak genetic structure among the A. obliqua Brazilian populations sampled. Collections from the Amazon Forest had similar haplotype diversity compared to previously reported estimates for collections from the Caribbean and both populations are also closely related to each other, thus challenging the hypothesis that A. obliqua originated in the Caribbean and then moved to other regions of the Americas. Therefore, further evidence is necessary to draw a definite conclusion about the putative center of origin for A. obliqua. Additionally, we suggest a putative historical migration from the west to the east for the A. obliqua Brazilian populations, which could explain the high genetic diversity for this fly in the Amazon Forest and low genetic diversity in the other Brazilian biomes.
Collapse
|
research-article |
7 |
5 |
23
|
Oliveira LG, Souza-Testasicca MC, Ricotta TNQ, Vago JP, dos Santos LM, Crepaldi F, Lima KM, Queiroz-Junior C, Sousa LP, Fernandes AP. Temporary Shutdown of ERK1/2 Phosphorylation Is Associated With Activation of Adaptive Immune Cell Responses and Disease Progression During Leishmania amazonensis Infection in BALB/c Mice. Front Immunol 2022; 13:762080. [PMID: 35145518 PMCID: PMC8821891 DOI: 10.3389/fimmu.2022.762080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
Leishmania spp. infection outcomes are dependent on both host and parasite factors. Manipulation of host signaling pathways involved in the generation of immune responses is thought to be one of the most common mechanisms used by parasites for persistence within the host. Considering the diversity of pathologies caused by different Leishmania spp., it is plausible that significant differences may exist in the mechanisms of host cell manipulation by each parasite species, which may have implications when developing new vaccine or treatment strategies. Here we show that in L. braziliensis-infection in BALB/c mice, a model of resistance, activation of ERK1/2 coincides with the peak of inflammatory responses and resolution of tissue parasitism. In contrast, in the susceptibility model of L. amazonensis-infection, an early silent phase of infection is observed, detected solely by quantification of parasite loads. At this early stage, only basal levels of P-ERK1/2 are observed. Later, after a brief shutdown of ERK1/2 phosphorylation, disease progression is observed and is associated with increased inflammation, lesion size and tissue parasitism. Moreover, the short-term down-regulation of ERK1/2 activation affected significantly downstream inflammatory pathways and adaptive T cell responses. Administration of U0126, a MEK/ERK inhibitor, confirmed this phenomenon, since bigger lesions and higher parasite loads were seen in infected mice that received U0126. To investigate how kinetics of ERK1/2 activation could affect the disease progression, U0126 was administered to L. amazonensis-infected animals earlier than the P-ERK1/2 switch off time-point. This intervention resulted in anticipation of the same effects on inflammatory responses and susceptibility phenotype seen in the natural course of infection. Additionally, in vitro inhibition of ERK1/2 affected the phagocytosis of L. amazonensis by BMDMs. Collectively, our findings reveal distinct temporal patterns of activation of inflammatory responses in L. braziliensis and L. amazonensis in the same animal background and a pivotal role for a brief and specific shutdown of ERK1/2 activation at late stages of L. amazonensis infection. Since activation of inflammatory responses is a crucial aspect for the control of infectious processes, these findings may be important for the search of new and specific strategies of vaccines and treatment for tegumentary leishmaniasis.
Collapse
|
|
3 |
3 |
24
|
Oliveira R, Rosa R, Ascoli A, Rutzen W, Madeira L, Ghizzoni F, Khummer R, Vargas F, Lago L, Dietrich C, Ceron C, Guterres C, Vesz P, Schaefer A, Falavigna M, Lima K, Robinson C, Ribeiro R, Maccari J, Teixeira C. Factors influencing decline of physical functional status among icu survivors: a prospective cohort study. Intensive Care Med Exp 2016; 3:A361. [PMID: 27289905 PMCID: PMC4797845 DOI: 10.1186/2197-425x-3-s1-a361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
Journal Article |
9 |
2 |
25
|
Rosa R, Ascoli A, Rutzen W, Madeira L, Falavigna M, Robinson C, Nascimento C, Balzano P, Morandi P, Souto V, Moreira M, Mutlaq M, Lima K, Souza MC, Ribeiro R, Maccari J, Almeida C, Oliveira RPD, Teixeira C. Factors associated with hospital anxiety and depression among ICU survivors: a cross sectional study. Intensive Care Med Exp 2015. [PMCID: PMC4797811 DOI: 10.1186/2197-425x-3-s1-a369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
|
10 |
1 |