1
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [PMID: 28551025 DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
|
8 |
95 |
2
|
Samokhvalov V, Alsaleh N, El-Sikhry HE, Jamieson KL, Chen CB, Lopaschuk DG, Carter C, Light PE, Manne R, Falck JR, Seubert JM. Epoxyeicosatrienoic acids protect cardiac cells during starvation by modulating an autophagic response. Cell Death Dis 2013; 4:e885. [PMID: 24157879 PMCID: PMC3920965 DOI: 10.1038/cddis.2013.418] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 12/25/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are cytochrome P450 epoxygenase metabolites of arachidonic acid involved in regulating pathways promoting cellular protection. We have previously shown that EETs trigger a protective response limiting mitochondrial dysfunction and reducing cellular death. Considering it is unknown how EETs regulate cell death processes, the major focus of the current study was to investigate their role in the autophagic response of HL-1 cells and neonatal cardiomyocytes (NCMs) during starvation. We employed a dual-acting synthetic analog UA-8 (13-(3-propylureido)tridec-8-enoic acid), possessing both EET-mimetic and soluble epoxide hydrolase (sEH) inhibitory properties, or 14,15-EET as model EET molecules. We demonstrated that EETs significantly improved viability and recovery of starved cardiac cells, whereas they lowered cellular stress responses such as caspase-3 and proteasome activities. Furthermore, treatment with EETs resulted in preservation of mitochondrial functional activity in starved cells. The protective effects of EETs were abolished by autophagy-related gene 7 (Atg7) short hairpin RNA (shRNA) or pharmacological inhibition of autophagy. Mechanistic evidence demonstrated that sarcolemmal ATP-sensitive potassium channels (pmKATP) and enhanced activation of AMP-activated protein kinase (AMPK) played a crucial role in the EET-mediated effect. Our data suggest that the protective effects of EETs involve regulating the autophagic response, which results in a healthier pool of mitochondria in the starved cardiac cells, thereby representing a novel mechanism of promoting survival of cardiac cells. Thus, we provide new evidence highlighting a central role of the autophagic response in linking EETs with promoting cell survival during deep metabolic stress such as starvation.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
53 |
3
|
Zhang H, Jamieson KL, Grenier J, Nikhanj A, Tang Z, Wang F, Wang S, Seidman JG, Seidman CE, Thompson R, Seubert JM, Oudit GY. Myocardial Iron Deficiency and Mitochondrial Dysfunction in Advanced Heart Failure in Humans. J Am Heart Assoc 2022; 11:e022853. [PMID: 35656974 PMCID: PMC9238720 DOI: 10.1161/jaha.121.022853] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Myocardial iron deficiency (MID) in heart failure (HF) remains largely unexplored. We aim to establish defining criterion for MID, evaluate its pathophysiological role, and evaluate the applicability of monitoring it non‐invasively in human explanted hearts. Methods and Results Biventricular tissue iron levels were measured in both failing (n=138) and non‐failing control (NFC, n=46) explanted human hearts. Clinical phenotyping was complemented with comprehensive assessment of myocardial remodeling and mitochondrial functional profiles, including metabolic and oxidative stress. Myocardial iron status was further investigated by cardiac magnetic resonance imaging. Myocardial iron content in the left ventricle was lower in HF versus NFC (121.4 [88.1–150.3] versus 137.4 [109.2–165.9] μg/g dry weight), which was absent in the right ventricle. With a priori cutoff of 86.1 μg/g d.w. in left ventricle, we identified 23% of HF patients with MID (HF‐MID) associated with higher NYHA class and worsened left ventricle function. Respiratory chain and Krebs cycle enzymatic activities were suppressed and strongly correlated with depleted iron stores in HF‐MID hearts. Defenses against oxidative stress were severely impaired in association with worsened adverse remodeling in iron‐deficient hearts. Mechanistically, iron uptake pathways were impeded in HF‐MID including decreased translocation to the sarcolemma, while transmembrane fraction of ferroportin positively correlated with MID. Cardiac magnetic resonance with T2* effectively captured myocardial iron levels in failing hearts. Conclusions MID is highly prevalent in advanced human HF and exacerbates pathological remodeling in HF driven primarily by dysfunctional mitochondria and increased oxidative stress in the left ventricle. Cardiac magnetic resonance demonstrates clinical potential to non‐invasively monitor MID.
Collapse
|
|
3 |
26 |
4
|
Samokhvalov V, Jamieson KL, Darwesh AM, Keshavarz-Bahaghighat H, Lee TYT, Edin M, Lih F, Zeldin DC, Seubert JM. Deficiency of Soluble Epoxide Hydrolase Protects Cardiac Function Impaired by LPS-Induced Acute Inflammation. Front Pharmacol 2019; 9:1572. [PMID: 30692927 PMCID: PMC6339940 DOI: 10.3389/fphar.2018.01572] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/24/2018] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) is a bacterial wall endotoxin producing many pathophysiological conditions including myocardial inflammation leading to cardiotoxicity. Linoleic acid (18:2n6, LA) is an essential n-6 PUFA which is converted to arachidonic acid (20:4n6, AA) by desaturation and elongation via enzyme systems within the body. Biological transformation of PUFA through CYP-mediated hydroxylation, epoxidation, and allylic oxidation produces lipid mediators, which may be subsequently hydrolyzed to corresponding diol metabolites by soluble epoxide hydrolase (sEH). In the current study, we investigate whether inhibition of sEH, which alters the PUFA metabolite profile, can influence LPS induced cardiotoxicity and mitochondrial function. Our data demonstrate that deletion of soluble epoxide hydrolase provides protective effects against LPS-induced cardiotoxicity by maintaining mitochondrial function. There was a marked alteration in the cardiac metabolite profile with notable increases in sEH-derived vicinal diols, 9,10- and 12,13-dihydroxyoctadecenoic acid (DiHOME) in WT hearts following LPS administration, which was absent in sEH null mice. We found that DiHOMEs triggered pronounced mitochondrial structural abnormalities, which also contributed to the development of extensive mitochondrial dysfunction in cardiac cells. Accumulation of DiHOMEs may represent an intermediate mechanism through which LPS-induced acute inflammation triggers deleterious alterations in the myocardium in vivo and cardiac cells in vitro. This study reveals novel research exploring the contribution of DiHOMEs in the progression of adverse inflammatory responses toward cardiac function in vitro and in vivo.
Collapse
|
Journal Article |
6 |
24 |
5
|
Darwesh AM, Jamieson KL, Wang C, Samokhvalov V, Seubert JM. Cardioprotective effects of CYP-derived epoxy metabolites of docosahexaenoic acid involve limiting NLRP3 inflammasome activation. Can J Physiol Pharmacol 2019; 97:544-556. [DOI: 10.1139/cjpp-2018-0480] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Impaired mitochondrial function and activation of NLRP3 inflammasome cascade has a significant role in the pathogenesis of myocardial ischemia–reperfusion (IR) injury. The current study investigated whether eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or their corresponding CYP epoxygenase metabolites 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) protect against IR injury. Isolated mouse hearts were perfused in the Langendorff mode with vehicle, DHA, 19,20-EDP, EPA, or 17,18-EEQ and subjected to 30 min of ischemia and followed by 40 min of reperfusion. In contrast with EPA and 17,18-EEQ, DHA and 19,20-EDP exerted cardioprotection, as shown by a significant improvement in postischemic functional recovery associated with significant attenuation of NLRP3 inflammasome complex activation and preserved mitochondrial function. Hearts perfused with DHA or 19,20-EDP displayed a marked reduction in localization of mitochondrial Drp-1 and Mfn-2 as well as maintained Opa-1 levels. DHA and 19,20-EDP preserved the activities of both the cytosolic Trx-1 and mitochondrial Trx-2. DHA cardioprotective effect was attenuated by the CYP epoxygenase inhibitor N-(methysulfonyl)-2-(2-propynyloxy)-benzenehexanamide. In conclusion, our data indicate a differential cardioprotective response between DHA, EPA, and their active metabolites toward IR injury. Interestingly, 19,20-EDP provided the best protection against IR injury via maintaining mitochondrial function and thereby reducing the detrimental NLRP3 inflammasome responses.
Collapse
|
|
6 |
22 |
6
|
Jamieson KL, Samokhvalov V, Akhnokh MK, Lee K, Cho WJ, Takawale A, Wang X, Kassiri Z, Seubert JM. Genetic deletion of soluble epoxide hydrolase provides cardioprotective responses following myocardial infarction in aged mice. Prostaglandins Other Lipid Mediat 2017; 132:47-58. [DOI: 10.1016/j.prostaglandins.2017.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/24/2016] [Accepted: 01/03/2017] [Indexed: 01/17/2023]
|
|
8 |
19 |
7
|
Jamieson KL, Keshavarz-Bahaghighat H, Darwesh AM, Sosnowski DK, Seubert JM. Age and Sex Differences in Hearts of Soluble Epoxide Hydrolase Null Mice. Front Physiol 2020; 11:48. [PMID: 32116760 PMCID: PMC7019103 DOI: 10.3389/fphys.2020.00048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
Biological aging is an inevitable part of life that has intrigued individuals for millennia. The progressive decline in biological systems impacts cardiac function and increases vulnerability to stress contributing to morbidity and mortality in aged individuals. Yet, our understanding of the molecular, biochemical and physiological mechanisms of aging as well as sex differences is limited. There is growing evidence indicating CYP450 epoxygenase-mediated metabolites of n-3 and n-6 polyunsaturated fatty acids (PUFAs) are active lipid mediators regulating cardiac homeostasis. These epoxy metabolites are rapidly hydrolyzed and inactivated by the soluble epoxide hydrolase (sEH). The current study characterized cardiac function in young and aged sEH null mice compared to the corresponding wild-type (WT) mice. All aged mice had significantly increased cardiac hypertrophy, except in aged female sEH null mice. Cardiac function as assessed by echocardiography demonstrated a marked decline in aged WT mice, notably significant decreases in ejection fraction and fractional shortening in both sexes. Interestingly, aged female sEH null mice had preserved systolic function, while aged male sEH null mice had preserved diastolic function compared to aged WT mice. Assessment of cardiac mitochondria demonstrated an increased expression of acetyl Mn-SOD levels that correlated with decreased Sirt-3 activity in aged WT males and females. Conversely, aged sEH null mice had preserved Sirt-3 activity and better mitochondrial ultrastructure compared to WT mice. Consistent with these changes, the activity level of SOD significantly decreased in WT animals but was preserved in aged sEH null animals. Markers of oxidative stress demonstrated age-related increase in protein carbonyl levels in WT and sEH null male mice. Together, these data highlight novel cardiac phenotypes from sEH null mice demonstrating a sexual dimorphic pattern of aging in the heart.
Collapse
|
Journal Article |
5 |
11 |
8
|
Dorey TW, Jansen HJ, Moghtadaei M, Jamieson KL, Rose RA. Impacts of frailty on heart rate variability in aging mice: Roles of the autonomic nervous system and sinoatrial node. Heart Rhythm 2021; 18:1999-2008. [PMID: 34371195 DOI: 10.1016/j.hrthm.2021.07.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Heart rate variability (HRV) is determined by intrinsic sinoatrial node (SAN) activity and the autonomic nervous system (ANS). HRV is reduced in aging; however, aging is heterogeneous. Frailty, which can be measured using a frailty index (FI), can quantify health status in aging separately from chronological age. OBJECTIVE The purpose of this study was to investigate the impacts of age and frailty on HRV in mice. METHODS Frailty was measured in aging mice between 10 and 130 weeks of age. HRV was assessed using time domain, frequency domain, and Poincaré plot analyses in anesthetized mice at baseline and after ANS blockade, as well as in isolated atrial preparations. RESULTS HRV was reduced in aged mice (90-130 weeks and 50-80 weeks old) compared to younger mice (10-30 weeks old); however, there was substantial variability within age groups. In contrast, HRV was strongly correlated with FI score regardless of chronological age. ANS blockade resulted in reductions in heart rate that were largest in 90- to 130-week-old mice and were correlated with FI score. HRV after ANS blockade or in isolated atrial preparations was increased in aged mice but again showed high variability among age groups. HRV was correlated with FI score after ANS blockade and in isolated atrial preparations. CONCLUSION HRV is reduced in aging mice in association with a shift in sympathovagal balance and increased intrinsic SAN beating variability; however, HRV is highly variable within age groups. HRV was strongly correlated with frailty, which was able to detect differences in HRV separately from chronological age.
Collapse
|
Journal Article |
4 |
11 |
9
|
Sosnowski DK, Jamieson KL, Gruzdev A, Li Y, Valencia R, Yousef A, Kassiri Z, Zeldin DC, Seubert JM. Cardiomyocyte-specific disruption of soluble epoxide hydrolase limits inflammation to preserve cardiac function. Am J Physiol Heart Circ Physiol 2022; 323:H670-H687. [PMID: 35985007 PMCID: PMC9512117 DOI: 10.1152/ajpheart.00217.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022]
Abstract
Endotoxemia elicits a multiorgan inflammatory response that results in cardiac dysfunction and often leads to death. Inflammation-induced metabolism of endogenous N-3 and N-6 polyunsaturated fatty acids generates numerous lipid mediators, such as epoxy fatty acids (EpFAs), which protect the heart. However, EpFAs are hydrolyzed by soluble epoxide hydrolase (sEH), which attenuates their cardioprotective actions. Global genetic disruption of sEH preserves EpFA levels and attenuates cardiac dysfunction in mice following acute lipopolysaccharide (LPS)-induced inflammatory injury. In leukocytes, EpFAs modulate the innate immune system through the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. However, the mechanisms by which both EpFAs and sEH inhibition exert their protective effects in the cardiomyocyte are still elusive. This study investigated whether cardiomyocyte-specific sEH disruption attenuates inflammation and cardiac dysfunction in acute LPS inflammatory injury via modulation of the NLRP3 inflammasome. We use tamoxifen-inducible CreER recombinase technology to target sEH genetic disruption to the cardiomyocyte. Primary cardiomyocyte studies provide mechanistic insight into inflammasome signaling. For the first time, we demonstrate that cardiomyocyte-specific sEH disruption preserves cardiac function and attenuates inflammatory responses by limiting local cardiac inflammation and activation of the systemic immune response. Mechanistically, inhibition of cardiomyocyte-specific sEH activity or exogenous EpFA treatment do not prevent upregulation of NLRP3 inflammasome machinery in neonatal rat cardiomyocytes. Rather, they limit downstream activation of the pathway leading to release of fewer chemoattractant factors and recruitment of immune cells to the heart. These data emphasize that cardiomyocyte sEH is vital for mediating detrimental systemic inflammation.NEW & NOTEWORTHY The cardioprotective effects of genetic disruption and pharmacological inhibition of sEH have been demonstrated in a variety of cardiac disease models, including acute LPS inflammatory injury. For the first time, it has been demonstrated that sEH genetic disruption limited to the cardiomyocyte profoundly preserves cardiac function and limits local and systemic inflammation following acute LPS exposure. Hence, cardiomyocytes serve a critical role in the innate immune response that can be modulated to protect the heart.
Collapse
|
Research Support, N.I.H., Intramural |
3 |
11 |
10
|
Eshreif A, Al Batran R, Jamieson KL, Darwesh AM, Gopal K, Greenwell AA, Zlobine I, Aburasayn H, Eaton F, Mulvihill EE, Campbell JE, Seubert JM, Ussher JR. l-Citrulline supplementation improves glucose and exercise tolerance in obese male mice. Exp Physiol 2020; 105:270-281. [PMID: 31802553 DOI: 10.1113/ep088109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of the study? Does the action of l-citrulline, which has been shown to augment performance in animals and athletes, possibly via increasing mitochondrial function, translate to obese animals, and does this improve glycaemia? What is the main finding and its importance? Chronic supplementation with l-citrulline improves not only exercise capacity, but also glycaemia in obese mice, which would be beneficial as obese individuals are at increased risk for type 2 diabetes. However, l-citrulline supplementation also caused a mild impairment in insulin signalling and insulin tolerance in obese mice. ABSTRACT: l-Citrulline is an organic α-amino acid that has been shown to have a number of salutary actions on whole-body physiology, including reducing muscle wasting and augmenting exercise and muscle performance. The latter has been suggested to arise from elevations in mitochondrial function. Because enhancing mitochondrial function has been proposed as a novel strategy to mitigate insulin resistance, our goal was to determine whether supplementation with l-citrulline could also improve glycaemia in an experimental mouse model of obesity. We hypothesized that l-citrulline treatment would improve glycaemia in obese mice, and this would be associated with elevations in skeletal muscle mitochondrial function. Ten-week-old C57BL/6J mice were fed either a low-fat (10% kcal from lard) or a high-fat (60% kcal from lard) diet, while receiving drinking water supplemented with either vehicle or l-citrulline (0.6 g l-1 ) for 15 weeks. Glucose homeostasis was assessed via glucose/insulin tolerance testing, while in vivo metabolism was assessed via indirect calorimetry, and forced exercise treadmill testing was utilized to assess endurance. As expected, obese mice supplemented with l-citrulline exhibited an increase in exercise capacity, which was associated with an improvement in glucose tolerance. Consistent with augmented mitochondrial function, we observed an increase in whole body oxygen consumption rates in obese mice supplemented with l-citrulline. Surprisingly, l-citrulline supplementation worsened insulin tolerance and reduced insulin signalling in obese mice. Taken together, although l-citrulline supplementation improves both glucose tolerance and exercise capacity in obese mice, caution must be applied with its broad use as a nutraceutical due to a potential deterioration of insulin sensitivity.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
11 |
11
|
Sosnowski DK, Jamieson KL, Darwesh AM, Zhang H, Keshavarz-Bahaghighat H, Valencia R, Viveiros A, Edin ML, Zeldin DC, Oudit GY, Seubert JM. Changes in the Left Ventricular Eicosanoid Profile in Human Dilated Cardiomyopathy. Front Cardiovasc Med 2022; 9:879209. [PMID: 35665247 PMCID: PMC9160304 DOI: 10.3389/fcvm.2022.879209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Metabolites derived from N−3 and N−6 polyunsaturated fatty acids (PUFAs) have both beneficial and detrimental effects on the heart. However, contribution of these lipid mediators to dilated cardiomyopathy (DCM)-associated mitochondrial dysfunction remains unknown. This study aimed to characterize DCM-specific alterations in the PUFA metabolome in conjunction with cardiac mitochondrial quality in human explanted heart tissues. Methods Left ventricular tissues obtained from non-failing control (NFC) or DCM explanted hearts, were assessed for N−3 and N−6 PUFA metabolite levels using LC-MS/MS. mRNA and protein expression of CYP2J2, CYP2C8 and epoxide hydrolase enzymes involved in N−3 and N−6 PUFA metabolism were quantified. Cardiac mitochondrial quality was assessed by transmission electron microscopy, measurement of respiratory chain complex activities and oxygen consumption (respiratory control ratio, RCR) during ADP-stimulated ATP production. Results Formation of cardioprotective CYP-derived lipid mediators, epoxy fatty acids (EpFAs), and their corresponding diols were enhanced in DCM hearts. These findings were corroborated by increased expression of CYP2J2 and CYP2C8 enzymes, as well as microsomal and soluble epoxide hydrolase enzymes, suggesting enhanced metabolic flux and EpFA substrate turnover. DCM hearts demonstrated marked damage to mitochondrial ultrastructure and attenuated mitochondrial function. Incubation of fresh DCM cardiac fibers with the protective EpFA, 19,20-EDP, significantly improved mitochondrial function. Conclusions The current study demonstrates that increased expressions of CYP-epoxygenase enzymes and epoxide hydrolases in the DCM heart correspond with enhanced PUFA-derived EpFA turnover. This is accompanied by severe mitochondrial functional impairment which can be rescued by the administration of exogenous EpFAs.
Collapse
|
|
3 |
4 |
12
|
Bohne LJ, Jansen HJ, Dorey TW, Daniel IM, Jamieson KL, Belke DD, McRae MD, Rose RA. Glucagon-Like Peptide-1 Protects Against Atrial Fibrillation and Atrial Remodeling in Type 2 Diabetic Mice. JACC Basic Transl Sci 2023; 8:922-936. [PMID: 37719430 PMCID: PMC10504404 DOI: 10.1016/j.jacbts.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 09/19/2023]
Abstract
Atrial fibrillation (AF) is highly prevalent in type 2 diabetes where it increases morbidity and mortality. Glucagon-like peptide (GLP)-1 receptor agonists are used in the treatment of type 2 diabetes (T2DM), but their effects on AF in T2DM are poorly understood. The present study demonstrates type 2 diabetic db/db mice are highly susceptible to AF in association with atrial electrical and structural remodeling. GLP-1, as well as the long-acting GLP-1 analogue liraglutide, reduced AF and prevented atrial remodeling in db/db mice. These data suggest that GLP-1 and related analogues could protect against AF in patients with T2DM.
Collapse
|
research-article |
2 |
1 |
13
|
Darwesh AM, Altamimi TR, Jamieson KL, Bassiouni W, Zhang H, Oudit GY, Lopaschuk GD, Seubert JM. Cytochrome P450‐Derived Epoxy Lipids of N‐3 PUFAs Protect the Heart From Ischemia‐Reperfusion Injury by Regulating Mitochondrial Sirtuin 3. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.03090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
5 |
|
14
|
Darwesh AM, Fang L, Altamimi TR, Jamieson KL, Bassiouni W, Valencia R, Huang A, Wang F, Zhang H, Ahmed M, Gopal K, Zhang Y, Michelakis ED, Ussher JR, Edin ML, Zeldin DC, Barakat K, Oudit GY, Kassiri Z, Lopaschuk GD, Seubert JM. Cardioprotective effect of 19,20-epoxydocosapentaenoic acid (19,20-EDP) in ischemic injury involves direct activation of mitochondrial sirtuin 3. Cardiovasc Res 2024:cvae252. [PMID: 39658136 DOI: 10.1093/cvr/cvae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
AIMS Although current clinical therapies following myocardial infarction have improved patient outcomes, morbidity, and mortality rates secondary to ischemic and ischemia reperfusion (IR) injury remains high. Maintaining mitochondrial quality is essential to limit myocardial damage following cardiac ischemia and IR injury. The mitochondrial deacetylase sirtuin 3 (SIRT3) plays a pivotal role in regulating mitochondrial function and cardiac energy metabolism. In the current study, we hypothesize that 19,20-epoxydocosapentaenoic acid (19,20-EDP) attenuates cardiac IR injury via stimulating mitochondrial SIRT3. METHODS AND RESULTS Ex vivo models of isolated heart perfusions were performed in C57BL/6 mice to assess the effect of 19,20-EDP on cardiac function and energy metabolism following IR injury. In vivo permanent occlusion of the left anterior descending coronary artery (LAD) was performed to induce myocardial infarction (MI), mice were administered 19,20-EDP with or without the SIRT3 selective inhibitor 3-TYP. Mitochondrial SIRT3 targets and respiration were assessed in human left ventricular (LV) tissues obtained from individuals with ischemic heart disease (IHD) and compared to non-failing controls (NFC). Binding affinity of 19,20-EDP to human SIRT3 was assessed using molecular modeling and fluorescence thermal shift assay. Results demonstrated hearts treated with 19,20-EDP had improved post-ischemic cardiac function, better glucose oxidation rates and enhanced cardiac efficiency. The cardioprotective effects were associated with enhanced mitochondrial SIRT3 activity. Interestingly, treatment with 19,20-EDP markedly improved mitochondrial respiration and SIRT3 activity in human left ventricle (LV) fibers with IHD compared to NFC. Moreover, 19,20-EDP was found to bind to the human SIRT3 protein enhancing the NAD+ -complex stabilization leading to improved SIRT3 activity. Importantly, the beneficial effects of 19,20-EDP were abolished by SIRT3 inhibition or using the S149A mutant SIRT3. CONCLUSION These data demonstrate that 19,20-EDP-mediated cardioprotective mechanisms against ischemia and IR injury involve mitochondrial SIRT3, resulting in improved cardiac efficiency.
Collapse
|
|
1 |
|
15
|
Gopal K, Abdualkader AM, Li X, Greenwell AA, Karwi QG, Altamimi TR, Saed C, Uddin GM, Darwesh AM, Jamieson KL, Kim R, Eaton F, Seubert JM, Lopaschuk GD, Ussher JR, Al Batran R. Loss of muscle PDH induces lactic acidosis and adaptive anaplerotic compensation via pyruvate-alanine cycling and glutaminolysis. J Biol Chem 2023; 299:105375. [PMID: 37865313 PMCID: PMC10692893 DOI: 10.1016/j.jbc.2023.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation that links glycolysis-derived pyruvate with the tricarboxylic acid (TCA) cycle. Although skeletal muscle is a significant site for glucose oxidation and is closely linked with metabolic flexibility, the importance of muscle PDH during rest and exercise has yet to be fully elucidated. Here, we demonstrate that mice with muscle-specific deletion of PDH exhibit rapid weight loss and suffer from severe lactic acidosis, ultimately leading to early mortality under low-fat diet provision. Furthermore, loss of muscle PDH induces adaptive anaplerotic compensation by increasing pyruvate-alanine cycling and glutaminolysis. Interestingly, high-fat diet supplementation effectively abolishes early mortality and rescues the overt metabolic phenotype induced by muscle PDH deficiency. Despite increased reliance on fatty acid oxidation during high-fat diet provision, loss of muscle PDH worsens exercise performance and induces lactic acidosis. These observations illustrate the importance of muscle PDH in maintaining metabolic flexibility and preventing the development of metabolic disorders.
Collapse
|
research-article |
2 |
|
16
|
Jamieson KL, Rose RA. New insights into ventricular arrhythmogenesis in a pure model of pulmonary arterial hypertension. Heart Rhythm 2021; 19:125-126. [PMID: 34628041 DOI: 10.1016/j.hrthm.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022]
|
Editorial |
4 |
|