1
|
Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F. Self-Assembled Plasmonic Nanoparticle Clusters. Science 2010; 328:1135-8. [DOI: 10.1126/science.1187949] [Citation(s) in RCA: 1258] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
15 |
1258 |
2
|
Kang H, Gravier J, Bao K, Wada H, Lee JH, Baek Y, El Fakhri G, Gioux S, Rubin BP, Coll JL, Choi HS. Renal Clearable Organic Nanocarriers for Bioimaging and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8162-8168. [PMID: 27414255 PMCID: PMC5155334 DOI: 10.1002/adma.201601101] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/13/2016] [Indexed: 05/22/2023]
Abstract
Renally cleared zwitterionic nanocarriers (H-Dots) are composed of ε-polylysine backbone for charge variations, near-infrared fluorophores for bioimaging, and β-cyclodextrins for potential drug delivery. H-Dots show ideal systemic circulation and rapid distribution and excrete from normal tissue/organ via renal excretion after complete targeting to the tumor site without nonspecific uptake by the immune system.
Collapse
|
research-article |
9 |
108 |
3
|
Sun Y, Zhou X, Liu J, Bao K, Zhang G, Tu G, Kieser T, Deng Z. 'Streptomyces nanchangensis', a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains multiple polyketide gene clusters. MICROBIOLOGY (READING, ENGLAND) 2002; 148:361-371. [PMID: 11832500 DOI: 10.1099/00221287-148-2-361] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several independent gene clusters containing varying lengths of type I polyketide synthase genes were isolated from 'Streptomyces nanchangensis' NS3226, a producer of nanchangmycin and meilingmycin. The former is a polyether compound similar to dianemycin and the latter is a macrolide compound similar to milbemycin, which shares the same macrolide ring as avermectin but has different side groups. Clusters A-H spanned about 133, 132, 104, 174, 122, 54, 37 and 59 kb, respectively. Two systems were developed for functional analysis of the gene clusters by gene disruption or replacement. (1) Streptomyces phage phiC31 and its derived vectors can infect and lysogenize this strain. (2) pSET152, an Escherichia coli plasmid with phiC31 attP site, and pHZ1358, a Streptomyces-Escherichia coli shuttle cosmid vector, both carrying oriT from RP4, can be mobilized from E. coli into NS3226 by conjugation. pHZ1358 was shown to be generally useful for generating mutant strains by gene disruption and replacement in NS3226 as well as in several other Streptomyces strains. A region in cluster A (approximately 133 kb) seemed to be involved in nanchangmycin production because replacement of several DNA fragments in this region by an apramycin resistance gene [aac3(IV)] gave rise to nanchangmycin non-producing mutants.
Collapse
|
|
23 |
105 |
4
|
Hyun H, Wada H, Bao K, Gravier J, Yadav Y, Laramie M, Henary M, Frangioni JV, Choi HS. Phosphonated near-infrared fluorophores for biomedical imaging of bone. Angew Chem Int Ed Engl 2014; 53:10668-72. [PMID: 25139079 PMCID: PMC4221277 DOI: 10.1002/anie.201404930] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Indexed: 01/24/2023]
Abstract
The conventional method for creating targeted contrast agents is to conjugate separate targeting and fluorophore domains. A new strategy is based on the incorporation of targeting moieties into the non-delocalized structure of pentamethine and heptamethine indocyanines. Using the known affinity of phosphonates for bone minerals in a model system, two families of bifunctional molecules that target bone without requiring a traditional bisphosphonate are synthesized. With peak fluorescence emissions at approximately 700 or 800 nm, these molecules can be used for fluorescence-assisted resection and exploration (FLARE) dual-channel imaging. Longitudinal FLARE studies in mice demonstrate that phosphonated near-infrared fluorophores remain stable in bone for over five weeks, and histological analysis confirms their incorporation into the bone matrix. Taken together, a new strategy for creating ultra-compact, targeted near-infrared fluorophores for various bioimaging applications is described.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
93 |
5
|
Bao K, Cohen SN. Terminal proteins essential for the replication of linear plasmids and chromosomes in Streptomyces. Genes Dev 2001; 15:1518-27. [PMID: 11410532 PMCID: PMC312717 DOI: 10.1101/gad.896201] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Linear plasmids and chromosomes of the bacterial genus Streptomyces have proteins of unknown characteristics and function linked covalently to their 5' DNA termini. We purified protein attached to the end of the pSLA2 linear plasmid of Streptomyces rochei, determined the N-terminal amino acid sequence, and used this information to clone corresponding genes from a S. rochei cosmid library. Three separate terminal protein genes (here designated as tpgR1, tpgR2, and tpgR3), which map to the S. rochei chromosome and to 100-kb and 206-kb linear plasmids contained in S. rochei, were isolated and found to encode a family of similar but distinct 21-kD proteins. Using tpgR1 to probe a genomic DNA library of Streptomyces lividans ZX7, whose linear chromosome can undergo transition to a circular form, we isolated a S. lividans chromosomal gene (tpgL) that we found specifies a protein closely related to, and functionally interchangeable with, TpgR proteins for pSLA2 maintenance in S. lividans. Mutation of tpgL precluded propagation of the pSLA2 plasmid in a linear form and also prevented propagation of S. lividans cells that contain linear, but not circular, chromosomes, indicating a specific and essential role for tpg genes in linear DNA replication. Surprisingly, Tpg proteins were observed to contain a reverse transcriptase-like domain rather than sequences in common with proteins that attach covalently to the termini of linear DNA replicons.
Collapse
|
research-article |
24 |
90 |
6
|
Guan Q, Han C, Zuo D, Zhai M, Li Z, Zhang Q, Zhai Y, Jiang X, Bao K, Wu Y, Zhang W. Synthesis and evaluation of benzimidazole carbamates bearing indole moieties for antiproliferative and antitubulin activities. Eur J Med Chem 2014; 87:306-15. [DOI: 10.1016/j.ejmech.2014.09.071] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 01/10/2023]
|
|
11 |
85 |
7
|
Bostanci N, Selevsek N, Wolski W, Grossmann J, Bao K, Wahlander A, Trachsel C, Schlapbach R, Öztürk VÖ, Afacan B, Emingil G, Belibasakis GN. Targeted Proteomics Guided by Label-free Quantitative Proteome Analysis in Saliva Reveal Transition Signatures from Health to Periodontal Disease. Mol Cell Proteomics 2018; 17:1392-1409. [PMID: 29610270 DOI: 10.1074/mcp.ra118.000718] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
Periodontal diseases are among the most prevalent worldwide, but largely silent, chronic diseases. They affect the tooth-supporting tissues with multiple ramifications on life quality. Their early diagnosis is still challenging, due to lack of appropriate molecular diagnostic methods. Saliva offers a non-invasively collectable reservoir of clinically relevant biomarkers, which, if utilized efficiently, could facilitate early diagnosis and monitoring of ongoing disease. Despite several novel protein markers being recently enlisted by discovery proteomics, their routine diagnostic application is hampered by the lack of validation platforms that allow for rapid, accurate and simultaneous quantification of multiple proteins in large cohorts. Here we carried out a pipeline of two proteomic platforms; firstly, we applied open ended label-free quantitative (LFQ) proteomics for discovery in saliva (n = 67, including individuals with health, gingivitis, and periodontitis), followed by selected-reaction monitoring (SRM)-targeted proteomics for validation in an independent cohort (n = 82). The LFQ platform led to the discovery of 119 proteins with at least 2-fold significant difference between health and disease. The 65 proteins chosen for the subsequent SRM platform included 50 functionally related proteins derived from the significantly enriched processes of the LFQ data, 11 from literature-mining, and four house-keeping ones. Among those, 60 were reproducibly quantifiable proteins (92% success rate), represented by a total of 143 peptides. Machine-learning modeling led to a narrowed-down panel of five proteins of high predictive value for periodontal diseases with maximum area under the receiver operating curve >0.97 (higher in disease: Matrix metalloproteinase-9, Ras-related protein-1, Actin-related protein 2/3 complex subunit 5; lower in disease: Clusterin, Deleted in Malignant Brain Tumors 1). This panel enriches the pool of credible clinical biomarker candidates for diagnostic assay development. Yet, the quantum leap brought into the field of periodontal diagnostics by this study is the application of the biomarker discovery-through-verification pipeline, which can be used for validation in further cohorts.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
74 |
8
|
Bao K, Cohen SN. Recruitment of terminal protein to the ends of Streptomyces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication. Genes Dev 2003; 17:774-85. [PMID: 12651895 PMCID: PMC196017 DOI: 10.1101/gad.1060303] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bidirectional replication of Streptomyces linear plasmids and chromosomes from a central origin produces unpaired 3'-leading-strand overhangs at the telomeres of replication intermediates. Filling in of these overhangs leaves a terminal protein attached covalently to the 5' DNA ends of mature replicons. We report here the essential role of a novel 80-kD DNA-binding protein (telomere-associated protein, Tap) in this process. Biochemical studies, yeast two-hybrid analysis, and immunoprecipitation/immunodepletion experiments indicate that Tap binds tightly to specific sequences in 3' overhangs and also interacts with Tpg, bringing Tpg to telomere termini. Using DNA microarrays to analyze the chromosomes of tap mutant bacteria, we demonstrate that survivors of Tap ablation undergo telomere deletion, chromosome circularization, and amplification of subtelomeric DNA. Microarray-based chromosome mapping at single-ORF resolution revealed common endpoints for independent deletions, identified amplified chromosomal ORFs adjacent to these endpoints, and quantified the copy number of these ORFs. Sequence analysis confirmed chromosome circularization and revealed the insertion of adventitious DNA between joined chromosome ends. Our results show that Tap is required for linear DNA replication in Streptomyces and suggest that it functions to recruit and position Tpg at the telomeres of replication intermediates. They also identify hotspots for the telomeric deletions and subtelomeric DNA amplifications that accompany chromosome circularization.
Collapse
|
research-article |
22 |
73 |
9
|
Belibasakis GN, Maula T, Bao K, Lindholm M, Bostanci N, Oscarsson J, Ihalin R, Johansson A. Virulence and Pathogenicity Properties of Aggregatibacter actinomycetemcomitans. Pathogens 2019; 8:E222. [PMID: 31698835 PMCID: PMC6963787 DOI: 10.3390/pathogens8040222] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is a periodontal pathogen colonizing the oral cavity of a large proportion of the human population. It is equipped with several potent virulence factors that can cause cell death and induce or evade inflammation. Because of the large genetic diversity within the species, both harmless and highly virulent genotypes of the bacterium have emerged. The oral condition and age, as well as the geographic origin of the individual, influence the risk to be colonized by a virulent genotype of the bacterium. In the present review, the virulence and pathogenicity properties of A. actinomycetemcomitans will be addressed.
Collapse
|
Review |
6 |
68 |
10
|
Bao K, Belibasakis GN, Thurnheer T, Aduse-Opoku J, Curtis MA, Bostanci N. Role of Porphyromonas gingivalis gingipains in multi-species biofilm formation. BMC Microbiol 2014; 14:258. [PMID: 25270662 PMCID: PMC4189655 DOI: 10.1186/s12866-014-0258-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/26/2014] [Indexed: 01/12/2023] Open
Abstract
Background Periodontal diseases are polymicrobial diseases that cause the inflammatory destruction of the tooth-supporting (periodontal) tissues. Their initiation is attributed to the formation of subgingival biofilms that stimulate a cascade of chronic inflammatory reactions by the affected tissue. The Gram-negative anaerobes Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola are commonly found as part of the microbiota of subgingival biofilms, and they are associated with the occurrence and severity of the disease. P. gingivalis expresses several virulence factors that may support its survival, regulate its communication with other species in the biofilm, or modulate the inflammatory response of the colonized host tissue. The most prominent of these virulence factors are the gingipains, which are a set of cysteine proteinases (either Arg-specific or Lys-specific). The role of gingipains in the biofilm-forming capacity of P. gingivalis is barely investigated. Hence, this in vitro study employed a biofilm model consisting of 10 “subgingival” bacterial species, incorporating either a wild-type P. gingivalis strain or its derivative Lys-gingipain and Arg-gingipan isogenic mutants, in order to evaluate quantitative and qualitative changes in biofilm composition. Results Following 64 h of biofilm growth, the levels of all 10 species were quantified by fluorescence in situ hybridization or immunofluorescence. The wild-type and the two gingipain-deficient P. gingivalis strains exhibited similar growth in their corresponding biofilms. Among the remaining nine species, only the numbers of T. forsythia were significantly reduced, and only when the Lys-gingipain mutant was present in the biofilm. When evaluating the structure of the biofilm by confocal laser scanning microscopy, the most prominent observation was a shift in the spatial arrangement of T. denticola, in the presence of P. gingivalis Arg-gingipain mutant. Conclusions The gingipains of P. gingivalis may qualitatively and quantitatively affect composition of polymicrobial biofilms. The present experimental model reveals interdependency between the gingipains of P. gingivalis and T. forsythia or T. denticola.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
64 |
11
|
Hu Z, Bao K, Zhou X, Zhou Q, Hopwood DA, Kieser T, Deng Z. Repeated polyketide synthase modules involved in the biosynthesis of a heptaene macrolide by Streptomyces sp. FR-008. Mol Microbiol 1994; 14:163-72. [PMID: 7830554 DOI: 10.1111/j.1365-2958.1994.tb01276.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Genes for biosynthesis of a Streptomyces sp. FR-008 heptaene macrolide antibiotic with antifungal and mosquito larvicidal activity were cloned in Escherichia coli using heterologous DNA probes. The cloned genes were implicated in heptaene biosynthesis by gene replacement. The FR-008 antibiotic contains a 38-membered, polyketide-derived macrolide ring. Southern hybridization using probes encoding domains of the type I modular erythromycin polyketide synthase (PKS) showed that the Streptomyces sp. FR-008 PKS gene cluster contains repeated sequences spanning c. 105kb of contiguous DNA; assuming c. 5 kb for each PKS module, this is in striking agreement with the expectation for the 21-step condensation process required for synthesis of the FR-008 carbon chain. The methods developed for transformation and gene replacement in Streptomyces sp. FR-008 make it possible to genetically manipulate polyene macrolide production, and may later lead to the biosynthesis of novel polyene macrolides.
Collapse
|
|
31 |
51 |
12
|
Bao K, Dai Y, Zhu ZB, Tu FJ, Zhang WG, Yao XS. Design and synthesis of biphenyl derivatives as mushroom tyrosinase inhibitors. Bioorg Med Chem 2010; 18:6708-14. [PMID: 20729091 DOI: 10.1016/j.bmc.2010.07.062] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/26/2010] [Accepted: 07/27/2010] [Indexed: 11/30/2022]
Abstract
Two new series of biphenyls, analogs of aglycone of natural product fortuneanoside E, were prepared using Suzuki-Miyaura cross-coupling and selective magnesium iodide demethylation/debenzylation, and their mushroom tyrosinase inhibitory activity was evaluated. Most of the 4-hydroxy-3,5-dimethoxyphenyl biphenyl compounds (series II, 20-36) were in general more active than 3,4,5-trimethoxyphenyl biphenyl compounds (series I, 1-19). Structure-activity relationships study showed that monosaccharide substituents, such as glucose, were not necessary and the presence of 4-hydroxy-3,5-dimethoxyphenyl moiety was crucial for inhibitory activity. Among the compounds synthesised, compound 21 (IC50=0.02 mM) was found to be the most active one, which exhibited an activity that was 7 times higher than that of fortuneanoside E (IC50=0.14 mM) and 10 times higher than that of arbutin (IC50=0.21 mM), known as potent tyrosinase inhibitors. The inhibition kinetics analyzed by Lineweaver-Burk plots revealed that compound 21 was a competitive inhibitor (Ki=0.015 mM).
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
51 |
13
|
Guan Q, Cheng Z, Ma X, Wang L, Feng D, Cui Y, Bao K, Wu L, Zhang W. Synthesis and bioevaluation of 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acids as potent xanthine oxidase inhibitors. Eur J Med Chem 2014; 85:508-16. [PMID: 25113879 DOI: 10.1016/j.ejmech.2014.08.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 11/26/2022]
Abstract
A series of 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acid derivatives (8a-f, 9a-m) were synthesized and evaluated for inhibitory activity against xanthine oxidase in vitro. Structure-activity relationship analyses have also been presented. Most of the target compounds exhibited potency levels in the nanomolar range. Compound 9e emerged as the most potent xanthine oxidase inhibitor (IC50 = 5.5 nM) in comparison to febuxostat (IC50 = 18.6 nM). Steady-state kinetics measurements with the bovine milk enzyme indicated a mixed type inhibition with Ki and Ki' values of 0.9 and 2.3 nM, respectively. A molecular modeling study on compounds 9e was performed to gain an insight into its binding mode with xanthine oxidase, and to provide the basis for further structure-guided design of new non-purine xanthine oxidase inhibitors related with 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acid scaffold.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
48 |
14
|
Hyun H, Owens EA, Narayana L, Wada H, Gravier J, Bao K, Frangioni JV, Choi HS, Henary M. Central C-C Bonding Increases Optical and Chemical Stability of NIR Fluorophores. RSC Adv 2014; 4:58762-58768. [PMID: 25530846 PMCID: PMC4267294 DOI: 10.1039/c4ra11225c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Functional near-infrared (NIR) fluorophores have played a major role in the recent advances in bioimaging. However, the optical and physicochemical stabilities of NIR fluorophores in the biological and physiological environment are still a challenge. Especially, the ether linkage on the meso carbon of heptamethine core is fragile when exposed to serum proteins or other amine-rich biomolecules. To solve such a structural limitation, a rigid carbon-carbon bond was installed onto the framework of ether-linked NIR fluorophores through the Suzuki coupling. The robust fluorophores replaced as ZW800-1C and ZW800-3C displayed enhanced optical and chemical stability in various solvents and a 100% warm serum environment (> 99%, 24 h). The biodistribution and clearance of C-C coupled ZW800 compounds were almost identical to the previously developed oxygen-substituted ZW800 compounds. When conjugated with a small molecule ligand, ZW800-1C maintained the identical stable form in warm serum (>98%, 24 h), while ZW800-1A hydrolyzed quickly after 4 h incubation (34%, 24 h).
Collapse
|
research-article |
11 |
47 |
15
|
Guan Q, Yang F, Guo D, Xu J, Jiang M, Liu C, Bao K, Wu Y, Zhang W. Synthesis and biological evaluation of novel 3,4-diaryl-1,2,5-selenadiazol analogues of combretastatin A-4. Eur J Med Chem 2014; 87:1-9. [PMID: 25233100 DOI: 10.1016/j.ejmech.2014.09.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/30/2014] [Accepted: 09/12/2014] [Indexed: 11/28/2022]
Abstract
A set of novel selenium-containing heterocyclic analogues of combretastatin A-4 (CA-4) have been designed and synthesised using a rigid 1,2,5-selenadiazole as a linker to fix the cis-orientation of ring-A and ring-B. All of the target compounds were evaluated for their in vitro anti-proliferative activities. Among these compounds, compounds 3a, 3i, 3n and 3q exhibited superior potency against different tumour cell lines with IC50 values at the nanomolar level. Moreover, compound 3n significantly induced cell cycle arrest in the G2/M phase, inhibited tubulin polymerisation into microtubules and caused microtubule destabilisation. A molecular modelling study of compound 3n was performed to elucidate its binding mode at the colchicine site in the tubulin dimer and to provide a basis for the further structure-guided design of novel CA-4 analogues.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
45 |
16
|
Bao K, Nasr KA, Hyun H, Lee JH, Gravier J, Gibbs SL, Choi HS. Charge and hydrophobicity effects of NIR fluorophores on bone-specific imaging. Theranostics 2015; 5:609-17. [PMID: 25825600 PMCID: PMC4377729 DOI: 10.7150/thno.11222] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/23/2015] [Indexed: 12/04/2022] Open
Abstract
Recent advances in near-infrared (NIR) fluorescence imaging enabled real-time intraoperative detection of bone metastases, bone growth, and tissue microcalcification. Pamidronate (PAM) has been widely used for this purpose because of its high binding affinity toward bone and remarkable therapeutic effects. Herein we describe the development of a series of PAM-conjugated NIR fluorophores that varied in net charges and hydrophobicity, and compared their bone targeting efficiency, biodistribution, and blood clearance. Since the targeting moiety, PAM, is highly negatively charged but small, the overall in vivo bone targeting and biodistribution were mediated by the physicochemical properties of conjugated fluorophores.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
41 |
17
|
Yang C, Wang H, Yokomizo S, Hickey M, Chang H, Kang H, Fukuda T, Song MY, Lee SY, Park JW, Bao K, Choi HS. ZW800-PEG: A Renal Clearable Zwitterionic Near-Infrared Fluorophore for Potential Clinical Translation. Angew Chem Int Ed Engl 2021; 60:13847-13852. [PMID: 33857346 DOI: 10.1002/anie.202102640] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/30/2021] [Indexed: 12/18/2022]
Abstract
Near-infrared (NIR) fluorescence imaging has advanced medical imaging and image-guided interventions during the past three decades. Despite tremendous advances in imaging devices, surprisingly only a few dyes are currently available in the clinic. Previous fluorophores, ZW800-1A and ZW800-1C, significantly improved the poor performance of the FDA-approved indocyanine green. However, ZW800-1A is not stable in serum and ZW800-1C induces severe stacking in aqueous media. To solve such dilemmas, ZW800-PEG was designed by introducing a flexible yet stable thiol PEG linker. ZW800-PEG shows high solubility in both aqueous and organic solvents, thus improving renal clearance with minimal binding to serum proteins during systemic circulation. The sulfide group on the meso position of the heptamethine core improves serum stability and physicochemical properties including the maximum emission wavelength shift to 800 nm, enabling the use of ZW800-PEG for image-guided interventions and augmenting photothermal therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
40 |
18
|
Bao K, Papadimitropoulos A, Akgül B, Belibasakis GN, Bostanci N. Establishment of an oral infection model resembling the periodontal pocket in a perfusion bioreactor system. Virulence 2015; 6:265-73. [PMID: 25587671 PMCID: PMC4601317 DOI: 10.4161/21505594.2014.978721] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Periodontal infection involves a complex interplay between oral biofilms, gingival tissues and cells of the immune system in a dynamic microenvironment. A humanized in vitro model that reduces the need for experimental animal models, while recapitulating key biological events in a periodontal pocket, would constitute a technical advancement in the study of periodontal disease. The aim of this study was to use a dynamic perfusion bioreactor in order to develop a gingival epithelial-fibroblast-monocyte organotypic co-culture on collagen sponges. An 11 species subgingival biofilm was used to challenge the generated tissue in the bioreactor for a period of 24 h. The histological and scanning electron microscopy analysis displayed an epithelial-like layer on the surface of the collagen sponge, supported by the underlying ingrowth of gingival fibroblasts, while monocytic cells were also found within the sponge mass. Bacterial quantification of the biofilm showed that in the presence of the organotypic tissue, the growth of selected biofilm species, especially Campylobacter rectus, Actinomyces oris, Streptococcus anginosus, Veillonella dispar, and Porphyromonas gingivalis, was suppressed, indicating a potential antimicrobial effect by the tissue. Multiplex immunoassay analysis of cytokine secretion showed that interleukin (IL)-1 β, IL-2, IL-4, and tumor necrosis factor (TNF)-α levels in cell culture supernatants were significantly up-regulated in presence of the biofilm, indicating a positive inflammatory response of the organotypic tissue to the biofilm challenge. In conclusion, this novel host-biofilm interaction organotypic model might resemble the periodontal pocket and have an important impact on the study of periodontal infections, by minimizing the need for the use of experimental animal models.
Collapse
|
Journal Article |
10 |
40 |
19
|
Bao K, Fan A, Dai Y, Zhang L, Zhang W, Cheng M, Yao X. Selective demethylation and debenzylation of aryl ethers by magnesium iodide under solvent-free conditions and its application to the total synthesis of natural products. Org Biomol Chem 2009; 7:5084-90. [DOI: 10.1039/b916969e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
16 |
37 |
20
|
Yan Y, Lin J, Bao K, Xu T, Qi J, Cao J, Zhong Z, Fei W, Feng J. Free-standing porous Ni2P-Ni5P4 heterostructured arrays for efficient electrocatalytic water splitting. J Colloid Interface Sci 2019; 552:332-336. [DOI: 10.1016/j.jcis.2019.05.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 11/24/2022]
|
|
6 |
35 |
21
|
Bao K, Bostanci N, Selevsek N, Thurnheer T, Belibasakis GN. Quantitative proteomics reveal distinct protein regulations caused by Aggregatibacter actinomycetemcomitans within subgingival biofilms. PLoS One 2015; 10:e0119222. [PMID: 25756960 PMCID: PMC4355292 DOI: 10.1371/journal.pone.0119222] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/26/2015] [Indexed: 01/18/2023] Open
Abstract
Periodontitis is an infectious disease that causes the inflammatory destruction of the tooth-supporting (periodontal) tissues, caused by polymicrobial biofilm communities growing on the tooth surface. Aggressive periodontitis is strongly associated with the presence of Aggregatibacter actinomycetemcomitans in the subgingival biofilms. Nevertheless, whether and how A. actinomycetemcomitans orchestrates molecular changes within the biofilm is unclear. The aim of this work was to decipher the interactions between A. actinomycetemcomitans and other bacterial species in a multi-species biofilm using proteomic analysis. An in vitro 10-species "subgingival" biofilm model, or its derivative that included additionally A. actinomycetemcomitans, were anaerobically cultivated on hydroxyapatite discs for 64 h. When present, A. actinomycetemcomitans formed dense intra-species clumps within the biofilm mass, and did not affect the numbers of the other species in the biofilm. Liquid chromatography-tandem mass spectrometry was used to identify the proteomic content of the biofilm lysate. A total of 3225 and 3352 proteins were identified in the biofilm, in presence or absence of A. actinomycetemcomitans, respectively. Label-free quantitative proteomics revealed that 483 out of the 728 quantified bacterial proteins (excluding those of A. actinomycetemcomitans) were accordingly regulated. Interestingly, all quantified proteins from Prevotella intermedia were up-regulated, and most quantified proteins from Campylobacter rectus, Streptococcus anginosus, and Porphyromonas gingivalis were down-regulated in presence of A. actinomycetemcomitans. Enrichment of Gene Ontology pathway analysis showed that the regulated groups of proteins were responsible primarily for changes in the metabolic rate, the ferric iron-binding, and the 5S RNA binding capacities, on the universal biofilm level. While the presence of A. actinomycetemcomitans did not affect the numeric composition or absolute protein numbers of the other biofilm species, it caused qualitative changes in their overall protein expression profile. These molecular shifts within the biofilm warrant further investigation on their potential impact on its virulence properties, and association with periodontal pathogenesis.
Collapse
|
Journal Article |
10 |
34 |
22
|
Wang Z, Qi H, Shen Q, Lu G, Li M, Bao K, Wu Y, Zhang W. 4,5-Diaryl-3H-1,2-dithiole-3-thiones and related compounds as combretastatin A-4/oltipraz hybrids: Synthesis, molecular modelling and evaluation as antiproliferative agents and inhibitors of tubulin. Eur J Med Chem 2016; 122:520-529. [PMID: 27428395 DOI: 10.1016/j.ejmech.2016.06.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 11/30/2022]
Abstract
A new series of 4,5-diaryl-3H-1,2-dithiole-3-thiones and related compounds were designed and synthesised as combretastatin A-4/oltipraz hybrids. We evaluated the antiproliferative activities, inhibition of tubulin polymerization, and cell-cycle effects of these compounds. Several compounds in this series, such as 4d and 5c, displayed significant activity against SGC-7901, KB and HT-1080 cell lines, as determined using MTT assays. The most active compound, 4d, markedly inhibited tubulin polymerization, with an IC50 value of 4.44 μM being observed. In mechanistic studies, 4d caused cell arrest in G2/M phase, induced apoptotic cell death, and disrupted microtubule formation. Molecular docking studies revealed that 4d interacts and binds efficiently with the tubulin protein.
Collapse
|
Journal Article |
9 |
34 |
23
|
Bostanci N, Bao K. Contribution of proteomics to our understanding of periodontal inflammation. Proteomics 2017; 17. [DOI: 10.1002/pmic.201500518] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/15/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022]
|
|
8 |
32 |
24
|
Bao K, Lee JH, Kang H, Park GK, El Fakhri G, Choi HS. PSMA-targeted contrast agents for intraoperative imaging of prostate cancer. Chem Commun (Camb) 2017; 53:1611-1614. [PMID: 28085163 DOI: 10.1039/c6cc09781b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prostate-specific membrane antigen (PSMA) can serve as a molecular cell surface target for the detection and treatment of prostate cancer. Near-infrared (NIR) fluorescence imaging enables highly sensitive, rapid, and non-radioactive imaging of PSMA, though specific targeting still remains a challenge because no optimized contrast agents exist.
Collapse
|
Journal Article |
8 |
31 |
25
|
Bostanci N, Bao K, Wahlander A, Grossmann J, Thurnheer T, Belibasakis GN. Secretome of gingival epithelium in response to subgingival biofilms. Mol Oral Microbiol 2015; 30:323-35. [PMID: 25787257 DOI: 10.1111/omi.12096] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2015] [Indexed: 12/29/2022]
Abstract
Periodontitis is the chronic inflammatory destruction of periodontal tissues as a result of bacterial biofilm formation on the tooth surface. Proteins secreted by the gingival epithelium challenged by subgingival biofilms represent an important initial response for periodontal inflammation. The aim of this in vitro study was to characterize the whole secreted proteome of gingival epithelial tissue challenged by subgingival biofilms, and to evaluate the differential effects of the presence of the red-complex species in the biofilm. Multi-layered human gingival epithelial cultures were challenged with a 10-species in vitro biofilm model or its seven-species variant excluding the red complex. Liquid chromatography-tandem mass spectrometry for label-free quantitative proteomics was applied to identify and quantify the secreted epithelial proteins in the culture supernatant. A total of 192 proteins were identified and quantified. The biofilm challenge resulted in more secreted proteins being downregulated than upregulated. Even so, presence of the red complex in the biofilm was responsible for much of this downregulatory effect. Over 24 h, the upregulated biological processes were associated with inflammation and apoptosis, whereas the downregulated processes were associated with the disruption of epithelial tissue integrity and impairment of tissue turnover. Over 48 h, negative regulation of several metabolic processes and degradation of various molecular complexes was further intensified. Again, many of these biological regulations were attributed to the presence of the red complex. In conclusion, the present study provides the secreted proteome profile of gingival epithelial tissue to subgingival biofilms, and identifies a significant role for the red-complex species in the observed effects.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
31 |