1
|
Prelich G, Tan CK, Kostura M, Mathews MB, So AG, Downey KM, Stillman B. Functional identity of proliferating cell nuclear antigen and a DNA polymerase-delta auxiliary protein. Nature 1987; 326:517-20. [PMID: 2882424 DOI: 10.1038/326517a0] [Citation(s) in RCA: 824] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mechanism of replication of the simian virus 40 (SV40) genome closely resembles that of cellular chromosomes, thereby providing an excellent model system for examining the enzymatic requirements for DNA replication. Only one viral gene product, the large tumour antigen (large-T antigen), is required for viral replication, so the majority of replication enzymes must be cellular. Indeed, a number of enzymatic activities associated with replication and the S phase of the cell cycle are induced upon SV40 infection. Cell-free extracts derived from human cells, when supplemented with immunopurified SV40 large-T antigen support efficient replication of plasmids that contain the SV40 origin of DNA replication. Using this system, a cellular protein of relative molecular mass 36,000 (Mr = 36K) that is required for the elongation stage of SV40 DNA replication in vitro has been purified and identified as a known cell-cycle regulated protein, alternatively called the proliferating cell nuclear antigen (PCNA) or cyclin. It was noticed that, in its physical characteristics, PCNA closely resembles a protein that regulates the activity of calf thymus DNA polymerase-delta. Here we show that PCNA and the polymerase-delta auxiliary protein have similar electrophoretic behaviour and are both recognized by anti-PCNA human autoantibodies. More importantly, both proteins are functionally equivalent; they stimulate SV40 DNA replication in vitro and increase the processivity of calf thymus DNA polymerase-delta. These results implicate a novel animal cell DNA polymerase, DNA polymerase-delta, in the elongation stage of replicative DNA synthesis in vitro.
Collapse
|
|
38 |
824 |
2
|
Tan CK, Castillo C, So AG, Downey KM. An auxiliary protein for DNA polymerase-delta from fetal calf thymus. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67240-0] [Citation(s) in RCA: 328] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
|
39 |
328 |
3
|
Byrnes JJ, Downey KM, Black VL, So AG. A new mammalian DNA polymerase with 3' to 5' exonuclease activity: DNA polymerase delta. Biochemistry 1976; 15:2817-23. [PMID: 949478 DOI: 10.1021/bi00658a018] [Citation(s) in RCA: 210] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new species of DNA polymerase has been purified more than 10 000-fold from the cytoplasm of erythroid hyperplastic bone marrow. This DNA polymerase, in contrast to previously described eukaryotic DNA polymerases, is associated with a very active 3' to 5' exonuclease activity. Similar to the 3' to 5' exonuclease activity associated with prokaryotic DNA polymerases, this enzyme catalyzes the removal of 3'-terminal nucleotides from DNA, as well as a template-dependent conversion of deoxyribonucleoside triphosphates to monophosphates. The exonuclease activity is not separable from the DNA polymerase activity by chromatography on DEAE-Sephadex or hydroxylapatite, and upon sucrose density gradient centrifugation the two activities cosediment at 7 S or at 11 S depending on the ionic strength. Both exonuclease and polymerase activities have identical rates of heat inactivation and both are equally sensitive to hemin and Rifamycin AF/013, inhibitors of DNA synthesis that act by binding to DNA polymerase and causing its dissociation from its template/primer. These results are consistent with the coexistence of two enzyme activities in a single protein.
Collapse
|
|
49 |
210 |
4
|
Romero DL, Busso M, Tan CK, Reusser F, Palmer JR, Poppe SM, Aristoff PA, Downey KM, So AG, Resnick L. Nonnucleoside reverse transcriptase inhibitors that potently and specifically block human immunodeficiency virus type 1 replication. Proc Natl Acad Sci U S A 1991; 88:8806-10. [PMID: 1717988 PMCID: PMC52599 DOI: 10.1073/pnas.88.19.8806] [Citation(s) in RCA: 188] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Certain bis(heteroaryl)piperazines (BHAPs) are potent inhibitors of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) at concentrations lower by 2-4 orders of magnitude than that which inhibits normal cellular DNA polymerase activity. Combination of a BHAP with nucleoside analog HIV-1 RT inhibitors suggested that together these compounds inhibited RT synergistically. In three human lymphocytic cell systems using several laboratory and clinical HIV-1 isolates, the BHAPs blocked HIV-1 replication with potencies nearly identical to those of 3'-azido-2',3'-dideoxythymidine or 2',3'-dideoxyadenosine; in primary cultures of human peripheral blood mononuclear cells, concentrations of these antiviral agents were lower by at least 3-4 orders of magnitude than cytotoxic levels. The BHAPs do not inhibit replication of HIV-2, the simian or feline immunodeficiency virus, or Rauscher murine leukemia virus in culture. Evaluation of a BHAP in HIV-1-infected SCID-hu mice (severe combined immunodeficient mice implanted with human fetal lymph node) showed that the compound could block HIV-1 replication in vivo. The BHAPs are readily obtained synthetically and have been extensively characterized in preclinical evaluations. These compounds hold promise for the treatment of HIV-1 infection.
Collapse
|
research-article |
34 |
188 |
5
|
Lee MY, Tan CK, Downey KM, So AG. Further studies on calf thymus DNA polymerase delta purified to homogeneity by a new procedure. Biochemistry 1984; 23:1906-13. [PMID: 6426510 DOI: 10.1021/bi00304a003] [Citation(s) in RCA: 184] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DNA polymerase delta from calf thymus has been purified to apparent homogeneity by a new procedure which utilizes hydrophobic interaction chromatography with phenyl-Sepharose at an early step to separate most of the calcium-dependent protease activity from DNA polymerase delta and alpha. The purified enzyme migrates as a single protein band on polyacrylamide gel electrophoresis under nondenaturing conditions. The sedimentation coefficient of the enzyme is 7.9 S, and the Stokes radius is 53 A. A molecular weight of 173K has been calculated for the native enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the homogeneous enzyme reveals two polypeptides of 125 and 48 kDa. This subunit structure differs from that of DNA polymerase delta prepared by our previous procedure, which was composed of subunits of 60 and 49 kDa [Lee, M. Y. W. T., Tan, C.-K., Downey , K. M., & So, A. G. (1981) Prog . Nucleic Acid Res. Mol. Biol. 26, 83-96], suggesting that the 60-kDa polypeptide may have been derived from the 125-kDa polypeptide during enzyme purification, possibly as the result of cleavage of an unusually sensitive peptide bond. DNA polymerase delta is separated from DNA polymerase alpha by hydrophobic interaction chromatography on phenyl-Sepharose; DNA polymerase delta is eluted at pH 7.2 and DNA polymerase alpha at pH 8.5. DNA polymerase delta can also be separated from DNA polymerase alpha by chromatography on hydroxylapatite; DNA polymerase alpha binds to hydroxylapatite in the presence of 0.5 M KCl, whereas DNA polymerase delta is eluted at 90 mM KCl.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
Comparative Study |
41 |
184 |
6
|
Dueweke TJ, Poppe SM, Romero DL, Swaney SM, So AG, Downey KM, Althaus IW, Reusser F, Busso M, Resnick L. U-90152, a potent inhibitor of human immunodeficiency virus type 1 replication. Antimicrob Agents Chemother 1993; 37:1127-31. [PMID: 7685995 PMCID: PMC187915 DOI: 10.1128/aac.37.5.1127] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bisheteroarylpiperazines are potent inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT). We describe a novel bisheteroarylpiperazine, U-90152 [1-(5-methanesulfonamido-1H-indol-2-yl-carbonyl)-4-[3-(1-methyl eth yl-amino)pyridinyl]piperazine], which inhibited recombinant HIV-1 RT at a 50% inhibitory concentration (IC50) of 0.26 microM (compared with IC50s of > 440 microM for DNA polymerases alpha and delta). U-90152 blocked the replication in peripheral blood lymphocytes of 25 primary HIV-1 isolates, including variants that were highly resistant to 3'-azido-2',3'-dideoxythymidine (AZT) or 2',3'-dideoxyinosine, with a mean 50% effective dose of 0.066 +/- 0.137 microM. U-90152 had low cellular cytotoxicity, causing less than 8% reduction in peripheral blood lymphocyte viability at 100 microM. In experiments assessing inhibition of the spread of HIV-1IIIB in cell cultures, U-90152 was much more effective than AZT. When approximately 500 HIV-1IIIB-infected MT-4 cells were mixed 1:1,000 with uninfected cells, 3 microM AZT delayed the evidence of rapid viral growth for 7 days. In contrast, 3 microM U-90152 totally prevented the spread of HIV-1, and death and/or dilution of the original inoculum of infected cells prevented renewed viral growth after U-90152 was removed at day 24. The combination of U-90152 and AZT, each at 0.5 microM, also totally prevented viral spread. Finally, although the RT amino acid substitutions K103N (lysine 103 to asparagine) and Y181C (tyrosine 181 to cysteine), which confer cross-resistance to several nonnucleoside inhibitors, also decrease the potency of U-90152, this drug retains significant activity against these mutant RTs in vitro (IC50s, approximately 8 microgramM).
Collapse
|
research-article |
32 |
124 |
7
|
Que BG, Downey KM, So AG. Degradation of deoxyribonucleic acid by a 1,10-phenanthroline-copper complex: the role of hydroxyl radicals. Biochemistry 1980; 19:5987-91. [PMID: 7470443 DOI: 10.1021/bi00567a007] [Citation(s) in RCA: 115] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Degradation of deoxyribonucleic acid (DNA) by 1,10-phenanthroline has been shown to require Cu(II), a reducing agent, and O2. Other metal ions do not substitute for Cu(II), and degradation of DNA is inhibited by metal ions that can form stable complexes with 1,10-phenanthroline, such as Co(II), Cd(II), Ni(II), or Zn(II), as well as by chelators that can bind copper, such as triethyltetraamine, neocuproine, or ethylenediaminetetraacetic acid (EDTA). Neocuproine, a specific copper chelator, is more effective than EDTA in inhibiting the breakdown of DNA. The degradation of DNA shows a requirement for a reducing agent which can be satisfied by either ascorbate or a thiol. A free radical generating system, e.g., xanthine oxidase-hypoxanthine, can substitute for the reducing agent. DNA degradation, in the presence of either an organic reducing agent or xanthine oxidase-hypoxanthine, is inhibited by hydroxyl radical scavengers and by catalase, suggesting that hydroxyl radical is the reactive species in DNA degradation and that hydrogen peroxide is an intermediate in hydroxyl radical generation.
Collapse
|
|
45 |
115 |
8
|
da Costa LT, Liu B, el-Deiry W, Hamilton SR, Kinzler KW, Vogelstein B, Markowitz S, Willson JK, de la Chapelle A, Downey KM. Polymerase delta variants in RER colorectal tumours. Nat Genet 1995; 9:10-1. [PMID: 7704014 DOI: 10.1038/ng0195-10] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
Letter |
30 |
108 |
9
|
So AG, Downey KM. Mammalian DNA polymerases alpha and delta: current status in DNA replication. Biochemistry 1988; 27:4591-5. [PMID: 3048386 DOI: 10.1021/bi00413a001] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
Review |
37 |
103 |
10
|
Thomas DC, Roberts JD, Sabatino RD, Myers TW, Tan CK, Downey KM, So AG, Bambara RA, Kunkel TA. Fidelity of mammalian DNA replication and replicative DNA polymerases. Biochemistry 1991; 30:11751-9. [PMID: 1751492 DOI: 10.1021/bi00115a003] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Current models suggest that two or more DNA polymerases may be required for high-fidelity semiconservative DNA replication in eukaryotic cells. In the present study, we directly compare the fidelity of SV40 origin-dependent DNA replication in human cell extracts to the fidelity of mammalian DNA polymerases alpha, delta, and epsilon using lacZ alpha of M13mp2 as a reporter gene. Their fidelity, in decreasing order, is replication greater than or equal to pol epsilon greater than pol delta greater than pol alpha. DNA sequence analysis of mutants derived from extract reactions suggests that replication is accurate when considering single-base substitutions, single-base frameshifts, and larger deletions. The exonuclease-containing calf thymus DNA polymerase epsilon is also highly accurate. When high concentrations of deoxynucleoside triphosphates and deoxyguanosine monophosphate are included in the pol epsilon reaction, both base substitution and frameshift error rates increase. This response suggests that exonucleolytic proofreading contributes to the high base substitution and frameshift fidelity. Exonuclease-containing calf thymus DNA polymerase delta, which requires proliferating cell nuclear antigen for efficient synthesis, is significantly less accurate than pol epsilon. In contrast to pol epsilon, pol delta generates errors during synthesis at a relatively modest concentration of deoxynucleoside triphosphates (100 microM), and the error rate did not increase upon addition of adenosine monophosphate. Thus, we are as yet unable to demonstrate that exonucleolytic proofreading contributes to accuracy during synthesis by DNA polymerase delta. The four-subunit DNA polymerase alpha-primase complex from both HeLa cells and calf thymus is the least accurate replicative polymerase. Fidelity is similar whether the enzyme is assayed immediately after purification or after being stored frozen.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
34 |
101 |
11
|
Burgers PM, Bambara RA, Campbell JL, Chang LM, Downey KM, Hübscher U, Lee MY, Linn SM, So AG, Spadari S. Revised nomenclature for eukaryotic DNA polymerases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 191:617-8. [PMID: 2390988 DOI: 10.1111/j.1432-1033.1990.tb19165.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
|
35 |
99 |
12
|
Byrnes JJ, Downey KM, Que BG, Lee MY, Black VL, So AG. Selective inhibition of the 3' to 5' exonuclease activity associated with DNA polymerases: a mechanism of mutagenesis. Biochemistry 1977; 16:3740-6. [PMID: 332220 DOI: 10.1021/bi00636a002] [Citation(s) in RCA: 80] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
|
48 |
80 |
13
|
Mozzherin DJ, Shibutani S, Tan CK, Downey KM, Fisher PA. Proliferating cell nuclear antigen promotes DNA synthesis past template lesions by mammalian DNA polymerase delta. Proc Natl Acad Sci U S A 1997; 94:6126-31. [PMID: 9177181 PMCID: PMC21013 DOI: 10.1073/pnas.94.12.6126] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Consistent with previous observations, proliferating cell nuclear antigen (PCNA) promotes DNA synthesis by calf thymus DNA polymerase delta (pol delta) past several chemically defined template lesions including model abasic sites, 8-oxo-deoxyguanosine (dG) and aminofluorene-dG (but not acetylaminofluorene-dG). This synthesis is potentially mutagenic. The model abasic site was studied most extensively. When all deoxyribonucleoside triphosphates and a template bearing a model abasic site were present, DNA synthesis by pol delta beyond this site was stimulated 53-fold by addition of homologous PCNA. On an unmodified template (lacking any lesions), PCNA stimulated pol delta by 1.3-fold. Product analysis demonstrated that as expected from the "A-rule," fully and near-fully extended primers incorporated predominantly dAMP opposite the template lesion. Moreover, corollary primer extension studies demonstrated that in the presence (but not the absence) of PCNA, pol delta preferentially elongated primers containing dAMP opposite the model abasic template site. p21, a specific inhibitor of PCNA-dependent DNA replication, inhibits PCNA-stimulated synthesis past model abasic template sites. We propose that DNA synthesis past template lesions by pol delta promoted by PCNA results from the fundamental mechanism by which PCNA stimulates pol delta, i.e., stabilization of the pol delta. template-primer complex.
Collapse
|
research-article |
28 |
74 |
14
|
Tan CK, Sullivan K, Li XY, Tan EM, Downey KM, So AG. Autoantibody to the proliferating cell nuclear antigen neutralizes the activity of the auxiliary protein for DNA polymerase delta. Nucleic Acids Res 1987; 15:9299-308. [PMID: 2891114 PMCID: PMC306469 DOI: 10.1093/nar/15.22.9299] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two murine monoclonal antibodies to the proliferating cell nuclear antigen (PCNA), a rabbit anti-N-terminal peptide antibody and human auto-antibody to PCNA reacted with the auxiliary protein for DNA polymerase delta from fetal calf thymus following SDS-polyacrylamide gel electrophoresis, confirming the identity of PCNA and the auxiliary protein. Undenatured auxiliary protein was immunoprecipitated by the human autoantibody, but not by the monoclonal antibodies, which were raised to SDS-denatured PCNA, nor by the anti-N-terminal peptide antibody, suggesting that the epitopes recognized by both the monoclonal antibodies and the anti-peptide antibody are not exposed in the native protein. The human anti-PCNA autoantibody neutralized the activity of the auxiliary protein for DNA polymerase delta, but did not inhibit the activity of pol delta itself. The ability of pol delta to utilize template/primers containing long stretches of single-stranded template was inhibited by the anti-PCNA autoantibody, whereas the activity of pol alpha on such templates was not affected, confirming the specificity of the auxiliary protein for pol delta. The ability of PCNA, a cell cycle-regulated protein, to regulate the activity of pol delta suggests a central role for pol delta in cellular DNA replication.
Collapse
|
research-article |
38 |
68 |
15
|
Althaus IW, Chou KC, Lemay RJ, Franks KM, Deibel MR, Kezdy FJ, Resnick L, Busso ME, So AG, Downey KM, Romero DL, Thomas RC, Aristoff PA, Tarpley WG, Reusser F. The benzylthio-pyrimidine U-31,355, a potent inhibitor of HIV-1 reverse transcriptase. Biochem Pharmacol 1996; 51:743-50. [PMID: 8602869 DOI: 10.1016/0006-2952(95)02390-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
U-31,355, or 4-amino-2-(benzylthio)-6-chloropyrimidine is an inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) and possesses anti-HIV activity in HIV-1-infected lymphocytes grown in tissue culture. The compound acts as a specific inhibitor of the RNA-directed DNA polymerase function of HIV-1RT and does not impair the functions of the DNA-catalyzed DNA polymerase or the Rnase H of the enzyme. Kinetic studies were carried out to elucidate the mechanism of RT inhibition by U-31,355. The data were analyzed using Briggs-Haldane kinetics, assuming that the reaction is ordered in that the template:primer binds to the enzyme first, followed by the addition of dNTP, and that the polymerase is a processive enzyme. Based on these assumptions, a velocity equation was derived that allows the calculation of all the essential forward and backward rate constants for the reactions occurring between the enzyme, its substrates, and the inhibitor. The results obtained indicate that U-31,355 acts as a mixed inhibitor with respect to the template:primer and dNTP binding sites associated with the RNA-directed DNA polymerase domain of the enzyme. The inhibitor possessed a significantly higher binding affinity for the enzyme-substrate complexes, than for the free enzyme and consequently did not directly affect the functions of the substrate binding sites. Therefore, U-31,355 appears to impair an event occurring after the formation of the enzyme-substrate complexes, which involves either inhibition of the phosphoester bond formation or translocation of the enzyme relative to its template:primer following the formation of the ester bond. Moreover, the potency of U-31,355 depends on the base composition of the template:primer in that the inhibitor showed a much higher binding affinity for the enzyme-poly (rC):(dG)10 complexes than for the poly (rA):(dT)10 complexes.
Collapse
|
|
29 |
67 |
16
|
So AG, Downey KM. Studies on the mechanism of ribonucleic acid synthesis. II. Stabilization of the deoxyribonucleic acid-ribonucleic acid polymerase complex by the formation of a single phosphodiester bond. Biochemistry 1970; 9:4788-93. [PMID: 4320541 DOI: 10.1021/bi00826a024] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
|
55 |
67 |
17
|
Downey KM, So AG. Studies on the kinetics of ribonucleic acid chain initiation and elongation. Biochemistry 1970; 9:2520-5. [PMID: 4912487 DOI: 10.1021/bi00814a019] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
|
55 |
66 |
18
|
Zhang J, Chung DW, Tan CK, Downey KM, Davie EW, So AG. Primary structure of the catalytic subunit of calf thymus DNA polymerase delta: sequence similarities with other DNA polymerases. Biochemistry 1991; 30:11742-50. [PMID: 1721537 DOI: 10.1021/bi00115a002] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The 125- and 48-kDa subunits of bovine DNA polymerase delta have been isolated by SDS-polyacrylamide gel electrophoresis and demonstrated to be unrelated by partial peptide mapping with N-chlorosuccinimide. A 116-kDa polypeptide, usually present in DNA polymerase delta preparations, was shown to be a degraded form of the 125-kDa catalytic subunit. Amino acid sequence data from Staphylococcus aureus V8 protease, cyanogen bromide, and trypsin digestion of the 125- and 116-kDa polypeptides were used to design primers for the polymerase chain reaction to determine the nucleotide sequence of a full-length cDNA encoding the catalytic subunit of bovine DNA polymerase delta. The predicted polypeptide is 1106 amino acids in length with a calculated molecular weight of 123,707. This is in agreement with the molecular weight of 125,000 estimated from SDS-polyacrylamide gel electrophoresis. Comparison of the deduced amino acid sequence of the catalytic subunit of bovine DNA polymerase delta with that of its counterpart from Saccharomyces cerevisiae showed that the proteins are 44% identical. The catalytic subunit of bovine DNA polymerase delta contains the seven conserved regions found in a number of bacterial, viral, and eukaryotic DNA polymerases. It also contains five additional regions that are highly conserved between bovine and yeast DNA polymerase delta, but these regions share little or no homology with the alpha polymerases. Four of these additional regions are also highly homologous to the herpes virus family of DNA polymerases, whereas one region is not homologous to any other DNA polymerase that has been sequenced thus far.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
Comparative Study |
34 |
63 |
19
|
Abstract
The mechanism by which DNA polymerase discriminates between complementary and noncomplementary nucleotides for insertion into a primer terminus has been investigated. Apparent kinetic constants for the insertion of dGTP and dATP into the hook polymer d(C)194-d(G)12 with Escherichia coli DNA polymerase I (large fragment) were determined. The results suggest that the high specificity of base selection by DNA polymerase I is achieved by utilization of both Km and Vmax differences between complementary and noncomplementary nucleotides. The molecular basis for the increased error frequency observed with DNA polymerase I in the presence of Mn2+ has also been investigated. Our studies demonstrate that when Mn2+ is substituted for Mg2+, there is a higher ratio of insertion of incorrect to correct dNTP by the polymerase activity, accompanied by a decreased hydrolysis of a mismatched dNMP relative to a matched dNMP at the primer terminus by the 3',5' exonuclease activity. Kinetic analysis revealed that in the presence of Mn2+, the kcat for insertion of a complementary dNTP is reduced, whereas the catalytic rate for the insertion of a mismatched nucleotide is increased. The apparent Km values for either complementary or noncomplementary nucleotide substrates are not significantly altered when Mg2+ is replaced by Mn2+. The rate of hydrolysis of a mismatched dNMP at the primer terminus is greater in the presence of Mg2+ vs. Mn2+, whereas the rate of hydrolysis of a properly base-paired terminal nucleotide is greater in Mn2+ vs. Mg2+. These studies demonstrate that both the accuracy of base selection by the polymerase activity and the specificity of hydrolysis by the 3',5' exonuclease activity are altered by the substitution of Mn2+ for Mg2+.
Collapse
|
research-article |
41 |
62 |
20
|
Lee MY, Tan CK, So AG, Downey KM. Purification of deoxyribonucleic acid polymerase delta from calf thymus: partial characterization of physical properties. Biochemistry 1980; 19:2096-101. [PMID: 7378348 DOI: 10.1021/bi00551a015] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Deoxyribonucleic acid (DNA) polymerase delta has been purified 7800-fold from calf thymus, to a specific activity of 28 000 units/mg of protein. Similar to DNA polymerase delta from bone marrow [Byrnes, J.J., Downey, K. M., Black, V. L., & So, A. G. (1976) Biochemistry 15, 2817], the calf thymus enzyme is associated with 3'- to 5'-exonuclease activity. Both DNA polymerase and 3'- to 5'-exonuclease activities copurify on hydroxylapatite, DNA-cellulose, and molecular sieve chromatography. The ratio of exonuclease activity to polymerase activity is approximately 1:12. When the most highly purified fraction is subjected to polyacrylamide gel electrophoresis under nondenaturing conditions, both DNA polymerase and exonuclease activities have the same mobility at several acrylamide gel concentrations. Isoelectric focusing experiments have shown that both activities have the same pI. These data suggest that 3'- to 5'-exonuclease activity is an intrinsic property of DNA polymerase delta. The molecular weight of the enzyme, as estimated from measurements of Stokes radius and sedimentation coefficient, is 152 000.
Collapse
|
|
45 |
60 |
21
|
Downey KM, Jurmark BS, So AG. Determination of nucleotide sequences at promoter regions by the use of dinucleotides. Biochemistry 1971; 10:4970-5. [PMID: 4944064 DOI: 10.1021/bi00802a021] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
|
54 |
60 |
22
|
Lee MY, Tan CK, Downey KM, So AG. Structural and functional properties of calf thymus DNA polymerase delta. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1981; 26:83-96. [PMID: 7280266 DOI: 10.1016/s0079-6603(08)60396-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
|
44 |
57 |
23
|
Abstract
The past decade has witnessed an exciting evolution in our understanding of eukaryotic DNA replication at the molecular level. Progress has been particularly rapid within the last few years due to the convergence of research on a variety of cell types, from yeast to human, encompassing disciplines ranging from clinical immunology to the molecular biology of viruses. New eukaryotic DNA replicases and accessory proteins have been purified and characterized, and some have been cloned and sequenced. In vitro systems for the replication of viral DNA have been developed, allowing the identification and purification of several mammalian replication proteins. In this review we focus on DNA polymerases alpha and delta and the polymerase accessory proteins, their physical and functional properties, as well as their roles in eukaryotic DNA replication.
Collapse
|
Review |
33 |
55 |
24
|
Que BG, Downey KM, So AG. Mechanisms of selective inhibition of 3' to 5' exonuclease activity of Escherichia coli DNA polymerase I by nucleoside 5'-monophosphates. Biochemistry 1978; 17:1603-6. [PMID: 350269 DOI: 10.1021/bi00602a004] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 3' to 5' exonuclease activity of Escherichia coli DNA polymerase I can be selectively inhibited by nucleoside 5'-monophosphates, wherease the DNA polymerase activity is not inhibited. The results of kinetic studies show that nucleotides containing a free 3'-hydroxy group and a 5'-phosphoryl group are competitive inhibitors of the 3' to 5' exonuclease. Previous studies by Huberman and Kornberg [Huberman, J., and Kornberg, A. (1970), J. Biol. Chem. 245, 5326] have demonstrated a binding site for nucleoside 5'-monophosphates on DNA polymerase I. The Kdissoc values for nucleoside 5'-monophosphates determined in that study are comparable to the Ki values determined in the present study, suggesting that the specific binding site for nucleoside 5'-monophosphates represents the inhibitor site of the 3' to 5' exonuclease activity. We propose that (1) the binding site for nucleoside 5'-monophosphates on DNA polymerase I may represent the product site of the 3' to 5' exonuclease activity. (2) the primer terminus site for the 3' to 5' exonuclease activity is distinct from the primer terminus site for the polymerase activity, and (3) nucleoside 5'-monophosphates bind at the primer terminus site for the 3' to 5' exonuclease activity.
Collapse
|
|
47 |
53 |
25
|
Zhou JQ, He H, Tan CK, Downey KM, So AG. The small subunit is required for functional interaction of DNA polymerase delta with the proliferating cell nuclear antigen. Nucleic Acids Res 1997; 25:1094-9. [PMID: 9092615 PMCID: PMC146557 DOI: 10.1093/nar/25.6.1094] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DNA polymerase delta is usually isolated as a heterodimer composed of a 125 kDa catalytic subunit and a 50 kDa small subunit of unknown function. The enzyme is distributive by itself and requires an accessory protein, the proliferating cell nuclear antigen (PCNA), for highly processive DNA synthesis. We have recently demonstrated that the catalytic subunit of human DNA polymerase delta (p125) expressed in baculovirus-infected insect cells, in contrast to the native heterodimeric calf thymus DNA polymerase delta, is not responsive to stimulation by PCNA. To determine whether the lack of response to PCNA of the recombinant catalytic subunit is due to the absence of the small subunit or to differences in post-translational modification in insect cells versus mammalian cells, we have co-expressed the two subunits of human DNA polymerase delta in insect cells. We have demonstrated that co-expression of the catalytic and small subunits of human DNA polymerase delta results in formation of a stable, fully functional heterodimer, that the recombinant heterodimer, similar to native heterodimer, is markedly stimulated (40- to 50-fold) by PCNA and that the increase in activity seen in the presence of PCNA is the result of an increase in processivity. These data establish that the 50 kDa subunit is essential for functional interaction of DNA polymerase delta with PCNA and for highly processive DNA synthesis.
Collapse
|
research-article |
28 |
52 |