1
|
Anbarasu K, Thanigaivel S, Sathishkumar K, Alam MM, Al-Sehemi AG, Devarajan Y. Harnessing Artificial Intelligence for Sustainable Bioenergy: Revolutionizing Optimization, Waste Reduction, and Environmental Sustainability. BIORESOURCE TECHNOLOGY 2025; 418:131893. [PMID: 39608419 DOI: 10.1016/j.biortech.2024.131893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Assessing the mutual benefits of artificial intelligence (AI) and bioenergy systems, to promote efficient and sustainable energy production. By addressing issues with conventional bioenergy techniques, it highlights how AI is revolutionising optimisation, waste reduction, and environmental sustainability. With its capacity for intelligent decision-making, predictive modelling, and adaptive controls to maximise bioenergy processes, artificial intelligence (AI) emerges as a crucial catalyst for overcoming these obstacles. The focus on particular uses of AI to enhance bioenergy systems. Algorithms for machine learning are essential for forecasting biomass properties, selecting feedstock optimally, and enhancing energy conversion procedures in general. Enhancing real-time adaptability and guaranteeing optimal performance under a range of operational conditions is made possible by the integration of AI-driven monitoring and control systems. Additionally, it looks at how AI supports precision farming methods in bioenergy settings, enhancing crop management strategies and increasing the output of biofuels. AI-guided autonomous systems help with precision planting, harvesting, and processing, which reduces resource use and maximises yield. AI's contribution to advanced biofuel technology by using data analytics and computational models, it can hasten the creation of new, more effective bioenergy sources. AI-driven grid management advancements could guarantee the smooth integration of bioenergy into current energy infrastructures. The revolutionary role that artificial intelligence (AI) has played in bioenergy systems, making a strong case for the incorporation of AI technologies to drive the global energy transition towards a more ecologically conscious and sustainable future.
Collapse
|
2
|
Vaishnavi M, Sathishkumar K, Gopinath KP. Hydrothermal liquefaction of composite household waste to biocrude: the effect of liquefaction solvents on product yield and quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39760-39773. [PMID: 38833053 DOI: 10.1007/s11356-024-33880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
The hydrothermal liquefaction (HTL) of composite household waste (CHW) was investigated at different temperatures in the range of 240-360 °C, residence times in the range of 30-90 min, and co-solvent ratios of 2-8 ml/g, by utilising ethanol, glycerol, and produced aqueous phase as liquefaction solvents. Maximum biocrude yield of 46.19% was obtained at 340 °C and 75 min, with aqueous phase recirculation ratio (RR) of 5 ml/g. The chemical solvents such as glycerol and ethanol yielded a biocrude percentage of 45.18% and 42.16% at a ratio of 6 ml/g and 8 ml/g, respectively, for 340 °C and 75 min. The usage of co-solvents as hydrothermal medium increased the biocrude yield by 35.30% and decreased the formation of solid residue and gaseous products by 19.82% and 18.74% respectively. Also, the solid residue and biocrude obtained from co-solvent HTL possessed higher carbon and hydrogen content, thus having a H/C ratio and HHV that is 1.01 and 1.23 times higher than that of water as hydrothermal medium. Among the co-solvents, HTL with aqueous phase recirculation resulted in higher carbon and energy recovery percentages of 9.36% and 9.78% for solid residue and 52.09% and 56.75% for biocrude respectively. Further qualitatively, co-solvent HTL in the presence of obtained aqueous phase yielded 33.43% higher fraction of hydrocarbons than the pure water HTL and 7.70-17.01% higher hydrocarbons when compared with ethanol and glycerol HTL respectively. Nitrogen containing compounds, such as phenols and furfurals, for biocrudes obtained from all HTL processes, were found to be present in the range of 8.30-14.40%.
Collapse
|
3
|
Sathishkumar K, Ragupathy S, Karunanithi M, Krishnakumar M, Mani D, Ahn YH. Effect of cobalt incorporation on the photocatalytic degradation of brilliant green using SnO2 nanoparticles under visible light irradiation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Sathishkumar K, Sowmiya K, Arul Pragasan L, Rajagopal R, Sathya R, Ragupathy S, Krishnakumar M, Minnam Reddy VR. Enhanced photocatalytic degradation of organic pollutants by Ag-TiO 2 loaded cassava stem activated carbon under sunlight irradiation. CHEMOSPHERE 2022; 302:134844. [PMID: 35525454 DOI: 10.1016/j.chemosphere.2022.134844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/24/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Ag-doped TiO2 and Ag-doped TiO2 loaded cassava stem activated carbon (Ag: TiO2/CSAC) were prepared by sol-gel method and are labelled as AT and AT/CSAC respectively. XRD results confirmed that the anatase-TiO2 and crystalline size are decreased (12.37 nm) through the silver doping and cassava stem activated carbon loading. UV-Vis showed that the AT/CSAC makes a red shift from the absorption edge compared to pure and AT samples and then the band gap is reduced (2.81 eV). The increased surface area (238.51 m2/g) of the AT/CSAC sample through the Ag and CSAC, respectively. The consequences point out that the highest photodegradation efficiency (98.08%) of the TiO2 upon silver doping and cassava stem activated carbon loading samples were brilliant green (BG) under sunlight irradiation.
Collapse
|
5
|
Shanker N, Mathur P, Das P, Sathishkumar K, Shalini AM, Chaturvedi M. Cancer scenario in North-East India & need for an appropriate research agenda. Indian J Med Res 2021; 154:27-35. [PMID: 34782528 PMCID: PMC8715693 DOI: 10.4103/ijmr.ijmr_347_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 11/14/2022] Open
Abstract
Background & objectives The North-Eastern (NE) region has the highest incidence of cancer in India, and is also burdened by higher prevalence of risk factors and inadequate cancer treatment facilities. The aim of this study was to describe the cancer profile of the NE region, focussing on the cancer sites that have high incidence and to identify research priorities. Methods Incidence data from population-based cancer registries (PBCRs) in the North-East region (8 States) were utilized and relevant literature was reviewed to identify risk factors. Results Aizawl district in Mizoram had the highest incidence of cancer in men [age-adjusted rate (AAR) of 269.4 per 100,000]. Among women, Papumpare district of Arunachal Pradesh had the highest incidence (AAR of 219.8) in India. East Khasi Hills district in Meghalaya had the highest incidence of oesophageal cancer (AAR of 75.4 in men and 33.6 in women). Aizawl district in Mizoram had the highest incidence of stomach (AAR-44.2 in men) and Papumpare district had highest incidence of stomach (AAR 27.1 in women), liver (AAR- 35.2 in men and 14.4 in women) and cervical cancers (AAR- 27.7). Lung cancer (AAR- 38.8 in men and 37.9 in women) and gall bladder cancer incidence (AAR- 7.9 in men and 16.2 in women) were highest in Aizawl and Assam (Kamrup urban) PBCRs, respectively. Nagaland had the highest incidence of nasopharyngeal cancer (AAR of 14.4 in men and 6.5 in women), a relatively rare cancer in other regions of India. Four States (Arunachal Pradesh, Manipur, Sikkim and Tripura) in NE had only one cancer treating facility. Interpretation & conclusions Further research on specific aetiological factors in the region and multi-disciplinary research for development of tools, techniques and guidelines for cancer control are the need of the hour.
Collapse
|
6
|
Sathishkumar K, Kirubakaran V, Radhakrishnan TK. Real Time Modeling and Control of Three Tank Hybrid System. CHEMICAL PRODUCT AND PROCESS MODELING 2018. [DOI: 10.1515/cppm-2017-0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThis study discusses the modeling and linear quadratic regulator (LQR) controller based closed loop control of a three tank hybrid (TTH) process. A pseudo random binary signal (PRBS) based excitation data obtained from a real time TTH setup is utilized in validating its first principle model (FPM). Based on top and bottom interactions, various modes prevalent are considered based on steady state physical reachability analysis of the TTH for a given input range for controller design. The FPM is linearized using nominal values of process parameters using Jacobians from each existing mode. LQR controllers are designed for each mode. A supervisory structure is designed for selecting estimation model and controller for each appropriate mode. Results from real time servo tracking and disturbance rejection experiments are discussed.
Collapse
|
7
|
Devi GK, Sathishkumar K. Synthesis of gold and silver nanoparticles using Mukia maderaspatna plant extract and its anticancer activity. IET Nanobiotechnol 2017; 11:143-151. [PMID: 28476996 PMCID: PMC8676453 DOI: 10.1049/iet-nbt.2015.0054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 03/31/2016] [Accepted: 04/20/2016] [Indexed: 11/09/2023] Open
Abstract
The present investigation reveals the in vitro cytotoxic effect of the biosynthesised metal nanoparticles on the MCF 7 breast cancer cell lines. The gold and silver nanoparticles were synthesised through an environmentally admissible route using the Mukia Maderaspatna plant extract. Initially, the biomolecules present in the plant extract were analysed using phytochemical analysis. Further, these biomolecules reduce the metal ion solution resulting from the formation of metal nanoparticles. The reaction parameters were optimised to control the size of nanoparticles which were confirmed by UV visible spectroscopy. Various instrumental techniques such as Fourier transform-infrared spectroscopy, high resolution transmission electron microscopy, energy dispersive X-ray and scanning electron microscopy were employed to characterise the synthesised gold and silver nanoparticles. The synthesised gold and silver nanoparticles were found to be 20-50 nm and were of different shapes including spherical, triangle and hexagonal. MTT and dual staining assays were carried out with different concentrations (1, 10, 25, 50 and 100 µg/ml) of gold and silver nanoparticles. The results show that the nanoparticles exhibited significant cytotoxic effects with IC 50 value of 44.8 µg/g for gold nanoparticles and 51.3 µg/g for silver nanoparticles. The observations in this study show that this can be developed as a promising nanomaterial in pharmaceutical and healthcare sector.
Collapse
|
8
|
Sathishkumar K, Kumaresan C. Development of an inhaled sustained release dry powder formulation of salbutamol sulphate, an antiasthmatic drug. Indian J Pharm Sci 2016; 78:136-42. [PMID: 27168692 PMCID: PMC4852563 DOI: 10.4103/0250-474x.180261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The present research was aimed to develop and characterize a sustained release dry powder inhalable formulation of salbutamol sulphate. The salbutamol sulphate microparticles were prepared by solvent evaporation method using biodegradable polymer poly (D,L-lactic-co-glycolic acid) to produce salbutamol sulphate microparticle mixed with carrier respirable grade lactose for oral inhalation of dry powder. The drug content were estimated to produce 1 mg sustained release salbutamol sulphate per dose. Total four formulations K1, K2, K3 and K4 were prepared with 1:1, 1:2, 1:3, 1:4 ratio of salbutamol sulphate:poly (D,L-lactic-co-glycolic acid). The developed formulations were studied for physicochemical properties, in vitro drug relase and Anderson cascade impaction studies. The prepared formulations effectively releases drug for 12 h in diffusion bag studies. Based on dissolution performance the 1:1 ratio of salbutamol sulphate:poly (D,L-lactic-co-glycolic acid) produces in vitro release 92.57% at 12 h and having particle size of microparticles (D0.5μm) 5.02±0.6 and the pulmonary deposition of dry powder 34.5±3.21 (respiratory fraction in percentage).
Collapse
|
9
|
Dhaarani J, Venkateswaran V, Uppuluri R, Divya S, Lakshmanan V, Sathishkumar K, Chinmoy, Ramya, Raj R. A single centre study on the variables affecting outcome of PICU admissions in children undergoing haematopoietic stem cell transplantation (HSCT). PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2016. [DOI: 10.1016/j.phoj.2016.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
Kannadasan N, Shanmugam N, Sathishkumar K, Cholan S, Ponnguzhali R, Viruthagiri G. Optical behavior and sensor activity of Pb ions incorporated ZnO nanocrystals. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 143:179-186. [PMID: 25727294 DOI: 10.1016/j.saa.2015.01.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 01/23/2015] [Accepted: 01/31/2015] [Indexed: 06/04/2023]
Abstract
We present the synthesis and characterization of nanocrystalline ZnO doped with Pb in different concentrations. The structural and chemical compositions of the products are characterized by XRD, XPS, EDS and FT-IR spectroscopy. The observed results suggest that Pb ions (Pb(2+) and Pb(4+)) are successfully incorporated into the lattice position of Zn(2+) ions in ZnO. The optical properties of the products are studied by UV-Vis and room temperature PL measurements. The PL emission spectra of ZnO:Pb, show the intensity quenching for both the UV and visible emissions. The influence of Pb on controlling the size and morphology of ZnO is studied by FESEM and confirmed by HRTEM. Amperometric response shows that ZnO incorporated with 0.075M of Pb ions has enhanced sensor activity for H2O2 than the undoped product.
Collapse
|
11
|
Premanand G, Shanmugam N, Kannadasan N, Sathishkumar K, Viruthagiri G. Nelumbo nucifera leaf extract mediated synthesis of silver nanoparticles and their antimicrobial properties against some human pathogens. APPLIED NANOSCIENCE 2015. [DOI: 10.1007/s13204-015-0442-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Poonguzhali R, Shanmugam N, Gobi R, Senthilkumar A, Shanmugam R, Sathishkumar K. Influence of Zn doping on the electrochemical capacitor behavior of MnO2 nanocrystals. RSC Adv 2015. [DOI: 10.1039/c5ra01326g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein, we suggest a simple chemical precipitation method for the preparation of bare and different levels of Zn doped MnO2 nanoparticles as electrodes for supercapacitors.
Collapse
|
13
|
Shanmugam N, Cholan S, Kannadasan N, Sathishkumar K, Viruthagiri G. Luminance behavior of Ce3+ doped ZnS nanostructures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 118:557-563. [PMID: 24084485 DOI: 10.1016/j.saa.2013.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/24/2013] [Accepted: 09/02/2013] [Indexed: 06/02/2023]
Abstract
We report the synthesis and characterization of undoped and various levels of Ce(3+) doped ZnS nanocrystal. The structure and size of the products were studied by X-ray diffraction (XRD). The existence of functional groups was identified by Fourier transform infrared spectrometry (FT-IR). The UV-Visible measurements reveal that the synthesized products are blue shifted when compared with bulk phase of ZnS as a result of quantum confinement effect. The PL studies show an enhancement in the intensity of emission band in the UV region on increased Ce(3+) doping. The morphology of the products was evaluated by Field emission scanning electron microscope (FESEM) and High resolution transmission electron microscopy (FESEM). The presence of Ce(3+) was confirmed by Energy dispersive spectral analysis (EDS). The thermal stability of pure and doped products was analyzed by thermo gravimetric and differential thermal analysis (TG-DTA).
Collapse
|
14
|
Shanmugam N, Rajkamal P, Cholan S, Kannadasan N, Sathishkumar K, Viruthagiri G, Sundaramanickam A. Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. APPLIED NANOSCIENCE 2013. [DOI: 10.1007/s13204-013-0271-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Yallampalli C, Chauhan M, Sathishkumar K. Calcitonin gene-related family peptides in vascular adaptations, uteroplacental circulation, and fetal growth. Curr Vasc Pharmacol 2013; 11:641-54. [PMID: 24063381 DOI: 10.2174/1570161111311050007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/26/2012] [Accepted: 07/12/2012] [Indexed: 11/22/2022]
Abstract
Maternal vascular adaptations, implantation of embryo, and placental growth and development are crucial for overall well-being of the fetus and are controlled by a range of signals, including growth factors and steroid hormones. The calcitonin (CT)/calcitonin gene-related peptide (CGRP) family peptides have been the focus of emerging studies, and these peptides appear to mediate some of the critical functions during pregnancy. Three peptides of the CT/CGRP family, CGRP, adrenomedullin, and intermedin, working through their overlapping receptor components, exert significant positive effects on vascular adaptations during pregnancy, uteroplacental vascular functions, and fetal growth. Many of the effects of these peptides are regulated by sex steroid hormones. Use of peptide antagonist in animals, together with genetic animal models, strongly implicates the importance of these 3 peptides in human pregnancy and related complications. However, insights into the underlying mechanisms of their actions on fetal-placental growth are limited by the lack of specificity of currently available antagonists. Future studies with specific knockdown of receptor components and/or peptides should be helpful for better understanding of these mechanisms and for the development of target-specific therapies to prevent pregnancy complications.
Collapse
|
16
|
Sathishkumar K. Gold nanoparticles decorated polylactic acid-co-ethyl cellulose nanocapsules for 5-fluorouracil drug release. ACTA ACUST UNITED AC 2012. [DOI: 10.1504/ijnbm.2012.048210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Sathishkumar K, Elkins R, Yallampalli U, Balakrishnan M, Yallampalli C. Fetal programming of adult hypertension in female rat offspring exposed to androgens in utero. Early Hum Dev 2011; 87:407-14. [PMID: 21450421 PMCID: PMC3093104 DOI: 10.1016/j.earlhumdev.2011.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/09/2011] [Accepted: 03/07/2011] [Indexed: 11/25/2022]
Abstract
AIMS The influence of prenatal factors on the development of arterial hypertension has gained considerable interest in recent years. We examined the effects of prenatal testosterone treatment on blood pressure in adult female rats. Further, to define the mechanisms whereby blood pressure may be raised, we examined vascular endothelial function and nitric oxide synthesis. METHODS AND RESULTS Testosterone propionate (0.5 mg/kg/day; SC) or vehicle was administered to pregnant Sprague-Dawley rats from gestational day 15-19. Maternal feed intake and plasma levels of steroid hormones were measured in the dams. In the female offspring, birth weight, growth rate, blood pressure, vascular reactivity, eNOS expression, and nitric oxide production were examined. In the pregnant rats, testosterone-treatment increased plasma testosterone levels by 2-fold without any significant changes in 17β-estradiol, progesterone and corticosterone levels. Testosterone-treatment did not affect maternal feed intake. The pups born to testosterone mothers were smaller in size but exhibited catch-up growth. The blood pressure in the testosterone offspring at 6 months of age was significantly higher compared to controls. Endothelium-intact mesenteric arteries from testosterone group exhibited increased contractile responses to phenylephrine, decreased vasodilation to acetylcholine and unaltered responses to sodium nitroprusside in comparison to control rats. Testosterone rats demonstrated decreased expression for eNOS, and reduced nitric oxide production. CONCLUSIONS Our data show that elevated plasma maternal testosterone levels: (1) causes low birth weight followed by catch-up growth and hypertension in female offspring and (2) alters endothelium-dependent vascular responses. The endothelial dysfunction is associated with decreased activity/expression of eNOS.
Collapse
|
18
|
Ross GR, Yallampalli U, Gangula PRR, Reed L, Sathishkumar K, Gao H, Chauhan M, Yallampalli C. Adrenomedullin relaxes rat uterine artery: mechanisms and influence of pregnancy and estradiol. Endocrinology 2010; 151:4485-93. [PMID: 20631002 PMCID: PMC2940500 DOI: 10.1210/en.2010-0096] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 05/28/2010] [Indexed: 11/19/2022]
Abstract
Uterine arteries play a major role in regulating uteroplacental blood flow. Failure to maintain blood flow to the uteroplacental compartment during pregnancy often results in intrauterine growth retardation. Immunohistochemical staining of adrenomedullin (AM), an endogenous vasoactive peptide, in uterine artery was intense in pregnant compared to nonpregnant rats, but it is not known whether AM directly relaxes uterine artery or not. In this study, we elucidated the mechanisms of uterine artery relaxation by AM and its regulation by pregnancy and female sex steroids. AM was able to relax uterine artery, and this relaxation was influenced positively by pregnancy and estradiol as evidenced by the increased pD(2) and E(max) values of AM. Both pregnancy and estradiol treatment to ovariectomized rats amplified RAMP(3) expression in uterine arteries while progesterone had no effect. AM-induced uterine artery relaxation is predominantly endothelium-dependent. The AM receptor antagonist CGRP(8-37) is more potent than AM(22-52) in inhibiting the AM relaxation, indicating the involvement of AM(2) receptor subtype. Moreover, AM uses the classical nitric oxide-cyclic guanosine monophosphate pathway along with K(Ca) channels to mediate the vasodilatory effect in uterine artery. In conclusion, sensitivity of uterine artery to AM-induced relaxation is increased with pregnancy or estradiol treatment by increasing RAMP(3) expression, suggesting an important role for AM in regulating the uterine hemodynamics, probably maintaining uterine blood flow during pregnancy and in pre- and postmenopausal cardiovascular adaptation differences.
Collapse
|
19
|
Sathishkumar K, Raghavamenon AC, Ganeshkumar K, Telaprolu R, Parinandi NL, Uppu RM. Simultaneous analysis of expression of multiple redox-sensitive and apoptotic genes in hypothalamic neurons exposed to cholesterol secoaldehyde. Methods Mol Biol 2010; 610:263-284. [PMID: 20013184 DOI: 10.1007/978-1-60327-029-8_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Oxidative stress and apoptotic cell death are two important processes that occur under several disease states and in conditions of toxicant insult. Traditionally, investigators have chosen a variety of analytical methods to detect and/or quantify oxidative stress and apoptosis. The approach has proven less satisfying, however, when applied to complex systems with many unknown influences. Such areas of study could benefit from the development and application of new and more powerful analytical tools. Microarray-based approach has been developed for analyzing various cellular phenomena at the level of gene expression. These gene arrays are hybridization chips that are capable of simultaneous analysis of the expression of thousands of genes. Often, this approach warrants examining a multitude of unrelated genes which can greatly impede the interpretation of results. The real-time RT-PCR-based methodology presented here allows simultaneous detection and analysis of as many as 84 well-characterized genes associated with either oxidative stress or apoptosis in hypothalamic neuronal cells exposed to cholesterol secoaldehyde, an "ozone-/singlet oxygen-specific" oxidation product of cholesterol that has been shown to be present at the inflammatory sites including the arterial plaque and the brain specimens of patients with Alzheimer's disease. This pathway-specific analysis of the expression of the well-defined chosen set of genes offers ways of convenient and reliable interpretation of results that often corroborate well with the results obtained from other standard biochemical analytical approaches.
Collapse
|
20
|
Sathishkumar K, Gao X, Raghavamenon AC, Murthy SN, Kadowitz PJ, Uppu RM. Determination of glutathione, mitochondrial transmembrane potential, and cytotoxicity in H9c2 cardiomyoblasts exposed to reactive oxygen and nitrogen species. Methods Mol Biol 2010; 610:51-61. [PMID: 20013172 DOI: 10.1007/978-1-60327-029-8_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Quantitative measurement of cellular oxidative stress (COS) and cytotoxicity are important to establish their significance in pathophysiologic conditions and disease states. So far, ample methods have been described to determine these processes based on spectrophotometric analysis. The application of simple, rapid, and sensitive fluorescence methods to determine the cytotoxicity and COS is described in the present chapter. Murine H9c2 cells were exposed to various free radical and non-free radical oxidants through use of diethylamine NONOate, 3-morpholinosydnonimine (SIN-1), and a synthetic preparation of peroxynitrite (PN). The viability of control and the treated H9c2 cells was measured based on the reduction of resazurin to resorufin which generates a fluorescent signal. The mitochondrial membrane potential was quantified by determining the cellular uptake of a fluorescent dye, (5,5('),6,6(')-tetrachloro-1,1(')-3,3(')-tetraethylbenzimidazolcarbocyanine iodide (JC-1)) and its segregation in the mitochondrial fraction. The intracellular GSH was determined by assaying the glutathione-S-transferase (GST)-catalyzed conjugation of GSH to monochlorobimane. This chapter describes the feasibility and potential of the above-described fluorescence approach as simple alternative methods to determine reactive oxygen and nitrogen species-induced cytotoxicity and oxidative stress using H9c2 cardiomyoblasts as a model system.
Collapse
|
21
|
Sathishkumar K, Gao X, Raghavamenon AC, Parinandi N, Pryor WA, Uppu RM. Cholesterol secoaldehyde induces apoptosis in H9c2 cardiomyoblasts through reactive oxygen species involving mitochondrial and death receptor pathways. Free Radic Biol Med 2009; 47:548-58. [PMID: 19477266 DOI: 10.1016/j.freeradbiomed.2009.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 05/08/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
Abstract
Cholesterol secoaldehyde (ChSeco), a putative product of the reaction of ozone with cholesterol in aqueous environments, has been shown to induce apoptosis in H9c2 cardiomyoblasts. This study further investigated the involvement of apoptotic-related proteins and gene expression using RT-PCR, Western blot, and appropriate biochemical assays. The RT-PCR analysis revealed that ChSeco activates the expression of genes involved in the death receptor (extrinsic) pathway. The significance of this pathway was also evident from the increased activity of caspase-8. The overexpression of Apaf-1, loss of mitochondrial transmembrane potential, release of cytochrome c, and increased activity of caspase-9 provide further evidence for the involvement of a mitochondrial (intrinsic) pathway. Time-course analysis of ChSeco-exposed H9c2 cells showed an upstream increase in the generation of reactive oxygen species (ROS) and an associated decrease in the intracellular glutathione. N-acetyl-L-cysteine and Trolox significantly attenuated the ChSeco-induced ROS formation and cytotoxicity and also down-regulated the expression of the genes of all the players in either pathway. This study clearly shows that ChSeco induces apoptosis in H9c2 cells through ROS generation and the activation of both the intrinsic and the extrinsic pathway.
Collapse
MESH Headings
- Aldehydes/chemistry
- Aldehydes/pharmacology
- Apoptosis/drug effects
- Caspases/metabolism
- Cell Line
- Cholestanones/pharmacology
- Cholesterol/chemistry
- Cholesterol/pharmacology
- Cytochromes c/metabolism
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Humans
- Membrane Potential, Mitochondrial/drug effects
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/physiology
- Models, Biological
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Oxidative Stress/drug effects
- Reactive Oxygen Species/pharmacology
- Receptors, Death Domain/metabolism
- Receptors, Death Domain/physiology
- Secosteroids/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
|
22
|
Sathishkumar K, Rangan V, Gao X, Uppu RM. Methyl vinyl ketone induces apoptosis in murine GT1-7 hypothalamic neurons through glutathione depletion and the generation of reactive oxygen species. Free Radic Res 2009; 41:469-77. [PMID: 17454129 DOI: 10.1080/10715760601145257] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
alpha,beta-Unsaturated carbonyl compounds have been implicated in a number of environmentally-related diseases. Often, the presence of alpha,beta-unsaturated carbonyl functionality as part of either an aliphatic or cyclic structure is considered a structural alert for cytotoxicity. We examined the cytotoxicity of methyl vinyl ketone (MVK), an aliphatic, straight-chain alpha,beta-unsaturated carbonyl compound, in murine GT1-7 hypothalamic neurons. In addition to its widespread environmental occurrence, MVK was selected due to its extensive use in the chemical industry. Also, MVK is a close structural analog of hydroxymethylvinyl ketone that, in part, mediates the cytotoxic effects of 1,3-butadiene in vivo. It was found that MVK at low micromolar concentrations induced extensive cell death that retained key features of apoptosis such as chromatin condensation and DNA fragmentation. The MVK-induced apoptosis was associated with depletion of glutathione, disruption of mitochondrial transmembrane potential, and increased generation of reactive oxygen species (ROS). Supplementation of neuronal cells with Trolox offered partial, but significant, protection against the MVK-induced cytotoxicity, presumably due to scavenging of ROS in situ. The suggested sequence of events in the MVK-induced apoptosis in neuronal cells involves the depletion of cellular glutathione followed by an increased generation of ROS and finally the loss of mitochondrial function.
Collapse
|
23
|
Sathishkumar K, Elkins R, Yallampalli U, Yallampalli C. Elevated Androgen Levels During Pregnancy Impair Fetal Growth Due to Placental Insufficiency and Programs for Adult Hypertension in Rats. Biol Reprod 2009. [DOI: 10.1093/biolreprod/81.s1.250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Sathishkumar K, Xi X, Martin R, Uppu RM. Cholesterol Secoaldehyde, An Ozonation Product of Cholesterol, Induces Amyloid Aggregation and Apoptosis in Murine GT1-7 Hypothalamic Neurons. ACTA ACUST UNITED AC 2007; 11:261-74. [PMID: 17851176 DOI: 10.3233/jad-2007-11302] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aldehydic products from ozonation of cholesterol and peroxidation of phospholipids have been shown to accelerate aggregation of amyloid-beta (Abeta) in vitro. Here, we show that 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al (ChSeco), an ozonation product of cholesterol, induces Abeta aggregation, generation of reactive oxygen species (ROS), and cytotoxicity in murine GT1-7 hypothalamic neurons. The formation of Abeta aggregates in situ was dose-dependent at ChSeco concentrations ranging from 1 to 20 microM. The increase in insoluble Abeta aggregates at increasing concentrations of ChSeco was accompanied by a decrease in soluble Abeta as evidenced by Western blot analysis. The formation of ROS in neuronal cells was found to be dose- and time-dependent with the magnitude being higher at 20 microM compared to 10 microM ChSeco or untreated controls. The increase in ROS was associated with depletion of GSH. The cytotoxicity induced by ChSeco involved changes in phosphatidylserine translocation, DNA fragmentation, and caspase 3/7 activity that are characteristic of apoptosis. Pretreatment of neuronal cells with Trolox, a water-soluble analog of alpha-tocopherol offered partial, but significant protection against ChSeco-induced cell death, whereas, N-acetyl-L-cysteine (NAC) completely prevented the cytotoxic effects of ChSeco. NAC and Trolox were without any effects on ChSeco-induced Abeta aggregation. Fibrillogenesis inhibitors, which inhibited Abeta aggregation, did not inhibit cell death induced by ChSeco, implying that ROS generation, and not Abeta aggregation, plays a major role in the observed cytotoxicity. However, since Alzheimer's and other neurodegenerative diseases are slow and progressive, the formation of Abeta aggregates in vivo by ChSeco may have long-term pathological consequences.
Collapse
|
25
|
Sathishkumar K, Murthy SN, Uppu RM. Cytotoxic effects of oxysterols produced during ozonolysis of cholesterol in murine GT1-7 hypothalamic neurons. Free Radic Res 2007; 41:82-8. [PMID: 17164181 DOI: 10.1080/10715760600950566] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ozone present in the photochemical smog or generated at the inflammatory sites is known to oxidize cholesterol and its 3-acyl esters. The oxidation results in the formation of multiple "ozone-specific" oxysterols, some of which are known to cause abnormalities in the metabolism of cholesterol and exert cytotoxicity. The ozone-specific oxysterols have been shown to favor the formation of atherosclerotic plaques and amyloid fibrils involving pro-oxidant processes. In the present communication, cultured murine GT1-7 hypothalamic neurons were studied in the context of cholesterol metabolism, formation of reactive oxygen species, intracellular Ca2 + levels and cytotoxicity using two most commonly occurring cholesterol ozonolysis products, 3beta- hydroxy-5-oxo-5,6-secocholestan-6-al (ChSeco) and 5beta, 6beta-epoxy-cholesterol (ChEpo). It was found that ChSeco elicited cytotoxicity at lower concentration (IC50 = 21 +/- 2.4 microM) than did ChEpo (IC50 = 43 +/- 3.7 microM). When tested at their IC50 concentrations in GT1-7 cells, both ChSeco and ChEpo resulted in the generation of ROS, the magnitude of which was comparable. N-acetyl-l-cysteine and Trolox attenuated the cytotoxic effects of ChSeco and ChEpo. The intracellular Ca2 + levels were not altered by either ChSeco or ChEpo. Methyl-beta-cyclodextrins, which cause depletion of cellular cholesterol, prevented ChSeco- but not ChEpo-induced cytotoxicity. The cell death caused by ChEpo, but not ChSeco, was prevented by exogenous cholesterol. Although oxidative stress plays a significant role, the results of the present study indicate differences in the pathways of cell death induced by ChSeco and ChEpo in murine GT1-7 hypothalamic neurons.
Collapse
|