1
|
Kuge Y, Takai N, Ogawa Y, Temma T, Zhao Y, Nishigori K, Ishino S, Kamihashi J, Kiyono Y, Shiomi M, Saji H. Imaging with radiolabelled anti-membrane type 1 matrix metalloproteinase (MT1-MMP) antibody: potentials for characterizing atherosclerotic plaques. Eur J Nucl Med Mol Imaging 2010; 37:2093-104. [DOI: 10.1007/s00259-010-1521-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 06/03/2010] [Indexed: 11/30/2022]
|
|
15 |
29 |
2
|
Temma T, Ogawa Y, Kuge Y, Ishino S, Takai N, Nishigori K, Shiomi M, Ono M, Saji H. Tissue factor detection for selectively discriminating unstable plaques in an atherosclerotic rabbit model. J Nucl Med 2010; 51:1979-86. [PMID: 21078793 DOI: 10.2967/jnumed.110.081216] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Tissue factor (TF), a transmembrane glycoprotein that acts as an essential cofactor to factor VII/VIIa, initiates the exogenous blood coagulation cascade leading to thrombin generation and subsequent thrombus formation in vivo. TF expression is closely related to plaque vulnerability, and high TF expression is shown in macrophage-rich atheromatous lesions, making TF a potential target for detecting atheromatous lesions in vivo. Thus, we prepared (99m)Tc-labeled anti-TF-monoclonal antibody (TF-mAb) IgG as a molecular probe and evaluated its usefulness to achieve TF-specific imaging using myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbits. METHODS Anti-TF-mAb was created using a standard hybridoma technique and was labeled by (99m)Tc with 6-hydrazinonicotinic acid (HYNIC) as a chelating agent to obtain (99m)Tc-TF-mAb. The immunoreactivity of HYNIC-TF-mAb was estimated by flow cytometry. WHHLMI and control rabbits were injected intravenously with (99m)Tc-TF-mAb. Twenty-four hours after the injection, the aorta was removed and radioactivity was measured. Autoradiography and histologic studies were performed using serial aorta sections. Subclass matched antibody (IgG(1)) was used as a negative control. RESULTS HYNIC-TF-mAb showed 93% immunoreactivity of the anti-TF-mAb. The radioactivity accumulation in WHHLMI aortas was 6.1-fold higher than that of control rabbits. Autoradiograms showed a heterogeneous distribution of radioactivity in the intima of WHHLMI aortas. Regional radioactivity accumulation was positively correlated with TF expression density (R = 0.64, P < 0.0001). The highest radioactivity accumulation in percentage injected dose × body weight/mm(2) × 10(2) was found in atheromatous lesions (5.2 ± 1.9) followed by fibroatheromatous (2.1 ± 0.7), collagen-rich (1.8 ± 0.7), and neointimal lesions (1.8 ± 0.6). In contrast, (99m)Tc-IgG(1) showed low radioactivity accumulation in WHHLMI aortas that was independent of the histologic grade of lesions. CONCLUSION The TF-detecting ability and preferential accumulation in atheromatous lesions of (99m)Tc-TF-mAb were demonstrated, indicating its potential for selective imaging of macrophage-rich atheromatous lesions in vivo.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
22 |
3
|
Enomoto T, Tatara A, Goda M, Nishizato Y, Nishigori K, Kitamura A, Kamada M, Taga S, Hashimoto T, Ikeda K, Fujii Y. A Novel Phosphodiesterase 1 Inhibitor DSR-141562 Exhibits Efficacies in Animal Models for Positive, Negative, and Cognitive Symptoms Associated with Schizophrenia. J Pharmacol Exp Ther 2019; 371:692-702. [PMID: 31578257 DOI: 10.1124/jpet.119.260869] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/18/2019] [Indexed: 01/09/2023] Open
Abstract
In our drug discovery program, we identified a novel orally available and brain-penetrant phosphodiesterase (PDE) 1 inhibitor, 3-methyl-7-(tetrahydro-2H-pyran-4-yl)-2-{[trans-4-(trifluoromethyl)cyclohexyl]-methoxy}imidazo[5,1-f][1,2,4]triazin-4(3H)-one (DSR-141562). In the present study, we characterized the preclinical profile of DSR-141562. This compound has preferential selectivity for predominantly brain-expressed PDE1B over other PDE1 family members, and high selectivity for the PDE1 family over other PDE families and 65 other tested biologic targets. Oral administration of DSR-141562 at 10 mg/kg slightly elevated the cGMP concentration, and it potently enhanced the increase of cGMP induced by a dopamine D1 receptor agonist in mouse brains. The cGMP level in monkey cerebrospinal fluid was also elevated after treatment with DSR-141562 at 30 and 100 mg/kg and could be used as a translational biomarker. Since PDE1B is believed to regulate dopaminergic and glutamatergic signal transduction, we evaluated the effects of this compound using schizophrenia-related behavioral assays. DSR-141562 at 3-30 mg/kg potently inhibited methamphetamine-induced locomotor hyperactivity in rats, while it had only minimal effects on the spontaneous locomotor activity. Furthermore, DSR-141562 at 1-100 mg/kg did not induce any signs of catalepsy in rats. DSR-141562 at 0.3-3 mg/kg reversed social interaction and novel object recognition deficits induced by repeated treatment with an N-methyl-D-aspartate receptor antagonist, phencyclidine, in mice and rats, respectively. In common marmosets, DSR-141562 at 3 and 30 mg/kg improved the performance in object retrieval with detour tasks. These results suggest that DSR-141562 is a therapeutic candidate for positive, negative, and cognitive symptoms in schizophrenia. SIGNIFICANCE STATEMENT: This is the first paper showing that a phosphodiesterase 1 inhibitor is efficacious in animal models for positive and negative symptoms associated with schizophrenia. Furthermore, we demonstrated that this compound improved cognitive function in the common marmoset, a nonhuman primate.
Collapse
|
|
6 |
22 |
4
|
Nishigori K, Temma T, Yoda K, Onoe S, Kondo N, Shiomi M, Ono M, Saji H. Radioiodinated peptide probe for selective detection of oxidized low density lipoprotein in atherosclerotic plaques. Nucl Med Biol 2012; 40:97-103. [PMID: 23157986 DOI: 10.1016/j.nucmedbio.2012.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/30/2012] [Accepted: 08/06/2012] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Despite the significant effort in developing radioprobes for atherosclerosis, few have low molecular weight. Oxidized LDL (OxLDL), a highly proinflammatory and proatherogenic factor that is abundant in atherosclerotic plaques, plays a pivotal role in plaque destabilization, which makes OxLDL a relevant probe target. We developed a radioiodinated short peptide, AHP7, as a low molecular weight probe for specific OxLDL imaging and evaluated its utility using myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits (WHHLMI). METHODS [¹²⁵I]AHP7 was designed and synthesized based on the sequence of Asp-hemolysin, an OxLDL binding protein extracted from Aspergillus fumigatus. In vitro binding studies with OxLDL having varying degrees of oxidation were performed. Radioactivity accumulation in the aorta was measured 30 min post-administration in rabbits. Autoradiography and histological studies were performed using serial aorta sections. A radioiodinated scrambled peptide ([¹²⁵I]AHP scramble) was used as a negative control. RESULTS [¹²⁵I]AHP7 bound to OxLDL in proportion to the degree of oxidation (R=0.91, P<0.0001) and was inhibited by unlabeled AHP7 in a concentration-dependent manner. The aorta accumulation level and aorta/blood and aorta/muscle ratios of [¹²⁵I]AHP7 in WHHLMI were 2.8-, 1.3- and 1.8-fold higher, respectively, than those in control rabbits (P<0.001). Co-administration of AHP7 significantly reduced [¹²⁵I]AHP7 radioactivity in aorta sections (P<0.0001). Regional radioactivity levels in the aorta sections showed nonuniformity but similarity to the immunohistochemical OxLDL density. CONCLUSIONS The potential of radioiodinated AHP7 for selectively imaging OxLDL was demonstrated both in vitro and in vivo.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
14 |
5
|
Ose T, Autio JA, Ohno M, Frey S, Uematsu A, Kawasaki A, Takeda C, Hori Y, Nishigori K, Nakako T, Yokoyama C, Nagata H, Yamamori T, Van Essen DC, Glasser MF, Watabe H, Hayashi T. Anatomical variability, multi-modal coordinate systems, and precision targeting in the marmoset brain. Neuroimage 2022; 250:118965. [PMID: 35122965 PMCID: PMC8948178 DOI: 10.1016/j.neuroimage.2022.118965] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/02/2023] Open
Abstract
Localising accurate brain regions needs careful evaluation in each experimental species due to their individual variability. However, the function and connectivity of brain areas is commonly studied using a single-subject cranial landmark-based stereotactic atlas in animal neuroscience. Here, we address this issue in a small primate, the common marmoset, which is increasingly widely used in systems neuroscience. We developed a non-invasive multi-modal neuroimaging-based targeting pipeline, which accounts for intersubject anatomical variability in cranial and cortical landmarks in marmosets. This methodology allowed creation of multi-modal templates (MarmosetRIKEN20) including head CT and brain MR images, embedded in coordinate systems of anterior and posterior commissures (AC-PC) and CIFTI grayordinates. We found that the horizontal plane of the stereotactic coordinate was significantly rotated in pitch relative to the AC-PC coordinate system (10 degrees, frontal downwards), and had a significant bias and uncertainty due to positioning procedures. We also found that many common cranial and brain landmarks (e.g., bregma, intraparietal sulcus) vary in location across subjects and are substantial relative to average marmoset cortical area dimensions. Combining the neuroimaging-based targeting pipeline with robot-guided surgery enabled proof-of-concept targeting of deep brain structures with an accuracy of 0.2 mm. Altogether, our findings demonstrate substantial intersubject variability in marmoset brain and cranial landmarks, implying that subject-specific neuroimaging-based localization is needed for precision targeting in marmosets. The population-based templates and atlases in grayordinates, created for the first time in marmoset monkeys, should help bridging between macroscale and microscale analyses.
Collapse
|
|
3 |
6 |
6
|
Temma T, Nishigori K, Onoe S, Sampei S, Kimura I, Ono M, Saji H. Radiofluorinated probe for PET imaging of fatty acid binding protein 4 in cancer. Nucl Med Biol 2014; 42:184-91. [PMID: 25457456 DOI: 10.1016/j.nucmedbio.2014.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Cancer-associated adipocytes metabolically interact with adjacent cancer cells to promote tumor proliferation and metastasis. Fatty acid binding protein 4 (FABP4) participates in this interaction, and is gathering attention as a therapeutic and diagnostic target. Positron emission tomography (PET) is a useful diagnostic method that enables noninvasive in vivo quantitative imaging of biofunctional molecules with probes labeled with positron-emitting radioisotopes. Here a novel (18)F labeled probe for PET FABP4 imaging developed through dedicated drug design from a radioiodinated probe we recently reported is evaluated in vitro and in vivo. METHODS We designed the [(18)F]-labeled FTAP1 and FTAP3 probe, composed of a single or triple oxyethylene linker and a triazolopyrimidine scaffold derived from an FABP4 inhibitor. FABP4 binding affinities for chemically synthesized FTAP1 and FTAP3 were measured using FABP4 and 8-anilino-1-naphthalene sulfonic acid. Cell membrane permeability was measured using a commercially available plate assay system. After radiosynthesis, [(18)F]FTAP1 affinity and selectivity were evaluated using immobilized FABP3, FABP4, and FABP5. Cell uptake was investigated using differentiated adipocytes expressing FABP4 with inhibitor treatment. Following biodistribution studies in C6 glioblastoma-bearing mice, ex vivo autoradiography and immunohistochemistry were performed using thin sliced tumor sections. PET/CT imaging was then performed on C6 tumor bearing mice. RESULTS FTAP1 showed high FABP4 affinity (Ki=68±8.9 nM) and adequate cell permeability. [(18)F]FTAP1 with ≥98% radiochemical purity was shown to selectively bind to FABP4 (16.3- and 9.3-fold higher than for FABP3 and FABP5, respectively). [(18)F]FTAP1 was taken up by FABP4 expressing cells, and this uptake could be blocked by an inhibitor, indicating very low non-specific cell binding. [(18)F]FTAP1 showed high tumor accumulation, which demonstrates its potential use for in vivo tumor PET imaging, and the intratumoral radioactivity distribution corresponded to the FABP4 expression profile. CONCLUSION [(18)F]FTAP1 is a promising PET probe to target FABP4.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
5 |
7
|
Nishigori K, Temma T, Onoe S, Sampei S, Kimura I, Ono M, Saji H. Development of a radioiodinated triazolopyrimidine probe for nuclear medical imaging of fatty acid binding protein 4. PLoS One 2014; 9:e94668. [PMID: 24732569 PMCID: PMC3986099 DOI: 10.1371/journal.pone.0094668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/18/2014] [Indexed: 11/30/2022] Open
Abstract
Fatty acid binding protein 4 (FABP4) is the most well-characterized FABP isoform. FABP4 regulates inflammatory pathways in adipocytes and macrophages and is involved in both inflammatory diseases and tumor formation. FABP4 expression was recently reported for glioblastoma, where it may participate in disease malignancy. While FABP4 is a potential molecular imaging target, with the exception of a tritium labeled probe there are no reports of other nuclear imaging probes that target this protein. Here we designed and synthesized a nuclear imaging probe, [123I]TAP1, and evaluated its potential as a FABP4 targeting probe in in vitro and in vivo assays. We focused on the unique structure of a triazolopyrimidine scaffold that lacks a carboxylic acid to design the TAP1 probe that can undergo facilitated delivery across cell membranes. The affinity of synthesized TAP1 was measured using FABP4 and 8-anilino-1-naphthalene sulfonic acid. [125I]TAP1 was synthesized by iododestannylation of a precursor, followed by affinity and selectivity measurements using immobilized FABPs. Biodistributions in normal and C6 glioblastoma-bearing mice were evaluated, and excised tumors were subjected to autoradiography and immunohistochemistry. TAP1 and [125I]TAP1 showed high affinity for FABP4 (Ki = 44.5±9.8 nM, Kd = 69.1±12.3 nM). The FABP4 binding affinity of [125I]TAP1 was 11.5- and 35.5-fold higher than for FABP3 and FABP5, respectively. In an in vivo study [125I]TAP1 displayed high stability against deiodination and degradation, and moderate radioactivity accumulation in C6 tumors (1.37±0.24% dose/g 3 hr after injection). The radioactivity distribution profile in tumors partially corresponded to the FABP4 positive area and was also affected by perfusion. The results indicate that [125I]TAP1 could detect FABP4 in vitro and partly in vivo. As such, [125I]TAP1 is a promising lead compound for further refinement for use in in vivo FABP4 imaging.
Collapse
|
|
11 |
4 |
8
|
Nishigori K, Igawa K, Sasaki K, Sawada Y. Toxic shock syndrome with extensive epidermal necrosis in a 9-year-old girl. J Eur Acad Dermatol Venereol 2006; 20:1334-5. [PMID: 17062059 DOI: 10.1111/j.1468-3083.2006.01681.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
Case Reports |
19 |
2 |
9
|
Temma T, Kondo N, Yoda K, Nishigori K, Onoe S, Shiomi M, Ono M, Saji H. Comparison of 125I- and 111In-labeled peptide probes for in vivo detection of oxidized low-density lipoprotein in atherosclerotic plaques. Ann Nucl Med 2018; 32:425-429. [PMID: 29651757 DOI: 10.1007/s12149-018-1255-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/09/2018] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Oxidized low-density lipoprotein (OxLDL) plays a pivotal role in atherosclerotic plaque destabilization, which suggests its potential as a nuclear medical imaging target. We previously developed radioiodinated 125I-AHP7, a peptide probe carrying a 7-residue sequence from the OxLDL-binding protein Asp-hemolysin, for specific OxLDL imaging. Although 125I-AHP7 recognized OxLDL, it had low stability. Thus, to improve stability, we designed radiolabeled 22-residue peptide probes, 125I-AHP22 and 111In-AHP22, which include the entire AHP7 sequence, and evaluated the stability, activity, and applications of these probes in vitro and in vivo. METHODS Probes consisting of a 21-residue peptide derived from the Asp-hemolysin sequence and an N-terminal Cys or aminohexanoic acid for labeling with 125I-N-(3-iodophenyl)maleimide or 111In diethylene triamine pentaacetic acid were termed 125I-AHP22 and 111In-AHP22. An in vitro-binding inhibition assay with OxLDL was performed using 125I-AHP7 as a radiotracer. Radioactivity accumulation in the atherosclerotic aorta and plasma intact fraction was evaluated 30 min after intravenous administration of probes in myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbits. RESULTS 125I-AHP22 and 111In-AHP22 were synthesized in ~ 360 and 60 min, respectively, with > 98% radiochemical purities after RP-HPLC purification. An in vitro-binding assay revealed similar or greater inhibition of OxLDL binding by both In-AHP22 and I-AHP22 compared to I-AHP7. The fraction of intact 125I-AHP22 and 111In-AHP22 in plasma was estimated to be approximately tenfold higher than that of 125I-AHP7. Both probes were rapidly cleared from the blood. 111In-AHP22 had a 2.3-fold higher accumulation in WHHLMI rabbit aortas compared to control rabbits, which was similar to 125I-AHP7. However, 125I-AHP22 accumulated to similar levels in aortas of WHHLMI and control rabbits due to high nonspecific accumulation in normal aortas that could be due to high lipophilicity. CONCLUSIONS 111In-AHP22, easily prepared within 1 h, showed moderate affinity for OxLDL, high stability in vivo, and high accumulation in atherosclerotic aortas. 111In-AHP22 could be a potential lead compound to develop future effective OxLDL imaging probes.
Collapse
|
Comparative Study |
7 |
1 |
10
|
Kasuya K, Watanabe M, Ido D, Adachi T, Nishigori K, Ebine T, Okayama H, Funatsu M, Sunami H, Wu C, Hotta E, Miyamoto S, Yasuike K, Nakai S, Kawata S, Okada T, Niu K. Production, diagnostic and application of pulsed ion beams with light and medium mass; LIB (and MIB) program in Japan. FUSION ENGINEERING AND DESIGN 1999. [DOI: 10.1016/s0920-3796(98)00292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
|
26 |
|
11
|
Kimura Y, Nakazawa S, Nishigori K, Mori Y, Ichihara J, Yoshioka Y. Ultra-high-field pharmacological functional MRI of dopamine D1 receptor-related interventions in anesthetized rats. Pharmacol Res Perspect 2023; 11:e01055. [PMID: 36807574 PMCID: PMC9939738 DOI: 10.1002/prp2.1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 02/22/2023] Open
Abstract
The dopamine D1 receptor (D1R) is associated with schizophrenia, Parkinson's disease, and attention deficit hyperactivity disorder. Although the receptor is considered a therapeutic target for these diseases, its neurophysiological function has not been fully elucidated. Pharmacological functional MRI (phfMRI) has been used to evaluate regional brain hemodynamic changes induced by neurovascular coupling resulting from pharmacological interventions, thus phfMRI studies can be used to help understand the neurophysiological function of specific receptors. Herein, the blood oxygenation level-dependent (BOLD) signal changes associated with D1R action in anesthetized rats was investigated by using a preclinical ultra-high-field 11.7-T MRI scanner. PhfMRI was performed before and after administration of the D1-like receptor agonist (SKF82958), antagonist (SCH39166), or physiological saline subcutaneously. Compared to saline, the D1-agonist induced a BOLD signal increase in the striatum, thalamus, prefrontal cortex, and cerebellum. At the same time, the D1-antagonist reduced the BOLD signal in the striatum, thalamus, and cerebellum by evaluating temporal profiles. PhfMRI detected D1R-related BOLD signal changes in the brain regions associated with high expression of D1R. We also measured the early expression of c-fos at the mRNA level to evaluate the effects of SKF82958 and isoflurane anesthesia on neuronal activity. Regardless of the presence of isoflurane anesthesia, c-fos expression level was increased in the region where positive BOLD responses were observed with administration of SKF82958. These findings demonstrated that phfMRI could be used to identify the effects of direct D1 blockade on physiological brain functions and also for neurophysiological assessment of dopamine receptor functions in living animals.
Collapse
|
research-article |
2 |
|
12
|
Recourt K, Van Gerven J, Drenth N, van der Grond J, Nishigori K, Van Der Wee NJ, Jacobs GE. Ketamine effects on resting state functional brain connectivity in major depressive disorder patients: a hypothesis-driven analysis based on a network model of depression. Front Neurosci 2025; 19:1531375. [PMID: 39963257 PMCID: PMC11830811 DOI: 10.3389/fnins.2025.1531375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Ketamine demonstrates robust and rapidly occurring antidepressant effects in patients with difficult-to-treat major depressive disorder. Ketamine's antidepressant effects and its impact on functional networks in non-resistant forms of major depressive disorder are expected to provide valuable insight into ketamine's mechanism of action related to depression. Methods This study employs an existing network model of major depressive disorder to investigate the effects of ketamine on resting state connectivity in a therapy-non-resistant major depressive disorder population. In a randomized, double-blind, placebo-controlled, cross-over study, 0.5 mg/kg racemic ketamine or 0.9%NaCl was administered intravenously in 16 MDD patients. We applied resting-state functional magnetic resonance imaging (rs-fMRI) to explore changes in functional brain connectivity directly at 50, 80 and 165 min (acute) and 24 h (delayed) following ketamine administration. A clinician-rated 10-item scale (MADRS) was administered at 165 min and 24 h after ketamine administration. Connections-of-interest (COIs) were based on the previously published corticolimbic-insular-striatalpallidal-thalamic (CLIPST) circuitry model of major depressive disorder. Results Compared with placebo, ketamine significantly (p < 0.0014) reduced the mean (SD) MADRS total score from 21.2 (5.9) pre-dose to 10.3 (4.6) 24 h post-dose. At both acute (p < 0.0172) and delayed (p < 0.0488) time points, significant rs-fMRI connectivity changes occurred only in MDD-related COIs as proposed by the CLIPST model. No changes in functional connectivity were found in non-CLIPST connections. Discussion This study demonstrates that ketamine specifically affects depression-related circuitry. Analyzing functional connectivity based on a neurocircuitry model of a specific CNS disease and drug action may be an effective approach that could result in a more targeted analysis in future pharmaco-fMRI studies in CNS drug development.
Collapse
|
research-article |
1 |
|
13
|
Fujimori K, Chikamori K, Matsubara H, Miyai M, Nishigori K, Araki T, Yamamoto A, Yamashita S, Shinomiya T, Yamada M. Human bones of the burial mounds in matsuyama. Report I. THE TOKUSHIMA JOURNAL OF EXPERIMENTAL MEDICINE 1981; 28:21-6. [PMID: 7027535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
Historical Article |
44 |
|