1
|
Abstract
Antigen presentation by both classical MHC class II molecules and the non-classical MHC class I-like molecule CD1D requires their entry into the endosomal/lysosomal compartment. Lysosomal cysteine proteases constitute an important subset of the enzymes that are present in this compartment and, here, we discuss the role of these proteases in regulating antigen presentation by both MHC class II and CD1D molecules.
Collapse
|
Review |
22 |
333 |
2
|
Graca L, Honey K, Adams E, Cobbold SP, Waldmann H. Cutting edge: anti-CD154 therapeutic antibodies induce infectious transplantation tolerance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4783-6. [PMID: 11045999 DOI: 10.4049/jimmunol.165.9.4783] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nondepleting anti-CD154 (CD40 ligand) mAbs have proven effective in inducing transplantation tolerance in rodents and primates. In the induction phase, anti-CD154 Ab therapy is known to enhance apoptosis of Ag reactive T cells. However, this may not be the sole explanation for tolerance, as we show in this study that tolerance is maintained through a dominant regulatory mechanism which, like tolerance induced with CD4 Abs, manifests as infectious tolerance. Therefore, tolerance induced with anti-CD154 Abs involves not only the deletion of potentially aggressive T cells, but also a contagious spread of tolerance to new cohorts of graft-reactive T cells as they arise.
Collapse
MESH Headings
- Adoptive Transfer
- Alemtuzumab
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antibodies, Neoplasm/administration & dosage
- CD40 Ligand/immunology
- CD8-Positive T-Lymphocytes/immunology
- Injections, Intraperitoneal
- Injections, Intravenous
- Lymphocyte Depletion/methods
- Lymphocyte Transfusion
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Skin Transplantation/immunology
- T-Lymphocytes/transplantation
- Thymectomy
- Transplantation Tolerance/genetics
- Transplantation Tolerance/immunology
Collapse
|
|
25 |
161 |
3
|
Honey K, Nakagawa T, Peters C, Rudensky A. Cathepsin L regulates CD4+ T cell selection independently of its effect on invariant chain: a role in the generation of positively selecting peptide ligands. J Exp Med 2002; 195:1349-58. [PMID: 12021314 PMCID: PMC2193748 DOI: 10.1084/jem.20011904] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
CD4+ T cells are positively selected in the thymus on peptides presented in the context of major histocompatibility complex class II molecules expressed on cortical thymic epithelial cells. Molecules regulating this peptide presentation play a role in determining the outcome of positive selection. Cathepsin L mediates invariant chain processing in cortical thymic epithelial cells, and animals of the I-A(b) haplotype deficient in this enzyme exhibit impaired CD4+ T cell selection. To determine whether the selection defect is due solely to the block in invariant chain cleavage we analyzed cathepsin L-deficient mice expressing the I-A(q) haplotype which has little dependence upon invariant chain processing for peptide presentation. Our data indicate the cathepsin L defect in CD4+ T cell selection is haplotype independent, and thus imply it is independent of invariant chain degradation. This was confirmed by analysis of I-A(b) mice deficient in both cathepsin L and invariant chain. We show that the defect in positive selection in the cathepsin L-/- thymus is specific for CD4+ T cells that can be selected in a wild-type and provide evidence that the repertoire of T cells selected differs from that in wild-type mice, suggesting cortical thymic epithelial cells in cathepsin L knockout mice express an altered peptide repertoire. Thus, we propose a novel role for cathepsin L in regulating positive selection by generating the major histocompatibility complex class II bound peptide ligands presented by cortical thymic epithelial cells.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Bone Marrow Transplantation
- CD4 Antigens/immunology
- CD4 Antigens/metabolism
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8 Antigens/immunology
- CD8 Antigens/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cathepsin L
- Cathepsins/genetics
- Cathepsins/metabolism
- Cysteine Endopeptidases
- Flow Cytometry
- Gene Deletion
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Lectins, C-Type
- Ligands
- Mice
- Mice, Knockout
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
|
research-article |
23 |
150 |
4
|
Hsieh CS, deRoos P, Honey K, Beers C, Rudensky AY. A role for cathepsin L and cathepsin S in peptide generation for MHC class II presentation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2618-25. [PMID: 11884425 DOI: 10.4049/jimmunol.168.6.2618] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The enzymes that degrade proteins to peptides for presentation on MHC class II molecules are poorly understood. The cysteinal lysosomal proteases, cathepsin L (CL) and cathepsin S (CS), have been shown to process invariant chain, thereby facilitating MHC class II maturation. However, their role in Ag processing is not established. To examine this issue, we generated embryonic fibroblast lines that express CL, CS, or neither. Expression of CL or CS mediates efficient degradation of invariant chain as expected. Ag presentation was evaluated using T cell hybridoma assays as well as mass spectroscopic analysis of peptides eluted from MHC class II molecules. Interestingly, we found that the majority of peptides are presented regardless of CL or CS expression, although these proteases often alter the relative levels of the peptides. However, for a subset of Ags, epitope generation is critically regulated by CL or CS. This result suggests that these cysteinal proteases participate in Ag processing and generate qualitative and quantitative differences in the peptide repertoires displayed by MHC class II molecules.
Collapse
|
|
23 |
138 |
5
|
Reiser J, Oh J, Shirato I, Asanuma K, Hug A, Mundel TM, Honey K, Ishidoh K, Kominami E, Kreidberg JA, Tomino Y, Mundel P. Podocyte migration during nephrotic syndrome requires a coordinated interplay between cathepsin L and alpha3 integrin. J Biol Chem 2004; 279:34827-32. [PMID: 15197181 DOI: 10.1074/jbc.m401973200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Podocyte foot process effacement and disruption of the slit diaphragm are typically associated with glomerular proteinuria and can be induced in rats by the injection of puromycin aminonucleoside. Here, we show that the induction of puromycin aminonucleoside nephrosis involves podocyte migration conducted by a coordinated interplay between the cysteine protease cathepsin L and alpha(3) integrin. Puromycin aminonucleoside treatment up-regulates cathepsin L expression in podocytes in vivo as well as expression and enzymatic activity of cathepsin L in podocytes in vitro. Isolated podocytes from mice lacking cathepsin L are protected from cell puromycin aminonucleoside-induced cell detachment. The functional significance of cathepsin L expression was underscored by the observation that puromycin aminonucleoside-induced cell migration was slowed down in cathepsin L-deficient podocytes and by the preservation of cell-cell contacts and expression of vital slit diaphragm protein CD2AP. Cathepsin L expression and activity were induced in podocytes lacking alpha(3) integrin. Similarly, acute functional inhibition of alpha(3) integrin in wild type podocytes with a blocking antibody increased the expression of cathepsin L activity. Down-regulation of alpha(3) integrin protected against puromycin aminonucleoside-induced podocyte detachment. In summary, these data establish that podocyte foot process effacement is a migratory event involving a novel interplay between cathepsin L and alpha(3) integrin.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
137 |
6
|
Denning TL, Granger SW, Granger S, Mucida D, Graddy R, Leclercq G, Zhang W, Honey K, Rasmussen JP, Cheroutre H, Rudensky AY, Kronenberg M. Mouse TCRalphabeta+CD8alphaalpha intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses. THE JOURNAL OF IMMUNOLOGY 2007; 178:4230-9. [PMID: 17371979 DOI: 10.4049/jimmunol.178.7.4230] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mouse small intestine intraepithelial lymphocytes (IEL) that express alphabetaTCR and CD8alphaalpha homodimers are an enigmatic T cell subset, as their specificity and in vivo function remain to be defined. To gain insight into the nature of these cells, we performed global gene expression profiling using microarray analysis combined with real-time quantitative PCR and flow cytometry. Using these methods, TCRalphabeta(+)CD8alphaalpha IEL were compared with their TCRalphabeta(+)CD8beta(+) and TCRgammadelta(+) counterparts. Interestingly, TCRalphabeta(+)CD8alphaalpha IEL were found to preferentially express genes that would be expected to down-modulate their reactivity. They have a unique expression pattern of members of the Ly49 family of NK receptors and tend to express inhibitory receptors, along with some activating receptors. The signaling machinery of both TCRalphabeta(+)CD8alphaalpha and TCRgammadelta(+) IEL is constructed differently than other IEL and peripheral T cells, as evidenced by their low-level expression of the linker for activation of T cells and high expression of the non-T cell activation linker, which suppresses T cell activation. The TCRalphabeta(+)CD8alphaalpha IEL subset also has increased expression of genes that could be involved in immune regulation, including TGF-beta(3) and lymphocyte activation gene-3. Collectively, these data underscore the fact that, while TCRalphabeta(+)CD8alphaalpha IEL resemble TCRgammadelta(+) IEL, they are a unique population of cells with regulated Ag reactivity that could have regulatory function.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
123 |
7
|
Honey K, Benlagha K, Beers C, Forbush K, Teyton L, Kleijmeer MJ, Rudensky AY, Bendelac A. Thymocyte expression of cathepsin L is essential for NKT cell development. Nat Immunol 2002; 3:1069-74. [PMID: 12368909 DOI: 10.1038/ni844] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2002] [Accepted: 09/04/2002] [Indexed: 01/16/2023]
Abstract
CD1d antigen presentation to natural killer T (NKT) cells expressing the semi-invariant T cell receptor V(alpha)14J(alpha)18 requires CD1d trafficking through endosomal compartments; however, the endosomal events remain undefined. We show that mice lacking the endosomal protease cathepsin L (catL) have greatly reduced numbers of V(alpha)14(+)NK1.1(+) T cells. In addition, catL expression in thymocytes is critical not only for selection of these cells in vivo but also for stimulation of V(alpha)14(+)NK1.1(+) T cells in vitro. CD1d cell-surface expression and intracellular localization appear normal in catL-deficient thymocytes, as does the lysosomal morphology; this implies a specific role for catL in regulating presentation of natural CD1d ligands mediating V(alpha)14(+)NK1.1(+) T cell selection. These data implicate lysosomal proteases as key regulators of not only classical major histocompatibility complex class II antigen presentation but also nonclassical CD1d presentation.
Collapse
MESH Headings
- Animals
- Antigen Presentation/physiology
- Antigens, CD1/metabolism
- Antigens, CD1d
- Bone Marrow Transplantation
- Cathepsin L
- Cathepsins/deficiency
- Cathepsins/genetics
- Cathepsins/physiology
- Cell Communication
- Cell Differentiation
- Cells, Cultured
- Crosses, Genetic
- Cysteine Endopeptidases
- Endosomes/enzymology
- Endosomes/ultrastructure
- Histocompatibility Antigens Class II/immunology
- Killer Cells, Natural/chemistry
- Killer Cells, Natural/cytology
- Ligands
- Lymphocyte Activation
- Lysosomes/enzymology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Messenger/analysis
- Radiation Chimera
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Stromal Cells/enzymology
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- Thymus Gland/cytology
Collapse
|
Comparative Study |
23 |
86 |
8
|
Beers C, Honey K, Fink S, Forbush K, Rudensky A. Differential regulation of cathepsin S and cathepsin L in interferon gamma-treated macrophages. J Exp Med 2003; 197:169-79. [PMID: 12538657 PMCID: PMC2193812 DOI: 10.1084/jem.20020978] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cathepsin S (catS) and cathepsin L (catL) mediate late stages of invariant chain (Ii) degradation in discrete antigen-presenting cell types. Macrophages (Mphis) are unique in that they express both proteases and here we sought to determine the relative contribution of each enzyme. We observe that catL plays no significant role in Ii cleavage in interferon (IFN)-gamma-stimulated Mphis. In addition, our studies show that the level of catL activity is significantly decreased in Mphis cultured in the presence of IFN-gamma whereas catS activity increases. The decrease in catL activity upon cytokine treatment occurs despite the persistence of high levels of mature catL protein, suggesting that a specific inhibitor of the enzyme is up-regulated in IFN-gamma-stimulated peritoneal Mphis. Similar inhibition of activity is observed in dendritic cells engineered to overexpress catL. Such enzymatic inhibition in Mphis exhibits only partial dependence upon Ii and therefore, other mechanisms of catL inhibition are regulated by IFN-gamma. Thus, during a T helper cell type 1 immune response catL inhibition in Mphis results in preferential usage of catS, such that major histocompatibility complex class II presentation by all bone marrow-derived antigen-presenting cell is regulated by catS.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Cathepsin L
- Cathepsins/deficiency
- Cathepsins/genetics
- Cathepsins/metabolism
- Cysteine Endopeptidases
- Histocompatibility Antigens Class II/metabolism
- In Vitro Techniques
- Interferon-gamma/pharmacology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins
- Th1 Cells/immunology
Collapse
|
research-article |
22 |
85 |
9
|
Honey K, Duff M, Beers C, Brissette WH, Elliott EA, Peters C, Maric M, Cresswell P, Rudensky A. Cathepsin S regulates the expression of cathepsin L and the turnover of gamma-interferon-inducible lysosomal thiol reductase in B lymphocytes. J Biol Chem 2001; 276:22573-8. [PMID: 11306582 DOI: 10.1074/jbc.m101851200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loading of antigenic peptide fragments on major histocompatibility complex class II molecules is essential for generation of CD4(+) T cell responses and occurs after cathepsin-mediated degradation of the invariant chain chaperone molecule. Cathepsins are expressed differentially in antigen presenting cells, and mice deficient in cathepsin S or cathepsin L exhibit severely impaired antigen presentation in peripheral lymphoid organs and the thymus, respectively. To determine whether these defects are due solely to the block in invariant chain cleavage, we used cathepsin-deficient B cells to examine the role of cathepsins S and B in the degradation of other molecules important in the class II presentation pathway. Our data indicate that neither cathepsin S nor B is critical for H-2M degradation or processing of precursor gamma-interferon-inducible lysosomal thiol reductase (GILT) to a mature thiol reductase, but suggest a role for cathepsin S in the turnover of mature GILT and in regulating levels of mature cathepsin L protein in B cells. Despite the presence of mature cathepsin L protein, no enzyme activity could be detected in B cells or dendritic cells. These experiments suggest a novel mechanism by which these functionally important enzymes may be regulated.
Collapse
|
|
24 |
44 |
10
|
|
News |
18 |
25 |
11
|
|
News |
17 |
23 |
12
|
Sengupta R, Honey K. AACR Cancer Disparities Progress Report 2020: Achieving the Bold Vision of Health Equity for Racial and Ethnic Minorities and Other Underserved Populations. Cancer Epidemiol Biomarkers Prev 2020; 29:1843. [PMID: 32938690 DOI: 10.1158/1055-9965.epi-20-0269] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/16/2022] Open
|
Journal Article |
5 |
22 |
13
|
Honey K, Cobbold SP, Waldmann H. Dominant tolerance and linked suppression induced by therapeutic antibodies do not depend on Fas-FasL interactions. Transplantation 2000; 69:1683-9. [PMID: 10836381 DOI: 10.1097/00007890-200004270-00026] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Nonlytic anti-CD4 monoclonal antibody therapy can be used to induce transplantation tolerance in rodent models. Such tolerance is often associated with dominant regulation, mediated by CD4+ cells, and characterized by infectious tolerance and linked suppression. Understanding the mechanisms by which CD4+ regulatory cells function may improve the manner in which current immunosuppressants are applied and may lead to the development of new tolerance-inducing therapeutics. Fas-mediated apoptosis has been characterized as an important mechanism of peripheral self-tolerance and we here examine whether it has any role in anti-CD4 monoclonal antibody-induced dominant tolerance. METHODS Tolerance to transplanted skin and bone marrow, mismatched for multiple minor histocompatibility antigens, was induced in Fas mutant and control mice using anti-CD4 and anti-CD8 monoclonal antibodies. To test for linked suppression, animals were transplanted with a second graft-bearing tolerated and third party antigens. The ability of splenocytes from tolerant animals to suppress graft rejection was assessed by transfer into partially immunocompromised recipients. RESULTS Monoclonal antibody therapy rendered Fas mutant mice tolerant of minor disparate skin and bone marrow. Splenocytes from these and control tolerant animals when transferred into partially immunocompromised Fas mutant or control recipients, induced antigen-specific suppression of graft rejection. Additionally, tolerant Fas mutant mice accepted grafts bearing tolerated and third party antigens. CONCLUSIONS Signal transduction through the Fas receptor plays no essential role in the induction of tolerance using anti-CD4 and anti-CD8 monoclonal antibodies or its maintenance by active regulation.
Collapse
|
|
25 |
19 |
14
|
Honey K, Forbush K, Jensen PE, Rudensky AY. Effect of Decreasing the Affinity of the Class II-Associated Invariant Chain Peptide on the MHC Class II Peptide Repertoire in the Presence or Absence of H-2M1. THE JOURNAL OF IMMUNOLOGY 2004; 172:4142-50. [PMID: 15034026 DOI: 10.4049/jimmunol.172.7.4142] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The class II-associated invariant chain peptide (CLIP) region of the invariant chain (Ii) directly influences MHC class II presentation by occupying the MHC class II peptide-binding groove, thereby preventing premature loading of peptides. Different MHC class II alleles exhibit distinct affinities for CLIP, and a low affinity interaction has been associated with decreased dependence upon H-2M and increased susceptibility to rheumatoid arthritis, suggesting that decreased CLIP affinity alters the MHC class II-bound peptide repertoire, thereby promoting autoimmunity. To examine the role of CLIP affinity in determining the MHC class II peptide repertoire, we generated transgenic mice expressing either wild-type human Ii or human Ii containing a CLIP region of low affinity for MHC class II. Our data indicate that although degradation intermediates of Ii containing a CLIP region with decreased affinity for MHC class II do not remain associated with I-A(b), this does not substantially alter the peptide repertoire bound by MHC class II or increase autoimmune susceptibility in the mice. This implies that the affinity of the CLIP:MHC class II interaction is not a strong contributory factor in determining the probability of developing autoimmunity. In contrast, in the absence of H-2M, MHC class II peptide repertoire diversity is enhanced by decreasing the affinity of CLIP for MHC class II, although MHC class II cell surface expression is reduced. Thus, we show clearly, in vivo, the critical chaperone function of H-2M, which preserves MHC class II molecules for high affinity peptide binding upon dissociation of Ii degradation intermediates.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation/genetics
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/physiology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Dose-Response Relationship, Immunologic
- Down-Regulation/immunology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
Collapse
|
|
21 |
16 |
15
|
Honey K, Cobbold SP, Waldmann H. Dominant regulation: a common mechanism of monoclonal antibody induced tolerance? Immunol Res 1999; 20:1-14. [PMID: 10467979 DOI: 10.1007/bf02786503] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Transplantation tolerance can be induced by a range of agents that block T cell/antigen-presenting cell (APC) interactions known to be important for initiation of the adaptive immune response. Tolerance so induced has been shown to have a regulatory phenotype dependent on CD4+ cells. This was first observed with nonlytic anti-CD4 antibodies, and was recently demonstrated following other therapeutic approaches. Dominant tolerance also plays a role in natural regulation of the immune response, functioning to prevent autoaggressive cells mediating self-destruction. The mechanism by which dominant tolerance is established and maintained remains unclear, and the reported characteristics of regulatory cells in different experimental models vary widely. Here we review the evidence for potential mechanisms involved and propose that there is a common pathway by which dominant tolerance is mediated.
Collapse
|
Review |
26 |
9 |
16
|
|
News |
18 |
8 |
17
|
Honey K. Good bugs, bad bugs: learning what we can from the microorganisms that colonize our bodies. J Clin Invest 2008; 118:3817. [PMID: 19086107 DOI: 10.1172/jci37910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
News |
17 |
8 |
18
|
Sengupta R, Honey K. AACR Cancer Progress Report 2018: Harnessing Research Discoveries for Patient Benefit. Clin Cancer Res 2019; 24:4351. [PMID: 30209160 DOI: 10.1158/1078-0432.ccr-18-2756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
Editorial |
6 |
8 |
19
|
|
News |
17 |
7 |
20
|
|
News |
18 |
7 |
21
|
Sengupta R, Honey K. AACR Cancer Progress Report 2019: Transforming Lives Through Innovative Cancer Science. Clin Cancer Res 2019; 25:5431. [DOI: 10.1158/1078-0432.ccr-19-2655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022]
|
|
6 |
6 |
22
|
Honey K, Rudensky A. The pIV-otal class II transactivator promoter regulates major histocompatibility complex class II expression in the thymus. J Exp Med 2001; 194:F15-8. [PMID: 11514611 PMCID: PMC2193492 DOI: 10.1084/jem.194.4.f15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
article-commentary |
24 |
6 |
23
|
Honey K, Bemelman F, Cobbold SP, Waldmann H. High dose bone marrow transplantation induces deletion of antigen-specific T cells in a Fas-independent manner. Transplantation 2000; 69:1676-82. [PMID: 10836380 DOI: 10.1097/00007890-200004270-00025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Monoclonal antibody induced tolerance to high doses of multiple lymphocyte stimulating (MLS)+minor mismatched bone marrow has recently been associated with clonal deletion, as reported in fully allogeneic models of bone marrow transplantation. FasL-induced apoptosis has been shown to mediate antigen-specific T cell deletion after antigenic stimulation in wild-type and T cell receptor transgenic mice. Therefore, we investigate a role for the Fas pathway in deletional tolerance to high dose bone marrow. METHODS Fas mutant and control mice (H-2k, MLS-1b) were tolerized under the cover of monoclonal antibodies to high dose (5 x 10(7) cells) AKR (H-2k, MLS-1a) bone marrow. Tolerance was confirmed by AKR skin grafting after antibody clearance. Antigen-reactive cell deletion was monitored by Vbeta6+ T cell elimination, measured by flow cytometry of peripheral blood throughout the experiment. Donor T cell (Thy1.1+) chimerism was assessed in a similar manner. RESULTS Fas mutant mice infused with high dose AKR bone marrow under the cover of antibody were tolerant, as demonstrated by indefinite survival of AKR skin grafts. When high levels of donor cell chimerism were established in Fas mutant mice, peripheral deletion of antigen-reactive cells was observed to be independent of signaling through Fas. CONCLUSIONS Apoptosis mediated by Fas receptor signaling is not the mechanism of clonal deletion of antigen-reactive cells after antibody facilitated high dose marrow transplantation. However, the Fas mutation does impair the development of adequate donor chimerism.
Collapse
|
|
25 |
5 |
24
|
|
News |
17 |
5 |
25
|
Sengupta R, Honey K. AACR Cancer Progress Report 2020: Turning Science into Lifesaving Care. Clin Cancer Res 2020; 26:5055. [PMID: 32967942 DOI: 10.1158/1078-0432.ccr-20-3187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022]
|
|
5 |
4 |