1
|
Ashley-Koch AE, Okocha EC, Garrett ME, Soldano K, De Castro LM, Jonassaint JC, Orringer EP, Eckman JR, Telen MJ. MYH9 and APOL1 are both associated with sickle cell disease nephropathy. Br J Haematol 2011; 155:386-94. [PMID: 21910715 DOI: 10.1111/j.1365-2141.2011.08832.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Renal failure occurs in 5-18% of sickle cell disease (SCD) patients and is associated with early mortality. At-risk SCD patients cannot be identified prior to the appearance of proteinuria and the pathobiology is not well understood. The myosin, heavy chain 9, non-muscle (MYH9) and apolipoprotein L1 (APOL1) genes have been associated with risk for focal segmental glomerulosclerosis and end-stage renal disease in African Americans. We genotyped 26 single nucleotide polymorphisms (SNPs) in MYH9 and 2 SNPs in APOL1 (representing the G1 and G2 tags) in 521 unrelated adult (18-83 years) SCD patients screened for proteinuria. Using logistic regression, SNPs were evaluated for association with proteinuria. Seven SNPs in MYH9 and one in APOL1 remained significantly associated with proteinuria after multiple testing correction (P < 0·0025). An MYH9 risk haplotype (P = 0·001) and the APOL1 G1/G2 recessive model (P < 0·0001) were strongly associated with proteinuria, even when accounting for the other. Glomerular filtration rate was negatively correlated with proteinuria (P < 0·0001), and was significantly predicted by an interaction between MYH9 and APOL1 in age-adjusted analyses. Our data provide insight into the pathobiology of renal dysfunction in SCD, suggesting that MYH9 and APOL1 are both associated with risk.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
120 |
2
|
Soldano KL, Jivan A, Nicchitta CV, Gewirth DT. Structure of the N-terminal domain of GRP94. Basis for ligand specificity and regulation. J Biol Chem 2003; 278:48330-8. [PMID: 12970348 DOI: 10.1074/jbc.m308661200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
GRP94, the endoplasmic reticulum (ER) paralog of the chaperone Hsp90, plays an essential role in the structural maturation or secretion of a subset of proteins destined for transport to the cell surface, such as the Toll-like receptors 2 and 4, and IgG, respectively. GRP94 differs from cytoplasmic Hsp90 by exhibiting very weak ATP binding and hydrolysis activity. GRP94 also binds selectively to a series of substituted adenosine analogs. The high resolution crystal structures at 1.75-2.1 A of the N-terminal and adjacent charged domains of GRP94 in complex with N-ethylcarboxamidoadenosine, radicicol, and 2-chlorodideoxyadenosine reveals a structural mechanism for ligand discrimination among hsp90 family members. The structures also identify a putative subdomain that may act as a ligand-responsive switch. The residues of the charged region fold into a disordered loop whose termini are ordered and continue the twisted beta sheet that forms the structural core of the N-domain. This continuation of the beta sheet past the charged domain suggests a structural basis for the association of the N-terminal and middle domains of the full-length chaperone.
Collapse
|
|
22 |
109 |
3
|
Immormino RM, Dollins DE, Shaffer PL, Soldano KL, Walker MA, Gewirth DT. Ligand-induced conformational shift in the N-terminal domain of GRP94, an Hsp90 chaperone. J Biol Chem 2004; 279:46162-71. [PMID: 15292259 DOI: 10.1074/jbc.m405253200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GRP94 is the endoplasmic reticulum paralog of cytoplasmic Hsp90. Models of Hsp90 action posit an ATP-dependent conformational switch in the N-terminal ligand regulatory domain of the chaperone. However, crystal structures of the isolated N-domain of Hsp90 in complex with a variety of ligands have yet to demonstrate such a conformational change. We have determined the structure of the N-domain of GRP94 in complex with ATP, ADP, and AMP. Compared with the N-ethylcarboxamidoadenosine and radicicol-bound forms, these structures reveal a large conformational rearrangement in the protein. The nucleotide-bound form exposes new surfaces that interact to form a biochemically plausible dimer that is reminiscent of those seen in structures of MutL and DNA gyrase. Weak ATP binding and a conformational change in response to ligand identity are distinctive mechanistic features of GRP94 and suggest a model for how GRP94 functions in the absence of co-chaperones and ATP hydrolysis.
Collapse
|
Journal Article |
21 |
81 |
4
|
Milton JN, Sebastiani P, Solovieff N, Hartley SW, Bhatnagar P, Arking DE, Dworkis DA, Casella JF, Barron-Casella E, Bean CJ, Hooper WC, DeBaun MR, Garrett ME, Soldano K, Telen MJ, Ashley-Koch A, Gladwin MT, Baldwin CT, Steinberg MH, Klings ES. A genome-wide association study of total bilirubin and cholelithiasis risk in sickle cell anemia. PLoS One 2012; 7:e34741. [PMID: 22558097 PMCID: PMC3338756 DOI: 10.1371/journal.pone.0034741] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/05/2012] [Indexed: 12/31/2022] Open
Abstract
Serum bilirubin levels have been associated with polymorphisms in the UGT1A1 promoter in normal populations and in patients with hemolytic anemias, including sickle cell anemia. When hemolysis occurs circulating heme increases, leading to elevated bilirubin levels and an increased incidence of cholelithiasis. We performed the first genome-wide association study (GWAS) of bilirubin levels and cholelithiasis risk in a discovery cohort of 1,117 sickle cell anemia patients. We found 15 single nucleotide polymorphisms (SNPs) associated with total bilirubin levels at the genome-wide significance level (p value <5 × 10(-8)). SNPs in UGT1A1, UGT1A3, UGT1A6, UGT1A8 and UGT1A10, different isoforms within the UGT1A locus, were identified (most significant rs887829, p = 9.08 × 10(-25)). All of these associations were validated in 4 independent sets of sickle cell anemia patients. We tested the association of the 15 SNPs with cholelithiasis in the discovery cohort and found a significant association (most significant p value 1.15 × 10(-4)). These results confirm that the UGT1A region is the major regulator of bilirubin metabolism in African Americans with sickle cell anemia, similar to what is observed in other ethnicities.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
48 |
5
|
Anderson BR, Howell DN, Soldano K, Garrett ME, Katsanis N, Telen MJ, Davis EE, Ashley-Koch AE. In vivo Modeling Implicates APOL1 in Nephropathy: Evidence for Dominant Negative Effects and Epistasis under Anemic Stress. PLoS Genet 2015; 11:e1005349. [PMID: 26147622 PMCID: PMC4492502 DOI: 10.1371/journal.pgen.1005349] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/09/2015] [Indexed: 01/13/2023] Open
Abstract
African Americans have a disproportionate risk for developing nephropathy. This disparity has been attributed to coding variants (G1 and G2) in apolipoprotein L1 (APOL1); however, there is little functional evidence supporting the role of this protein in renal function. Here, we combined genetics and in vivo modeling to examine the role of apol1 in glomerular development and pronephric filtration and to test the pathogenic potential of APOL1 G1 and G2. Translational suppression or CRISPR/Cas9 genome editing of apol1 in zebrafish embryos results in podocyte loss and glomerular filtration defects. Complementation of apol1 morphants with wild-type human APOL1 mRNA rescues these defects. However, the APOL1 G1 risk allele does not ameliorate defects caused by apol1 suppression and the pathogenicity is conferred by the cis effect of both individual variants of the G1 risk haplotype (I384M/S342G). In vivo complementation studies of the G2 risk allele also indicate that the variant is deleterious to protein function. Moreover, APOL1 G2, but not G1, expression alone promotes developmental kidney defects, suggesting a possible dominant-negative effect of the altered protein. In sickle cell disease (SCD) patients, we reported previously a genetic interaction between APOL1 and MYH9. Testing this interaction in vivo by co-suppressing both transcripts yielded no additive effects. However, upon genetic or chemical induction of anemia, we observed a significantly exacerbated nephropathy phenotype. Furthermore, concordant with the genetic interaction observed in SCD patients, APOL1 G2 reduces myh9 expression in vivo, suggesting a possible interaction between the altered APOL1 and myh9. Our data indicate a critical role for APOL1 in renal function that is compromised by nephropathy-risk encoding variants. Moreover, our interaction studies indicate that the MYH9 locus is also relevant to the phenotype in a stressed microenvironment and suggest that consideration of the context-dependent functions of both proteins will be required to develop therapeutic paradigms. African Americans have a disproportionate risk for developing chronic kidney disease compared to European Americans. Previous studies have identified a region on chromosome 22 containing two genes, MYH9 and APOL1, which likely accounts for nearly all of this difference. Previous reports provided strong statistical evidence implicating APOL1 as the major contributor to nephropathy risk in African Americans, driven by two coding variants, termed G1 and G2. However, other groups still report statistical evidence for MYH9 association in kidney disease, and animal models have demonstrated biological relevance for MYH9 function in the kidney. Here, we show that suppressing apol1 in zebrafish embryos results in perturbed kidney function. Importantly, using this in vivo assay, we show that the G1 variant appears to cause a loss of APOL1 function, while the G2 variant results in an altered protein that may be acting antagonistically in the presence of normal APOL1. We also report a genetic interaction between apol1 and myh9 under anemic stress, which is consistent with our previous findings in sickle cell disease (SCD) nephropathy patients. Finally, we provide functional evidence in vivo that the G2-altered APOL1 may be interacting with MYH9 to confer nephropathy risk.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
41 |
6
|
Markunas CA, Soldano K, Dunlap K, Cope H, Asiimwe E, Stajich J, Enterline D, Grant G, Fuchs H, Gregory SG, Ashley-Koch AE. Stratified whole genome linkage analysis of Chiari type I malformation implicates known Klippel-Feil syndrome genes as putative disease candidates. PLoS One 2013; 8:e61521. [PMID: 23620759 PMCID: PMC3631233 DOI: 10.1371/journal.pone.0061521] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 03/11/2013] [Indexed: 01/08/2023] Open
Abstract
Chiari Type I Malformation (CMI) is characterized by displacement of the cerebellar tonsils below the base of the skull, resulting in significant neurologic morbidity. Although multiple lines of evidence support a genetic contribution to disease, no genes have been identified. We therefore conducted the largest whole genome linkage screen to date using 367 individuals from 66 families with at least two individuals presenting with nonsyndromic CMI with or without syringomyelia. Initial findings across all 66 families showed minimal evidence for linkage due to suspected genetic heterogeneity. In order to improve power to localize susceptibility genes, stratified linkage analyses were performed using clinical criteria to differentiate families based on etiologic factors. Families were stratified on the presence or absence of clinical features associated with connective tissue disorders (CTDs) since CMI and CTDs frequently co-occur and it has been proposed that CMI patients with CTDs represent a distinct class of patients with a different underlying disease mechanism. Stratified linkage analyses resulted in a marked increase in evidence of linkage to multiple genomic regions consistent with reduced genetic heterogeneity. Of particular interest were two regions (Chr8, Max LOD = 3.04; Chr12, Max LOD = 2.09) identified within the subset of "CTD-negative" families, both of which harbor growth differentiation factors (GDF6, GDF3) implicated in the development of Klippel-Feil syndrome (KFS). Interestingly, roughly 3-5% of CMI patients are diagnosed with KFS. In order to investigate the possibility that CMI and KFS are allelic, GDF3 and GDF6 were sequenced leading to the identification of a previously known KFS missense mutation and potential regulatory variants in GDF6. This study has demonstrated the value of reducing genetic heterogeneity by clinical stratification implicating several convincing biological candidates and further supporting the hypothesis that multiple, distinct mechanisms are responsible for CMI.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
34 |
7
|
Markunas CA, Enterline DS, Dunlap K, Soldano K, Cope H, Stajich J, Grant G, Fuchs H, Gregory SG, Ashley-Koch AE. Genetic evaluation and application of posterior cranial fossa traits as endophenotypes for Chiari type I malformation. Ann Hum Genet 2013; 78:1-12. [PMID: 24359474 DOI: 10.1111/ahg.12041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/21/2013] [Indexed: 11/29/2022]
Abstract
Chiari Type I Malformation (CMI) is characterized by herniation of the cerebellar tonsils through the base of the skull. Although cerebellar tonsillar herniation (CTH) is hypothesized to result from an underdeveloped posterior cranial fossa (PF), patients are frequently diagnosed by the extent of CTH without cranial morphometric assessment. We recently completed the largest CMI whole genome qualitative linkage screen to date. Despite an initial lack of statistical evidence, stratified analyses using clinical criteria to reduce heterogeneity resulted in a striking increase in evidence for linkage. The present study focused on the use of cranial base morphometrics to further dissect this heterogeneity and increase power to identify disease genes. We characterized the genetic contribution for a series of PF traits and evaluated the use of heritable, disease-relevant PF traits in ordered subset analysis (OSA). Consistent with a genetic hypothesis for CMI, much of the PF morphology was found to be heritable and multiple genomic regions were strongly implicated from OSA, including regions on Chromosomes 1 (LOD = 3.07, p = 3 × 10(-3) ) and 22 (LOD = 3.45, p = 6 × 10(-5) ) containing several candidates warranting further investigation. This study underscores the genetic heterogeneity of CMI and the utility of PF traits in CMI genetic studies.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
31 |
8
|
Nystrom SE, Li G, Datta S, Soldano K, Silas D, Weins A, Hall G, Thomas DB, Olabisi OA. JAK inhibitor blocks COVID-19-cytokine-induced JAK-STAT-APOL1 signaling in glomerular cells and podocytopathy in human kidney organoids. JCI Insight 2022; 7:157432. [PMID: 35472001 PMCID: PMC9220952 DOI: 10.1172/jci.insight.157432] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
COVID-19 infection causes collapse of glomerular capillaries and loss of podocytes, culminating in a severe kidney disease called COVID-19–associated nephropathy (COVAN). The underlying mechanism of COVAN is unknown. We hypothesized that cytokines induced by COVID-19 trigger expression of pathogenic APOL1 via JAK/STAT signaling, resulting in podocyte loss and COVAN phenotype. Here, based on 9 biopsy-proven COVAN cases, we demonstrated for the first time, to the best of our knowledge, that APOL1 protein was abundantly expressed in podocytes and glomerular endothelial cells (GECs) of COVAN kidneys but not in controls. Moreover, a majority of patients with COVAN carried 2 APOL1 risk alleles. We show that recombinant cytokines induced by SARS-CoV-2 acted synergistically to drive APOL1 expression through the JAK/STAT pathway in primary human podocytes, GECs, and kidney micro-organoids derived from a carrier of 2 APOL1 risk alleles, but expression was blocked by a JAK1/2 inhibitor, baricitinib. We demonstrate that cytokine-induced JAK/STAT/APOL1 signaling reduced the viability of kidney organoid podocytes but was rescued by baricitinib. Together, our results support the conclusion that COVID-19–induced cytokines are sufficient to drive COVAN-associated podocytopathy via JAK/STAT/APOL1 signaling and that JAK inhibitors could block this pathogenic process. These findings suggest JAK inhibitors may have therapeutic benefits for managing cytokine-induced, APOL1-mediated podocytopathy.
Collapse
|
|
3 |
31 |
9
|
Xu JZ, Garrett ME, Soldano KL, Chen ST, Clish CB, Ashley-Koch AE, Telen MJ. Clinical and metabolomic risk factors associated with rapid renal function decline in sickle cell disease. Am J Hematol 2018; 93:1451-1460. [PMID: 30144150 DOI: 10.1002/ajh.25263] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022]
Abstract
Sickle cell disease (SCD) nephropathy and lower estimated glomerular filtration rate (eGFR) are risk factors for early mortality. Furthermore, rate of eGFR decline predicts progression to end-stage renal disease in many clinical settings. However, factors predicting renal function decline in SCD are poorly documented. Using clinical, laboratory, genetic, and metabolomic data, we evaluated predictors of renal function decline in a longitudinal cohort of 288 adults (mean age 33.0 years). In 193 subjects with 5-year follow-up data, mean rate of eGFR decline was 2.35 mL/min/1.73 m2 /year, nearly twice that of African American adults overall. Hyperfiltration was prevalent at baseline (61.1%), and 36.8% of subjects experienced rapid eGFR decline (≥3 mL/min/1.73 m2 /year). Severe Hb genotype; proteinuria; higher platelet and reticulocyte counts, and systolic BP; and lower Hb level and BMI were associated with rapid decline. A risk scoring system was created using these 7 variables and was highly predictive of rapid eGFR decline, with odds of rapid decline increasing 1.635-fold for every point increment (P < 0.0001). Rapid eGFR decline was also associated with higher organ system severity score and peak creatinine. Additionally, two metabolites (asymmetric dimethylarginine and quinolinic acid) were associated with rapid decline. Further investigation into longitudinal SCD nephropathy (SCDN) trajectory, early markers of SCDN, and tools for risk stratification should inform interventional studies targeted to slowing GFR decline and improving SCD outcomes.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
25 |
10
|
Markunas CA, Lock E, Soldano K, Cope H, Ding CKC, Enterline DS, Grant G, Fuchs H, Ashley-Koch AE, Gregory SG. Identification of Chiari Type I Malformation subtypes using whole genome expression profiles and cranial base morphometrics. BMC Med Genomics 2014; 7:39. [PMID: 24962150 PMCID: PMC4082616 DOI: 10.1186/1755-8794-7-39] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/18/2014] [Indexed: 12/02/2022] Open
Abstract
Background Chiari Type I Malformation (CMI) is characterized by herniation of the cerebellar tonsils through the foramen magnum at the base of the skull, resulting in significant neurologic morbidity. As CMI patients display a high degree of clinical variability and multiple mechanisms have been proposed for tonsillar herniation, it is hypothesized that this heterogeneous disorder is due to multiple genetic and environmental factors. The purpose of the present study was to gain a better understanding of what factors contribute to this heterogeneity by using an unsupervised statistical approach to define disease subtypes within a case-only pediatric population. Methods A collection of forty-four pediatric CMI patients were ascertained to identify disease subtypes using whole genome expression profiles generated from patient blood and dura mater tissue samples, and radiological data consisting of posterior fossa (PF) morphometrics. Sparse k-means clustering and an extension to accommodate multiple data sources were used to cluster patients into more homogeneous groups using biological and radiological data both individually and collectively. Results All clustering analyses resulted in the significant identification of patient classes, with the pure biological classes derived from patient blood and dura mater samples demonstrating the strongest evidence. Those patient classes were further characterized by identifying enriched biological pathways, as well as correlated cranial base morphological and clinical traits. Conclusions Our results implicate several strong biological candidates warranting further investigation from the dura expression analysis and also identified a blood gene expression profile corresponding to a global down-regulation in protein synthesis.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
18 |
11
|
Monroe TO, Garrett ME, Kousi M, Rodriguiz RM, Moon S, Bai Y, Brodar SC, Soldano KL, Savage J, Hansen TF, Muzny DM, Gibbs RA, Barak L, Sullivan PF, Ashley-Koch AE, Sawa A, Wetsel WC, Werge T, Katsanis N. PCM1 is necessary for focal ciliary integrity and is a candidate for severe schizophrenia. Nat Commun 2020; 11:5903. [PMID: 33214552 PMCID: PMC7677393 DOI: 10.1038/s41467-020-19637-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 10/13/2020] [Indexed: 12/30/2022] Open
Abstract
The neuronal primary cilium and centriolar satellites have functions in neurogenesis, but little is known about their roles in the postnatal brain. We show that ablation of pericentriolar material 1 in the mouse leads to progressive ciliary, anatomical, psychomotor, and cognitive abnormalities. RNAseq reveals changes in amine- and G-protein coupled receptor pathways. The physiological relevance of this phenotype is supported by decreased available dopamine D2 receptor (D2R) levels and the failure of antipsychotic drugs to rescue adult behavioral defects. Immunoprecipitations show an association with Pcm1 and D2Rs. Finally, we sequence PCM1 in two human cohorts with severe schizophrenia. Systematic modeling of all discovered rare alleles by zebrafish in vivo complementation reveals an enrichment for pathogenic alleles. Our data emphasize a role for the pericentriolar material in the postnatal brain, with progressive degenerative ciliary and behavioral phenotypes; and they support a contributory role for PCM1 in some individuals diagnosed with schizophrenia. The role of ciliary/centriolar components in the postnatal brain is unclear. Here, the authors show via ablation of Pcm1 in mice that degenerative ciliary/centriolar phenotypes induce neuroanatomical and behavioral changes. Sequencing of PCM1 in human cohorts and zebrafish in vivo complementation suggests PCM1 mutations can contribute to schizophrenia.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
15 |
12
|
Sadler B, Wilborn J, Antunes L, Kuensting T, Hale AT, Gannon SR, McCall K, Cruchaga C, Harms M, Voisin N, Reymond A, Cappuccio G, Brunetti-Pierri N, Tartaglia M, Niceta M, Leoni C, Zampino G, Ashley-Koch A, Urbizu A, Garrett ME, Soldano K, Macaya A, Conrad D, Strahle J, Dobbs MB, Turner TN, Shannon CN, Brockmeyer D, Limbrick DD, Gurnett CA, Haller G. Rare and de novo coding variants in chromodomain genes in Chiari I malformation. Am J Hum Genet 2021; 108:100-114. [PMID: 33352116 PMCID: PMC7820723 DOI: 10.1016/j.ajhg.2020.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Chiari I malformation (CM1), the displacement of the cerebellum through the foramen magnum into the spinal canal, is one of the most common pediatric neurological conditions. Individuals with CM1 can present with neurological symptoms, including severe headaches and sensory or motor deficits, often as a consequence of brainstem compression or syringomyelia (SM). We conducted whole-exome sequencing (WES) on 668 CM1 probands and 232 family members and performed gene-burden and de novo enrichment analyses. A significant enrichment of rare and de novo non-synonymous variants in chromodomain (CHD) genes was observed among individuals with CM1 (combined p = 2.4 × 10-10), including 3 de novo loss-of-function variants in CHD8 (LOF enrichment p = 1.9 × 10-10) and a significant burden of rare transmitted variants in CHD3 (p = 1.8 × 10-6). Overall, individuals with CM1 were found to have significantly increased head circumference (p = 2.6 × 10-9), with many harboring CHD rare variants having macrocephaly. Finally, haploinsufficiency for chd8 in zebrafish led to macrocephaly and posterior hindbrain displacement reminiscent of CM1. These results implicate chromodomain genes and excessive brain growth in CM1 pathogenesis.
Collapse
|
research-article |
4 |
12 |
13
|
Datta S, Antonio BM, Zahler NH, Theile JW, Krafte D, Zhang H, Rosenberg PB, Chaves AB, Muoio DM, Zhang G, Silas D, Li G, Soldano K, Nystrom S, Ferreira D, Miller SE, Bain JR, Muehlbauer MJ, Ilkayeva O, Becker TC, Hohmeier HE, Newgard CB, Olabisi OA. APOL1-mediated monovalent cation transport contributes to APOL1-mediated podocytopathy in kidney disease. J Clin Invest 2024; 134:e172262. [PMID: 38227370 PMCID: PMC10904047 DOI: 10.1172/jci172262] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024] Open
Abstract
Two coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity. In HEK293 cells, we demonstrated that G1-mediated Na+ import/K+ efflux triggered activation of GPCR/IP3-mediated calcium release from the ER, impaired mitochondrial ATP production, and impaired translation, which were all reversed by VX-147. In human urine-derived podocyte-like epithelial cells (HUPECs), we demonstrated that G1 caused cytotoxicity that was again reversible by VX-147. Finally, in podocytes isolated from APOL1 G1 transgenic mice, we showed that IFN-γ-mediated induction of G1 caused K+ efflux, activation of GPCR/IP3 signaling, and inhibition of translation, podocyte injury, and proteinuria, all reversed by VX-147. Together, these results establish APOL1-mediated Na+/K+ transport as the proximal driver of APOL1-mediated kidney disease.
Collapse
|
research-article |
1 |
11 |
14
|
Krupp DR, Soldano KL, Garrett ME, Cope H, Ashley-Koch AE, Gregory SG. Missing genetic risk in neural tube defects: can exome sequencing yield an insight? ACTA ACUST UNITED AC 2014; 100:642-6. [PMID: 25044326 DOI: 10.1002/bdra.23276] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/30/2014] [Accepted: 05/31/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND Neural tube defects (NTD) have a strong genetic component, with up to 70% of variance in human prevalence determined by heritable factors. Although the identification of causal DNA variants by sequencing candidate genes from functionally relevant pathways and model organisms has provided some success, alternative approaches are demanded. METHODS Next generation sequencing platforms are facilitating the production of massive amounts of sequencing data, primarily from the protein coding regions of the genome, at a faster rate and cheaper cost than has previously been possible. These platforms are permitting the identification of variants (de novo, rare, and common) that are drivers of NYTD etiology, and the cost of the approach allows for the screening of increased numbers of affected and unaffected individuals from NTD families and in simplex cases. CONCLUSION The next generation sequencing platforms represent a powerful tool in the armory of the genetics researcher to identify the causal genetic basis of NTDs.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
10 |
15
|
Steffens DC, Garrett ME, Soldano KL, McQuoid DR, Ashley-Koch AE, Potter GG. Genome-wide screen to identify genetic loci associated with cognitive decline in late-life depression. Int Psychogeriatr 2024; 36:1021-1029. [PMID: 32641180 PMCID: PMC7794099 DOI: 10.1017/s1041610220001143] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study sought to conduct a comprehensive search for genetic risk of cognitive decline in the context of geriatric depression. DESIGN A genome-wide association study (GWAS) analysis in the Neurocognitive Outcomes of Depression in the Elderly (NCODE) study. SETTING Longitudinal, naturalistic follow-up study. PARTICIPANTS Older depressed adults, both outpatients and inpatients, receiving care at an academic medical center. MEASUREMENTS The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuropsychological battery was administered to the study participants at baseline and a minimum of twice within a subsequent 3-year period in order to measure cognitive decline. A GWAS analysis was conducted to identify genetic variation that is associated with baseline and change in the CERAD Total Score (CERAD-TS) in NCODE. RESULTS The GWAS of baseline CERAD-TS revealed a significant association with an intergenic single-nucleotide polymorphism (SNP) on chromosome 6, rs17662598, that surpassed adjustment for multiple testing (p = 3.7 × 10-7; false discovery rate q = 0.0371). For each additional G allele, average baseline CERAD-TS decreased by 8.656 points. The most significant SNP that lies within a gene was rs11666579 in SLC27A1 (p = 1.1 × 10-5). Each additional copy of the G allele was associated with an average decrease of baseline CERAD-TS of 4.829 points. SLC27A1 is involved with processing docosahexaenoic acid (DHA), an endogenous neuroprotective compound in the brain. Decreased levels of DHA have been associated with the development of Alzheimer's disease. The most significant SNP associated with CERAD-TS decline over time was rs73240021 in GRXCR1 (p = 1.1 × 10-6), a gene previously linked with deafness. However, none of the associations within genes survived adjustment for multiple testing. CONCLUSIONS Our GWAS of cognitive function and decline among individuals with late-life depression (LLD) has identified promising candidate genes that, upon replication in other cohorts of LLD, may be potential biomarkers for cognitive decline and suggests DHA supplementation as a possible therapy of interest.
Collapse
|
research-article |
1 |
7 |
16
|
Jacob SA, Novelli EM, Isenberg JS, Garrett ME, Chu Y, Soldano K, Ataga KI, Telen MJ, Ashley‐Koch A, Gladwin MT, Zhang Y, Kato GJ. Thrombospondin-1 gene polymorphism is associated with estimated pulmonary artery pressure in patients with sickle cell anemia. Am J Hematol 2017; 92:E31-E34. [PMID: 28033687 DOI: 10.1002/ajh.24635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 11/11/2022]
|
Clinical Trial |
8 |
7 |
17
|
Anderson BR, Howell DN, Soldano K, Garrett ME, Katsanis N, Telen MJ, Davis EE, Ashley-Koch AE. Correction: In vivo Modeling Implicates APOL1 in Nephropathy: Evidence for Dominant Negative Effects and Epistasis under Anemic Stress. PLoS Genet 2015; 11:e1005459. [PMID: 26379250 PMCID: PMC4574926 DOI: 10.1371/journal.pgen.1005459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
Published Erratum |
10 |
5 |
18
|
Lock EF, Soldano KL, Garrett ME, Cope H, Markunas CA, Fuchs H, Grant G, Dunson DB, Gregory SG, Ashley-Koch AE. Joint eQTL assessment of whole blood and dura mater tissue from individuals with Chiari type I malformation. BMC Genomics 2015; 16:11. [PMID: 25609184 PMCID: PMC4342828 DOI: 10.1186/s12864-014-1211-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/30/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Expression quantitative trait loci (eQTL) play an important role in the regulation of gene expression. Gene expression levels and eQTLs are expected to vary from tissue to tissue, and therefore multi-tissue analyses are necessary to fully understand complex genetic conditions in humans. Dura mater tissue likely interacts with cranial bone growth and thus may play a role in the etiology of Chiari Type I Malformation (CMI) and related conditions, but it is often inaccessible and its gene expression has not been well studied. A genetic basis to CMI has been established; however, the specific genetic risk factors are not well characterized. RESULTS We present an assessment of eQTLs for whole blood and dura mater tissue from individuals with CMI. A joint-tissue analysis identified 239 eQTLs in either dura or blood, with 79% of these eQTLs shared by both tissues. Several identified eQTLs were novel and these implicate genes involved in bone development (IPO8, XYLT1, and PRKAR1A), and ribosomal pathways related to marrow and bone dysfunction, as potential candidates in the development of CMI. CONCLUSIONS Despite strong overall heterogeneity in expression levels between blood and dura, the majority of cis-eQTLs are shared by both tissues. The power to detect shared eQTLs was improved by using an integrative statistical approach. The identified tissue-specific and shared eQTLs provide new insight into the genetic basis for CMI and related conditions.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
4 |
19
|
Au KS, Hebert L, Hillman P, Baker C, Brown MR, Kim DK, Soldano K, Garrett M, Ashley-Koch A, Lee S, Gleeson J, Hixson JE, Morrison AC, Northrup H. Human myelomeningocele risk and ultra-rare deleterious variants in genes associated with cilium, WNT-signaling, ECM, cytoskeleton and cell migration. Sci Rep 2021; 11:3639. [PMID: 33574475 PMCID: PMC7878900 DOI: 10.1038/s41598-021-83058-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
Myelomeningocele (MMC) affects one in 1000 newborns annually worldwide and each surviving child faces tremendous lifetime medical and caregiving burdens. Both genetic and environmental factors contribute to disease risk but the mechanism is unclear. This study examined 506 MMC subjects for ultra-rare deleterious variants (URDVs, absent in gnomAD v2.1.1 controls that have Combined Annotation Dependent Depletion score ≥ 20) in candidate genes either known to cause abnormal neural tube closure in animals or previously associated with human MMC in the current study cohort. Approximately 70% of the study subjects carried one to nine URDVs among 302 candidate genes. Half of the study subjects carried heterozygous URDVs in multiple genes involved in the structure and/or function of cilium, cytoskeleton, extracellular matrix, WNT signaling, and/or cell migration. Another 20% of the study subjects carried heterozygous URDVs in candidate genes associated with gene transcription regulation, folate metabolism, or glucose metabolism. Presence of URDVs in the candidate genes involving these biological function groups may elevate the risk of developing myelomeningocele in the study cohort.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
3 |
20
|
Garrett ME, Soldano KL, Erwin KN, Zhang Y, Gordeuk VR, Gladwin MT, Telen MJ, Ashley-Koch AE. Genome-wide meta-analysis identifies new candidate genes for sickle cell disease nephropathy. Blood Adv 2023; 7:4782-4793. [PMID: 36399516 PMCID: PMC10469559 DOI: 10.1182/bloodadvances.2022007451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/11/2022] [Accepted: 10/29/2022] [Indexed: 11/19/2022] Open
Abstract
Sickle cell disease nephropathy (SCDN), a common SCD complication, is strongly associated with mortality. Polygenic risk scores calculated from recent transethnic meta-analyses of urinary albumin-to-creatinine ratio and estimated glomerular filtration rate (eGFR) trended toward association with proteinuria and eGFR in SCD but the model fit was poor (R2 < 0.01), suggesting that there are likely unique genetic risk factors for SCDN. Therefore, we performed genome-wide association studies (GWAS) for 2 critical manifestations of SCDN, proteinuria and decreased eGFR, in 2 well-characterized adult SCD cohorts, representing, to the best of our knowledge, the largest SCDN sample to date. Meta-analysis identified 6 genome-wide significant associations (false discovery rate, q ≤ 0.05): 3 for proteinuria (CRYL1, VWF, and ADAMTS7) and 3 for eGFR (LRP1B, linc02288, and FPGT-TNNI3K/TNNI3K). These associations are independent of APOL1 risk and represent novel SCDN loci, many with evidence for regulatory function. Moreover, GWAS SNPs in CRYL1, VWF, ADAMTS7, and linc02288 are associated with gene expression in kidney and pathways important to both renal function and SCD biology, supporting the hypothesis that SCDN pathophysiology is distinct from other forms of kidney disease. Together, these findings provide new targets for functional follow-up that could be tested prospectively and potentially used to identify patients with SCD who are at risk, before onset of kidney dysfunction.
Collapse
|
Meta-Analysis |
2 |
3 |
21
|
Barrera J, Song L, Gamache JE, Garrett ME, Safi A, Yun Y, Premasinghe I, Sprague D, Chipman D, Li J, Fradin H, Soldano K, Gordân R, Ashley-Koch AE, Crawford GE, Chiba-Falek O. Sex dependent glial-specific changes in the chromatin accessibility landscape in late-onset Alzheimer's disease brains. Mol Neurodegener 2021; 16:58. [PMID: 34429139 PMCID: PMC8383438 DOI: 10.1186/s13024-021-00481-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In the post-GWAS era, there is an unmet need to decode the underpinning genetic etiologies of late-onset Alzheimer's disease (LOAD) and translate the associations to causation. METHODS We conducted ATAC-seq profiling using NeuN sorted-nuclei from 40 frozen brain tissues to determine LOAD-specific changes in chromatin accessibility landscape in a cell-type specific manner. RESULTS We identified 211 LOAD-specific differential chromatin accessibility sites in neuronal-nuclei, four of which overlapped with LOAD-GWAS regions (±100 kb of SNP). While the non-neuronal nuclei did not show LOAD-specific differences, stratification by sex identified 842 LOAD-specific chromatin accessibility sites in females. Seven of these sex-dependent sites in the non-neuronal samples overlapped LOAD-GWAS regions including APOE. LOAD loci were functionally validated using single-nuclei RNA-seq datasets. CONCLUSIONS Using brain sorted-nuclei enabled the identification of sex-dependent cell type-specific LOAD alterations in chromatin structure. These findings enhance the interpretation of LOAD-GWAS discoveries, provide potential pathomechanisms, and suggest novel LOAD-loci.
Collapse
|
Comparative Study |
4 |
2 |
22
|
Sadler B, Wilborn J, Antunes L, Kuensting T, Hale AT, Gannon SR, McCall K, Cruchaga C, Harms M, Voisin N, Reymond A, Cappuccio G, Brunetti-Pierri N, Tartaglia M, Niceta M, Leoni C, Zampino G, Ashley-Koch A, Urbizu A, Garrett ME, Soldano K, Macaya A, Conrad D, Strahle J, Dobbs MB, Turner TN, Shannon CN, Brockmeyer D, Limbrick DD, Gurnett CA, Haller G. Rare and de novo coding variants in chromodomain genes in Chiari I malformation. Am J Hum Genet 2021; 108:530-531. [PMID: 33667397 DOI: 10.1016/j.ajhg.2021.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
Published Erratum |
4 |
2 |
23
|
Soldano KL, Garrett ME, Cope HL, Rusnak JM, Ellis NJ, Dunlap KL, Speer MC, Gregory SG, Ashley-Koch AE. Genetic association analyses of nitric oxide synthase genes and neural tube defects vary by phenotype. ACTA ACUST UNITED AC 2013; 98:365-73. [PMID: 24323870 DOI: 10.1002/bdrb.21079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022]
Abstract
Neural tube defects (NTDs) are caused by improper neural tube closure during the early stages of embryonic development. NTDs are hypothesized to have a complex genetic origin and numerous candidate genes have been proposed. The nitric oxide synthase 3 (NOS3) G594T polymorphism has been implicated in risk for spina bifida, and interactions between that single nucleotide polymorphism (SNP) and the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism have also been observed. To evaluate other genetic variation in the NO pathway in the development of NTDs, we examined all three NOS genes: NOS1, NOS2, and NOS3. Using 3109 Caucasian samples in 745 families, we evaluated association in the overall dataset and within specific phenotypic subsets. Haplotype tagging SNPs in the NOS genes were tested for genetic association with NTD subtypes, both for main effects as well as for the presence of interactions with the MTHFR C677T polymorphism. Nominal main effect associations were found with all subtypes, across all three NOS genes, and interactions were observed between SNPs in all three NOS genes and MTHFR C677T. Unlike the previous report, the most significant associations in our dataset were with cranial subtypes and the AG genotype of rs4795067 in NOS2 (p = 0.0014) and the interaction between the rs9658490 G allele in NOS1 and MTHFR 677TT genotype (p = 0.0014). Our data extend the previous findings by implicating a role for all three NOS genes, independently and through interactions with MTHFR, in risk not only for spina bifida, but all NTD subtypes.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
2 |
24
|
Olabisi OA, Barrett NJ, Lucas A, Smith M, Bethea K, Soldano K, Croall S, Sadeghpour A, Chakraborty H, Wolf M. Design and Rationale of the Phase 2 Baricitinib Study in Apolipoprotein L1-Mediated Kidney Disease (JUSTICE). Kidney Int Rep 2024; 9:2677-2684. [PMID: 39291185 PMCID: PMC11403079 DOI: 10.1016/j.ekir.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Individuals of recent West African ancestry develop focal segmental glomerulosclerosis (FSGS) and hypertension-attributed end-stage kidney disease (HTN-ESKD) at 4 times the rate of White Americans. Two protein-coding variants of the Apolipoprotein L1 (APOL1) gene, G1 and G2, explain 50% to 70% of the excess risk of HTN-ESKD and FSGS among this group. Increased expression of G1 and G2 in the kidney, mediated by Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling, drive pathogenesis of these kidney diseases. Baricitinib is an orally active inhibitor of JAK1/2 that blocks APOL1 synthesis. The Janus kinase-STAT Inhibition to Reduce APOL1-Associated Kidney Disease (JUSTICE) trial is evaluating the antiproteinuric efficacy and safety of baricitinib in patients with APOL1-associated FSGS and HTN-attributed chronic kidney disease (HTN-CKD). Methods JUSTICE is a single-center, randomized, double-blind, placebo-controlled, pilot phase 2 trial of baricitinib in patients with proteinuria, APOL1-associated FSGS or APOL1-associated HTN-CKD without diabetes. A total of 75 African American patients with APOL1-associated CKD, including 25 with FSGS and 50 with HTN-CKD, aged 18 to 70 years will be randomized 2:1 to daily treatment with baricitinib or placebo, respectively. Results The primary efficacy end point will be percent change in urine albumin-to-creatinine ratio (UACR) from baseline to end of month 6. The primary safety end point will be incidence of clinically significant decreases in hemoglobin of ≥ 1g/dl. Conclusion The phase 2 JUSTICE study will characterize the antiproteinuric efficacy and safety of JAK1/2 inhibition with baricitinib in patients with APOL1-associated FSGS and APOL1-associated HTN-CKD.
Collapse
|
|
1 |
|
25
|
Nystrom SE, Soldano KL, Rockett M, Datta S, Li G, Silas D, Garrett ME, Ashley-Koch AE, Olabisi OA. APOL1 High-Risk Genotype is Not Associated With New or Worsening of Proteinuria or Kidney Function Decline Following COVID-19 Vaccination. Kidney Int Rep 2024; 9:2657-2666. [PMID: 39291186 PMCID: PMC11403097 DOI: 10.1016/j.ekir.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction SARS-CoV-2 infection increases systemic inflammatory cytokines which act as a second-hit driver of Apolipoprotein L1 (APOL1)-mediated collapsing glomerulopathy. SARS-CoV-2 vaccination also increases cytokines. Recent reports of new glomerular disease in individuals with APOL1 high-risk genotype (HRG) following SARS-CoV-2 vaccination raised the concern SARS-CoV-2 vaccination may also act as a second-hit driver of APOL1-mediated glomerulopathy. Methods We screened 1507 adults in the Duke's Measurement to Understand Reclassification of Disease of Cabarrus and Kannapolis (MURDOCK) registry and enrolled 105 eligible participants with available SARS-CoV-2 vaccination data, prevaccination and postvaccination serum creatinine, and urine protein measurements. Paired data were stratified by number of APOL1 risk alleles (RAs) and compared within groups using Wilcoxon signed rank test and across groups by analysis of variance. Results Among 105 participants, 30 (28.6%) had 2, 39 (37.1%) had 1, and 36 (34.3%) had 0 APOL1 RA. Most of the participants (94%) received at least 2 doses of vaccine. Most (98%) received the BNT162B2 (Pfizer) or mRNA-1273 (Moderna) vaccine. On average, the prevaccine and postvaccine laboratory samples were drawn 648 days apart. There were no detectable differences between pre- and post-serum creatinine or pre- and post-urine albumin creatinine ratio irrespective of the participants' APOL1 genotype. Finally, most participants with APOL1 RA had the most common haplotype (E150, I228, and K255) and lacked the recently described protective N264K haplotype. Conclusion In this observational study, APOL1 HRG is not associated with new or worsening of proteinuria or decline in kidney function following SARS-CoV-2 vaccination. Validation of this result in larger cohorts would further support the renal safety of SARS-CoV-2 vaccine in individuals with APOL1 HRG.
Collapse
|
|
1 |
|