Kherraz K, Kherraz K, Kameli A. Homology modeling of Ferredoxin-nitrite reductase from Arabidopsis thaliana.
Bioinformation 2011;
6:115-9. [PMID:
21584187 PMCID:
PMC3089885 DOI:
10.6026/97320630006115]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/24/2010] [Indexed: 12/02/2022] Open
Abstract
UNLABELLED
Nitrogen is one of the major growth-limiting nutrients for plants: The main source of nitrogen in most of the higher plants is nitrate taken up through roots. Nitrate can be reduced both in the chloroplasts (photosynthetic tissues) and in proplastes (nonphotosynthetic tissues) such as roots. Ferredoxin-nitrite reductase (NiR) catalyses the reduction of nitrite to ammonium in the second step of the nitrate- assimilation pathway. Homology model of Ferredoxin-nitrite reductase has been constructed using the X-ray structure (PDB code: 2akj) a s a template and MODELLER 9v5 software. The resulting model assessed by PROCHECK, PROSAII and RMSD that showed the final refined model is reliable: has 81% of amino acid sequence identity with template, 0.2Å as RMSD and has (-10.37) as Z-scores, the Ramachandran plot analysis showed that conformations for 99.5 % of amino acid residues are within the most favored regions. The model could prove useful in further functional characterization of this protein.
ABBREVIATIONS
PDB - Protein Data Bank, NMR - Nuclear Magnetic Resonance, NiR - Nitrite Reductase, RMSD - Root Mean Squared Deviation, Fd - ferredoxin.
Collapse