1
|
Bandyra KJ, Said N, Pfeiffer V, Górna MW, Vogel J, Luisi BF. The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E. Mol Cell 2012; 47:943-53. [PMID: 22902561 PMCID: PMC3469820 DOI: 10.1016/j.molcel.2012.07.015] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/11/2012] [Accepted: 07/11/2012] [Indexed: 01/08/2023]
Abstract
Numerous small non-coding RNAs (sRNAs) in bacteria modulate rates of translation initiation and degradation of target mRNAs, which they recognize through base-pairing facilitated by the RNA chaperone Hfq. Recent evidence indicates that the ternary complex of Hfq, sRNA and mRNA guides endoribonuclease RNase E to initiate turnover of both the RNAs. We show that a sRNA not only guides RNase E to a defined site in a target RNA, but also allosterically activates the enzyme by presenting a monophosphate group at the 5′-end of the cognate-pairing “seed.” Moreover, in the absence of the target the 5′-monophosphate makes the sRNA seed region vulnerable to an attack by RNase E against which Hfq confers no protection. These results suggest that the chemical signature and pairing status of the sRNA seed region may help to both ‘proofread’ recognition and activate mRNA cleavage, as part of a dynamic process involving cooperation of RNA, Hfq and RNase E.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
176 |
2
|
Dimastrogiovanni D, Fröhlich KS, Bandyra KJ, Bruce HA, Hohensee S, Vogel J, Luisi BF. Recognition of the small regulatory RNA RydC by the bacterial Hfq protein. eLife 2014; 3. [PMID: 25551292 PMCID: PMC4337610 DOI: 10.7554/elife.05375] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/29/2014] [Indexed: 01/24/2023] Open
Abstract
Bacterial small RNAs (sRNAs) are key elements of regulatory networks that modulate gene expression. The sRNA RydC of Salmonella sp. and Escherichia coli is an example of this class of riboregulators. Like many other sRNAs, RydC bears a ‘seed’ region that recognises specific transcripts through base-pairing, and its activities are facilitated by the RNA chaperone Hfq. The crystal structure of RydC in complex with E. coli Hfq at a 3.48 Å resolution illuminates how the protein interacts with and presents the sRNA for target recognition. Consolidating the protein–RNA complex is a host of distributed interactions mediated by the natively unstructured termini of Hfq. Based on the structure and other data, we propose a model for a dynamic effector complex comprising Hfq, small RNA, and the cognate mRNA target. DOI:http://dx.doi.org/10.7554/eLife.05375.001 A crucial step in the production of proteins is the translation of messenger RNA molecules. Other RNA molecules called small RNAs are also involved in this process: these small RNAs bind to the messenger RNA molecules to either increase or decrease the production of proteins. Bacteria and other microorganisms use small RNA molecules to help them respond to stress conditions and to changes in their environment, such as fluctuations in temperature or the availability of nutrients. The ability to rapidly adapt to these changes enables bacteria to withstand harmful conditions and to make efficient use of resources available to them. Many small RNA molecules use a protein called Hfq to help them interact with their target messenger RNAs. In some cases this protein protects the small RNA molecules when they are not bound to their targets. Hfq also helps the small RNA to bind to the messenger RNA, and then recruits other enzymes that eventually degrade the complex formed by the different RNA molecules. Previous research has shown that six Hfq subunits combine to form a ring-shaped structure and has also provided some clues about the way in which Hfq can recognise a short stretch of a small RNA molecule, but the precise details of the interaction between them are not fully understood. Now Dimastrogiovanni et al. have used a technique called X-ray crystallography to visualize the interaction between Hfq and a small RNA molecule called RydC. These experiments reveal that a particular region of RydC adopts a structure known as a pseudoknot and that this structure is critical for the interactions between the RydC molecules and the Hfq ring. Dimastrogiovanni et al. find that one RydC molecule interacts with one Hfq ring, and they identify the contact points between the RydC molecule and different regions of the Hfq ring. Based on this information, Dimastrogiovanni et al. propose a model for how the RydC:Hfq complex is likely to interact with a messenger RNA molecule. The next step will be to test this model in experiments. DOI:http://dx.doi.org/10.7554/eLife.05375.002
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
92 |
3
|
Bandyra KJ, Bouvier M, Carpousis AJ, Luisi BF. The social fabric of the RNA degradosome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:514-22. [PMID: 23459248 PMCID: PMC3991390 DOI: 10.1016/j.bbagrm.2013.02.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 11/22/2022]
Abstract
Bacterial transcripts each have a characteristic half-life, suggesting that the processes of RNA degradation work in an active and selective manner. Moreover, the processes are well controlled, thereby ensuring that degradation is orderly and coordinated. Throughout much of the bacterial kingdom, RNA degradation processes originate through the actions of assemblies of key RNA enzymes, known as RNA degradosomes. Neither conserved in composition, nor unified by common evolutionary ancestry, RNA degradosomes nonetheless can be found in divergent bacterial lineages, implicating a common requirement for the co-localisation of RNA metabolic activities. We describe how the cooperation of components in the representative degradosome of Escherichia coli may enable controlled access to transcripts, so that they have defined and programmable lifetimes. We also discuss how this cooperation contributes to precursor processing and to the riboregulation of intricate post-transcriptional networks in the control of gene expression. The E. coli degradosome interacts with the cytoplasmic membrane, and we discuss how this interaction may spatially organise the assembly and contribute to subunit cooperation and substrate capture. This article is part of a Special Issue entitled: RNA Decay mechanisms.
The organisation of the bacterial RNA degradosome The role in riboregulation and proposal for mechanism Discussion of access to substrates Discussion of the function of compartmentalisation
Collapse
|
Review |
12 |
71 |
4
|
Lulla V, Wandel MP, Bandyra KJ, Ulferts R, Wu M, Dendooven T, Yang X, Doyle N, Oerum S, Beale R, O’Rourke SM, Randow F, Maier HJ, Scott W, Ding Y, Firth AE, Bloznelyte K, Luisi BF. Targeting the Conserved Stem Loop 2 Motif in the SARS-CoV-2 Genome. J Virol 2021; 95:e0066321. [PMID: 33963053 PMCID: PMC8223950 DOI: 10.1128/jvi.00663-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
RNA structural elements occur in numerous single-stranded positive-sense RNA viruses. The stem-loop 2 motif (s2m) is one such element with an unusually high degree of sequence conservation, being found in the 3' untranslated region (UTR) in the genomes of many astroviruses, some picornaviruses and noroviruses, and a variety of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. The evolutionary conservation and its occurrence in all viral subgenomic transcripts imply a key role for s2m in the viral infection cycle. Our findings indicate that the element, while stably folded, can nonetheless be invaded and remodeled spontaneously by antisense oligonucleotides (ASOs) that initiate pairing in exposed loops and trigger efficient sequence-specific RNA cleavage in reporter assays. ASOs also act to inhibit replication in an astrovirus replicon model system in a sequence-specific, dose-dependent manner and inhibit SARS-CoV-2 replication in cell culture. Our results thus permit us to suggest that the s2m element is readily targeted by ASOs, which show promise as antiviral agents. IMPORTANCE The highly conserved stem-loop 2 motif (s2m) is found in the genomes of many RNA viruses, including SARS-CoV-2. Our findings indicate that the s2m element can be targeted by antisense oligonucleotides. The antiviral potential of this element represents a promising start for further research into targeting conserved elements in RNA viruses.
Collapse
|
research-article |
4 |
45 |
5
|
Bandyra KJ, Sinha D, Syrjanen J, Luisi BF, De Lay NR. The ribonuclease polynucleotide phosphorylase can interact with small regulatory RNAs in both protective and degradative modes. RNA (NEW YORK, N.Y.) 2016; 22:360-72. [PMID: 26759452 PMCID: PMC4748814 DOI: 10.1261/rna.052886.115] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/29/2015] [Indexed: 05/22/2023]
Abstract
In all bacterial species examined thus far, small regulatory RNAs (sRNAs) contribute to intricate patterns of dynamic genetic regulation. Many of the actions of these nucleic acids are mediated by well-characterized chaperones such as the Hfq protein, but genetic screens have also recently identified the 3'-to-5' exoribonuclease polynucleotide phosphorylase (PNPase) as an unexpected stabilizer and facilitator of sRNAs in vivo. To understand how a ribonuclease might mediate these effects, we tested the interactions of PNPase with sRNAs and found that the enzyme can readily degrade these nucleic acids in vitro but, nonetheless, copurifies from cell extracts with the same sRNAs without discernible degradation or modification to their 3' ends, suggesting that the associated RNA is protected against the destructive activity of the ribonuclease. In vitro, PNPase, Hfq, and sRNA can form a ternary complex in which the ribonuclease plays a nondestructive, structural role. Such ternary complexes might be formed transiently in vivo, but could help to stabilize particular sRNAs and remodel their population on Hfq. Taken together, our results indicate that PNPase can be programmed to act on RNA in either destructive or stabilizing modes in vivo and may form complex, protective ribonucleoprotein assemblies that shape the landscape of sRNAs available for action.
Collapse
|
Research Support, N.I.H., Intramural |
9 |
41 |
6
|
Van den Bossche A, Hardwick SW, Ceyssens PJ, Hendrix H, Voet M, Dendooven T, Bandyra KJ, De Maeyer M, Aertsen A, Noben JP, Luisi BF, Lavigne R. Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the RNA degradosome. eLife 2016; 5:e16413. [PMID: 27447594 PMCID: PMC4980113 DOI: 10.7554/elife.16413] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/18/2016] [Indexed: 01/08/2023] Open
Abstract
In all domains of life, the catalysed degradation of RNA facilitates rapid adaptation to changing environmental conditions, while destruction of foreign RNA is an important mechanism to prevent host infection. We have identified a virus-encoded protein termed gp37/Dip, which directly binds and inhibits the RNA degradation machinery of its bacterial host. Encoded by giant phage фKZ, this protein associates with two RNA binding sites of the RNase E component of the Pseudomonas aeruginosa RNA degradosome, occluding them from substrates and resulting in effective inhibition of RNA degradation and processing. The 2.2 Å crystal structure reveals that this novel homo-dimeric protein has no identifiable structural homologues. Our biochemical data indicate that acidic patches on the convex outer surface bind RNase E. Through the activity of Dip, фKZ has evolved a unique mechanism to down regulate a key metabolic process of its host to allow accumulation of viral RNA in infected cells.
Collapse
|
research-article |
9 |
39 |
7
|
Bruce HA, Du D, Matak-Vinkovic D, Bandyra KJ, Broadhurst RW, Martin E, Sobott F, Shkumatov AV, Luisi BF. Analysis of the natively unstructured RNA/protein-recognition core in the Escherichia coli RNA degradosome and its interactions with regulatory RNA/Hfq complexes. Nucleic Acids Res 2018; 46:387-402. [PMID: 29136196 PMCID: PMC5758883 DOI: 10.1093/nar/gkx1083] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/16/2017] [Accepted: 10/22/2017] [Indexed: 12/20/2022] Open
Abstract
The RNA degradosome is a multi-enzyme assembly that plays a central role in the RNA metabolism of Escherichia coli and numerous other bacterial species including pathogens. At the core of the assembly is the endoribonuclease RNase E, one of the largest E. coli proteins and also one that bears the greatest region predicted to be natively unstructured. This extensive unstructured region, situated in the C-terminal half of RNase E, is punctuated with conserved short linear motifs that recruit partner proteins, direct RNA interactions, and enable association with the cytoplasmic membrane. We have structurally characterized a subassembly of the degradosome-comprising a 248-residue segment of the natively unstructured part of RNase E, the DEAD-box helicase RhlB and the glycolytic enzyme enolase, and provide evidence that it serves as a flexible recognition centre that can co-recruit small regulatory RNA and the RNA chaperone Hfq. Our results support a model in which the degradosome captures substrates and regulatory RNAs through the recognition centre, facilitates pairing to cognate transcripts and presents the target to the ribonuclease active sites of the greater assembly for cooperative degradation or processing.
Collapse
|
research-article |
7 |
37 |
8
|
Bandyra KJ, Luisi BF. RNase E and the High-Fidelity Orchestration of RNA Metabolism. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0008-2017. [PMID: 29676248 PMCID: PMC11633573 DOI: 10.1128/microbiolspec.rwr-0008-2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 12/20/2022] Open
Abstract
The bacterial endoribonuclease RNase E occupies a pivotal position in the control of gene expression, as its actions either commit transcripts to an irreversible fate of rapid destruction or unveil their hidden functions through specific processing. Moreover, the enzyme contributes to quality control of rRNAs. The activity of RNase E can be directed and modulated by signals provided through regulatory RNAs that guide the enzyme to specific transcripts that are to be silenced. Early in its evolutionary history, RNase E acquired a natively unfolded appendage that recruits accessory proteins and RNA. These accessory factors facilitate the activity of RNase E and include helicases that remodel RNA and RNA-protein complexes, and polynucleotide phosphorylase, a relative of the archaeal and eukaryotic exosomes. RNase E also associates with enzymes from central metabolism, such as enolase and aconitase. RNase E-based complexes are diverse in composition, but generally bear mechanistic parallels with eukaryotic machinery involved in RNA-induced gene regulation and transcript quality control. That these similar processes arose independently underscores the universality of RNA-based regulation in life. Here we provide a synopsis and perspective of the contributions made by RNase E to sustain robust gene regulation with speed and accuracy.
Collapse
|
Review |
7 |
33 |
9
|
Abstract
RNA enables the material interpretation of genetic information through time and in space. The creation, destruction and activity of RNA must be well controlled and tightly synchronized with numerous cellular processes. We discuss here the pathways and mechanism of bacterial RNA turnover, and describe how RNA itself modulates these processes as part of decision-making networks. The central roles of RNA decay and other aspects of RNA metabolism in cellular control are also suggested by their vulnerability to sabotage by phages; nonetheless, RNA can be used in defense against phage infection, and these processes are described here. Salient aspects of RNA turnover are drawn together to suggest how it could affect complex effects such as phenotypic diversity in populations and responses that persist for multiple generations.
Collapse
|
Review |
12 |
32 |
10
|
Dendooven T, Sinha D, Roeselová A, Cameron TA, De Lay NR, Luisi BF, Bandyra KJ. A cooperative PNPase-Hfq-RNA carrier complex facilitates bacterial riboregulation. Mol Cell 2021; 81:2901-2913.e5. [PMID: 34157309 PMCID: PMC8294330 DOI: 10.1016/j.molcel.2021.05.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/06/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Polynucleotide phosphorylase (PNPase) is an ancient exoribonuclease conserved in the course of evolution and is found in species as diverse as bacteria and humans. Paradoxically, Escherichia coli PNPase can act not only as an RNA degrading enzyme but also by an unknown mechanism as a chaperone for small regulatory RNAs (sRNAs), with pleiotropic consequences for gene regulation. We present structures of the ternary assembly formed by PNPase, the RNA chaperone Hfq, and sRNA and show that this complex boosts sRNA stability in vitro. Comparison of structures for PNPase in RNA carrier and degradation modes reveals how the RNA is rerouted away from the active site through interactions with Hfq and the KH and S1 domains. Together, these data explain how PNPase is repurposed to protect sRNAs from cellular ribonucleases such as RNase E and could aid RNA presentation to facilitate regulatory actions on target genes.
Collapse
|
research-article |
4 |
22 |
11
|
Updegrove TB, Kouse AB, Bandyra KJ, Storz G. Stem-loops direct precise processing of 3' UTR-derived small RNA MicL. Nucleic Acids Res 2019; 47:1482-1492. [PMID: 30462307 PMCID: PMC6379649 DOI: 10.1093/nar/gky1175] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022] Open
Abstract
Increasing numbers of 3′UTR-derived small, regulatory RNAs (sRNAs) are being discovered in bacteria, most generated by cleavage from longer transcripts. The enzyme required for these cleavages has been reported to be RNase E, the major endoribonuclease in enterica bacteria. Previous studies investigating RNase E have come to a range of different conclusions regarding the determinants for RNase E processing. To better understand the sequence and structure determinants for the precise processing of a 3′ UTR-derived sRNA, we examined the cleavage of multiple mutant and chimeric derivatives of the 3′ UTR-derived MicL sRNA in vivo and in vitro. Our results revealed that tandem stem–loops 3′ to the cleavage site define optimal, correctly-positioned cleavage of MicL and probably other sRNAs. Moreover, our assays of MicL, ArcZ and CpxQ showed that sRNAs exhibit differential sensitivity to RNase E, likely a consequence of a hierarchy of sRNA features recognized by the endonuclease.
Collapse
|
Research Support, N.I.H., Intramural |
6 |
21 |
12
|
Katsuya-Gaviria K, Paris G, Dendooven T, Bandyra KJ. Bacterial RNA chaperones and chaperone-like riboregulators: behind the scenes of RNA-mediated regulation of cellular metabolism. RNA Biol 2021; 19:419-436. [PMID: 35438047 PMCID: PMC9037510 DOI: 10.1080/15476286.2022.2048565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/26/2022] [Indexed: 11/02/2022] Open
Abstract
In all domains of life, RNA chaperones safeguard and guide the fate of the cellular RNA pool. RNA chaperones comprise structurally diverse proteins that ensure proper folding, stability, and ribonuclease resistance of RNA, and they support regulatory activities mediated by RNA. RNA chaperones constitute a topologically diverse group of proteins that often present an unstructured region and bind RNA with limited nucleotide sequence preferences. In bacteria, three main proteins - Hfq, ProQ, and CsrA - have been shown to regulate numerous complex processes, including bacterial growth, stress response and virulence. Hfq and ProQ have well-studied activities as global chaperones with pleiotropic impact, while CsrA has a chaperone-like role with more defined riboregulatory function. Here, we describe relevant novel insights into their common features, including RNA binding properties, unstructured domains, and interplay with other proteins important to RNA metabolism.
Collapse
|
review-article |
4 |
9 |
13
|
Dendooven T, Van den Bossche A, Hendrix H, Ceyssens PJ, Voet M, Bandyra KJ, De Maeyer M, Aertsen A, Noben JP, Hardwick SW, Luisi BF, Lavigne R. Viral interference of the bacterial RNA metabolism machinery. RNA Biol 2016; 14:6-10. [PMID: 27834591 DOI: 10.1080/15476286.2016.1251003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In a recent publication, we reported a unique interaction between a protein encoded by the giant myovirus phiKZ and the Pseudomonas aeruginosa RNA degradosome. Crystallography, site-directed mutagenesis and interactomics approaches revealed this 'degradosome interacting protein' or Dip, to adopt an 'open-claw' dimeric structure that presents acidic patches on its outer surface which hijack 2 conserved RNA binding sites on the scaffold domain of the RNase E component of the RNA degradosome. This interaction prevents substrate RNAs from being bound and degraded by the RNA degradosome during the virus infection cycle. In this commentary, we provide a perspective into the biological role of Dip, its structural analysis and its mysterious evolutionary origin, and we suggest some therapeutic and biotechnological applications of this distinctive viral protein.
Collapse
|
Review |
9 |
8 |
14
|
Dendooven T, Luisi BF, Bandyra KJ. RNA lifetime control, from stereochemistry to gene expression. Curr Opin Struct Biol 2019; 61:59-70. [PMID: 31869589 DOI: 10.1016/j.sbi.2019.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
Abstract
Through the activities of various multi-component assemblies, protein-coding transcripts can be chaperoned toward protein synthesis or nudged into a funnel of rapid destruction. The capacity of these machine-like assemblies to tune RNA lifetime underpins the harmony of gene expression in all cells. Some of the molecular machines that mediate transcript turnover also contribute to on-the-fly surveillance of aberrant mRNAs and non-coding RNAs. How these dynamic assemblies distinguish functional RNAs from those that must be degraded is an intriguing puzzle for understanding the regulation of gene expression and dysfunction associated with disease. Recent data illuminate what the machines look like, and how they find, recognise and operate on transcripts to sculpt the dynamic regulatory landscape. This review captures current structural and mechanistic insights into the key enzymes and their effector assemblies that contribute to the fate-determining decision points for RNA in post-transcriptional control of genetic information.
Collapse
|
Review |
6 |
2 |
15
|
Islam MS, Bandyra KJ, Chao Y, Vogel J, Luisi BF. Impact of pseudouridylation, substrate fold, and degradosome organization on the endonuclease activity of RNase E. RNA (NEW YORK, N.Y.) 2021; 27:1339-1352. [PMID: 34341070 PMCID: PMC8522691 DOI: 10.1261/rna.078840.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The conserved endoribonuclease RNase E dominates the dynamic landscape of RNA metabolism and underpins control mediated by small regulatory RNAs in diverse bacterial species. We explored the enzyme's hydrolytic mechanism, allosteric activation, and interplay with partner proteins in the multicomponent RNA degradosome assembly of Escherichia coli. RNase E cleaves single-stranded RNA with preference to attack the phosphate located at the 5' nucleotide preceding uracil, and we corroborate key interactions that select that base. Unexpectedly, RNase E activity is impeded strongly when the recognized uracil is isomerized to 5-ribosyluracil (pseudouridine), from which we infer the detailed geometry of the hydrolytic attack process. Kinetics analyses support models for recognition of secondary structure in substrates by RNase E and for allosteric autoregulation. The catalytic power of the enzyme is boosted when it is assembled into the multienzyme RNA degradosome, most likely as a consequence of substrate capture and presentation. Our results rationalize the origins of substrate preferences of RNase E and illuminate its catalytic mechanism, supporting the roles of allosteric domain closure and cooperation with other components of the RNA degradosome complex.
Collapse
|
research-article |
4 |
2 |
16
|
|
research-article |
10 |
1 |
17
|
Bandyra KJ, Fröhlich KS, Vogel J, Rodnina M, Goyal A, Luisi B. Cooperation of regulatory RNA and the RNA degradosome in transcript surveillance. Nucleic Acids Res 2024; 52:9161-9173. [PMID: 38842944 PMCID: PMC11347162 DOI: 10.1093/nar/gkae455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 08/28/2024] Open
Abstract
The ompD transcript, encoding an outer membrane porin in Salmonella, harbors a controlling element in its coding region that base-pairs imperfectly with a 'seed' region of the small regulatory RNA (sRNA) MicC. When tagged with the sRNA, the ompD mRNA is cleaved downstream of the pairing site by the conserved endoribonuclease RNase E, leading to transcript destruction. We observe that the sRNA-induced cleavage site is accessible to RNase E in vitro upon recruitment of ompD into the 30S translation pre-initiation complex (PIC) in the presence of the degradosome components. Evaluation of substrate accessibility suggests that the paused 30S PIC presents the mRNA for targeted recognition and degradation. Ribonuclease activity on PIC-bound ompD is critically dependent on the recruitment of RNase E into the multi-enzyme RNA degradosome, and our data suggest a process of substrate capture and handover to catalytic sites within the degradosome, in which sequential steps of seed matching and duplex remodelling contribute to cleavage efficiency. Our findings support a putative mechanism of surveillance at translation that potentially terminates gene expression efficiently and rapidly in response to signals provided by regulatory RNA.
Collapse
|
research-article |
1 |
|