1
|
Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LVF, Kolettas E, Niforou K, Zoumpourlis VC, Takaoka M, Nakagawa H, Tort F, Fugger K, Johansson F, Sehested M, Andersen CL, Dyrskjot L, Ørntoft T, Lukas J, Kittas C, Helleday T, Halazonetis TD, Bartek J, Gorgoulis VG. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2007; 444:633-7. [PMID: 17136093 DOI: 10.1038/nature05268] [Citation(s) in RCA: 1512] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 09/19/2006] [Indexed: 12/23/2022]
Abstract
Recent studies have indicated the existence of tumorigenesis barriers that slow or inhibit the progression of preneoplastic lesions to neoplasia. One such barrier involves DNA replication stress, which leads to activation of the DNA damage checkpoint and thereby to apoptosis or cell cycle arrest, whereas a second barrier is mediated by oncogene-induced senescence. The relationship between these two barriers, if any, has not been elucidated. Here we show that oncogene-induced senescence is associated with signs of DNA replication stress, including prematurely terminated DNA replication forks and DNA double-strand breaks. Inhibiting the DNA double-strand break response kinase ataxia telangiectasia mutated (ATM) suppressed the induction of senescence and in a mouse model led to increased tumour size and invasiveness. Analysis of human precancerous lesions further indicated that DNA damage and senescence markers cosegregate closely. Thus, senescence in human preneoplastic lesions is a manifestation of oncogene-induced DNA replication stress and, together with apoptosis, provides a barrier to malignant progression.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
1512 |
2
|
Niforou K, Cheimonidou C, Trougakos IP. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol 2014; 2:323-32. [PMID: 24563850 PMCID: PMC3926111 DOI: 10.1016/j.redox.2014.01.017] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/11/2014] [Accepted: 01/18/2014] [Indexed: 02/05/2023] Open
Abstract
Free radicals originate from both exogenous environmental sources and as by-products of the respiratory chain and cellular oxygen metabolism. Sustained accumulation of free radicals, beyond a physiological level, induces oxidative stress that is harmful for the cellular homeodynamics as it promotes the oxidative damage and stochastic modification of all cellular biomolecules including proteins. In relation to proteome stability and maintenance, the increased concentration of oxidants disrupts the functionality of cellular protein machines resulting eventually in proteotoxic stress and the deregulation of the proteostasis (homeostasis of the proteome) network (PN). PN curates the proteome in the various cellular compartments and the extracellular milieu by modulating protein synthesis and protein machines assembly, protein recycling and stress responses, as well as refolding or degradation of damaged proteins. Molecular chaperones are key players of the PN since they facilitate folding of nascent polypeptides, as well as holding, folding, and/or degradation of unfolded, misfolded, or non-native proteins. Therefore, the expression and the activity of the molecular chaperones are tightly regulated at both the transcriptional and post-translational level at organismal states of increased oxidative and, consequently, proteotoxic stress, including ageing and various age-related diseases (e.g. degenerative diseases and cancer). In the current review we present a synopsis of the various classes of intra- and extracellular chaperones, the effects of oxidants on cellular homeodynamics and diseases and the redox regulation of chaperones.
Free radicals originate from various sources and at physiological concentrations are essential for the modulation of cell signalling pathways. Abnormally high levels of free radicals induce oxidative stress and damage all cellular biomolecules, including proteins. Molecular chaperones facilitate folding of nascent polypeptides, as well as holding, folding, and/or degradation of damaged proteins. The expression and the activity of chaperones during oxidative stress are regulated at both the transcriptional and post-translational level.
Collapse
Key Words
- AGEs, Advanced Glycation End Products
- ALS, Autophagy Lysosome System
- AP-1, Activator Protein-1
- CLU, apolipoprotein J/Clusterin
- Chaperones
- Diseases
- EPMs, Enzymatic Protein Modifications
- ER, Endoplasmic Reticulum
- ERAD, ER-Associated protein Degradation
- Free radicals
- GPx7, Glutathione Peroxidase 7
- GRP78, Glucose Regulated Protein of 78 kDa
- HSF1, Heat Shock transcription Factor-1
- HSP, Heat Shock Protein
- Hb, Haemoglobin
- Keap1, Kelch-like ECH-associated protein 1
- NADH, Nicotinamide Adenine Dinucleotide
- NEPMs, Non-Enzymatic Protein Modifications
- NOS, Nitric Oxide Synthase
- NOx, NAD(P)H Oxidase
- Nrf2, NF-E2-related factor 2
- Oxidative stress
- PDI, Protein Disulfide Isomerase
- PDR, Proteome Damage Responses
- PN, Proteostasis Network
- Proteome
- RNS, Reactive Nitrogen Species
- ROS, Reactive Oxygen Species
- Redox signalling
- UPR, Unfolded Protein Response
- UPS, Ubiquitin Proteasome System
- α(2)M, α(2)-Macroglobulin
Collapse
|
Review |
11 |
157 |
3
|
Pateras IS, Apostolopoulou K, Niforou K, Kotsinas A, Gorgoulis VG. p57KIP2: "Kip"ing the cell under control. Mol Cancer Res 2009; 7:1902-19. [PMID: 19934273 DOI: 10.1158/1541-7786.mcr-09-0317] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p57(KIP2) is an imprinted gene located at the chromosomal locus 11p15.5. It is a cyclin-dependent kinase inhibitor belonging to the CIP/KIP family, which includes additionally p21(CIP1/WAF1) and p27(KIP1). It is the least studied CIP/KIP member and has a unique role in embryogenesis. p57(KIP2) regulates the cell cycle, although novel functions have been attributed to this protein including cytoskeletal organization. Molecular analysis of animal models and patients with Beckwith-Wiedemann Syndrome have shown its nodal implication in the pathogenesis of this syndrome. p57(KIP2) is frequently down-regulated in many common human malignancies through several mechanisms, denoting its anti-oncogenic function. This review is a thorough analysis of data available on p57(KIP2), in relation to p21(CIP1/WAF1) and p27(KIP1), on gene and protein structure, its transcriptional and translational regulation, and its role in human physiology and pathology, focusing on cancer development.
Collapse
|
Review |
16 |
117 |
4
|
Simitzis P, Kalogeraki E, Goliomytis M, Charismiadou M, Triantaphyllopoulos K, Ayoutanti A, Niforou K, Hager-Theodorides A, Deligeorgis S. Impact of stocking density on broiler growth performance, meat characteristics, behavioural components and indicators of physiological and oxidative stress. Br Poult Sci 2012; 53:721-30. [DOI: 10.1080/00071668.2012.745930] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
|
13 |
54 |
5
|
Liontos M, Niforou K, Velimezi G, Vougas K, Evangelou K, Apostolopoulou K, Vrtel R, Damalas A, Kontovazenitis P, Kotsinas A, Zoumpourlis V, Tsangaris GT, Kittas C, Ginsberg D, Halazonetis TD, Bartek J, Gorgoulis VG. Modulation of the E2F1-driven cancer cell fate by the DNA damage response machinery and potential novel E2F1 targets in osteosarcomas. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:376-91. [PMID: 19541929 PMCID: PMC2708823 DOI: 10.2353/ajpath.2009.081160] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2009] [Indexed: 12/30/2022]
Abstract
Osteosarcoma is the most common primary bone cancer. Mutations of the RB gene represent the most frequent molecular defect in this malignancy. A major consequence of this alteration is that the activity of the key cell cycle regulator E2F1 is unleashed from the inhibitory effects of pRb. Studies in animal models and in human cancers have shown that deregulated E2F1 overexpression possesses either "oncogenic" or "oncosuppressor" properties, depending on the cellular context. To address this issue in osteosarcomas, we examined the status of E2F1 relative to cell proliferation and apoptosis in a clinical setting of human primary osteosarcomas and in E2F1-inducible osteosarcoma cell line models that are wild-type and deficient for p53. Collectively, our data demonstrated that high E2F1 levels exerted a growth-suppressing effect that relied on the integrity of the DNA damage response network. Surprisingly, induction of p73, an established E2F1 target, was also DNA damage response-dependent. Furthermore, a global proteome analysis associated with bioinformatics revealed novel E2F1-regulated genes and potential E2F1-driven signaling networks that could provide useful targets in challenging this aggressive neoplasm by innovative therapies.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
43 |
6
|
Rothwell JA, Keski-Rahkonen P, Robinot N, Assi N, Casagrande C, Jenab M, Ferrari P, Boutron-Ruault MC, Mahamat-Saleh Y, Mancini FR, Boeing H, Katzke V, Kühn T, Niforou K, Trichopoulou A, Valanou E, Krogh V, Mattiello A, Palli D, Sacerdote C, Tumino R, Scalbert A. A Metabolomic Study of Biomarkers of Habitual Coffee Intake in Four European Countries. Mol Nutr Food Res 2019; 63:e1900659. [PMID: 31483556 DOI: 10.1002/mnfr.201900659] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/23/2019] [Indexed: 11/07/2022]
Abstract
SCOPE The goal of this work is to identify circulating biomarkers of habitual coffee intake using a metabolomic approach, and to investigate their associations with coffee intake in four European countries. METHODS AND RESULTS Untargeted mass spectrometry-based metabolic profiling is performed on serum samples from 451 participants of the European Prospective Investigation on Cancer and Nutrition (EPIC) originating from France, Germany, Greece, and Italy. Eleven coffee metabolites are found to be associated with self-reported habitual coffee intake, including eight more strongly correlated (r = 0.25-0.51, p < 10E-07 ). Trigonelline shows the highest correlation, followed by caffeine, two caffeine metabolites (paraxanthine and 5-Acetylamino-6-amino-3-methyluracil), quinic acid, and three compounds derived from coffee roasting (cyclo(prolyl-valyl), cyclo(isoleucyl-prolyl), cyclo(leucyl-prolyl), and pyrocatechol sulfate). Differences in the magnitude of correlations are observed between countries, with trigonelline most highly correlated with coffee intake in France and Germany, quinic acid in Greece, and cyclo(isoleucyl-prolyl) in Italy. CONCLUSION Several biomarkers of habitual coffee intake are identified. No unique biomarker is found to be optimal for all tested populations. Instead, optimal biomarkers are shown to depend on the population and on the type of coffee consumed. These biomarkers should help to further explore the role of coffee in disease risk.
Collapse
|
|
6 |
22 |
7
|
Cervenka I, Al Rahmoun M, Mahamat-Saleh Y, Fournier A, Boutron-Ruault MC, Severi G, Caini S, Palli D, Ghiasvand R, Veierod MB, Botteri E, Tjønneland A, Olsen A, Fortner RT, Kaaks R, Schulze MB, Panico S, Trichopoulou A, Dessinioti C, Niforou K, Sieri S, Tumino R, Sacerdote C, Bueno-de-Mesquita B, Sandanger TM, Colorado-Yohar S, Sánchez MJ, Gil Majuelo L, Lujan-Barroso L, Ardanaz E, Merino S, Isaksson K, Butt S, Ljuslinder I, Jansson M, Travis RC, Khaw KT, Weiderpass E, Dossus L, Rinaldi S, Kvaskoff M. Exogenous hormone use and cutaneous melanoma risk in women: The European Prospective Investigation into Cancer and Nutrition. Int J Cancer 2020; 146:3267-3280. [PMID: 31506954 DOI: 10.1002/ijc.32674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 03/25/2024]
Abstract
Evidence suggests an influence of sex hormones on cutaneous melanoma risk, but epidemiologic findings are conflicting. We examined the associations between use of oral contraceptives (OCs) and menopausal hormone therapy (MHT) and melanoma risk in women participating in the European Prospective Investigation into Cancer and Nutrition (EPIC). EPIC is a prospective cohort study initiated in 1992 in 10 European countries. Information on exogenous hormone use at baseline was derived from country-specific self-administered questionnaires. We used Cox proportional hazards regression models to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). Over 1992-2015, 1,696 melanoma cases were identified among 334,483 women, whereof 770 cases among 134,758 postmenopausal women. There was a positive, borderline-significant association between OC use and melanoma risk (HR = 1.12, 95% CI = 1.00-1.26), with no detected heterogeneity across countries (phomogeneity = 0.42). This risk increased linearly with duration of use (ptrend = 0.01). Among postmenopausal women, ever use of MHT was associated with a nonsignificant increase in melanoma risk overall (HR = 1.14, 95% CI = 0.97-1.43), which was heterogeneous across countries (phomogeneity = 0.05). Our findings do not support a strong and direct association between exogenous hormone use and melanoma risk. In order to better understand these relations, further research should be performed using prospectively collected data including detailed information on types of hormone, and on sun exposure, which may act as an important confounder or effect modifier on these relations.
Collapse
|
Multicenter Study |
5 |
14 |
8
|
Niforou A, Magriplis E, Klinaki E, Niforou K, Naska A. On account of trans fatty acids and cardiovascular disease risk - There is still need to upgrade the knowledge and educate consumers. Nutr Metab Cardiovasc Dis 2022; 32:1811-1818. [PMID: 35753860 DOI: 10.1016/j.numecd.2022.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
AIMS Trans fatty acids (TFAs) are unsaturated lipids either of industrial origin or naturally occurring in ruminant meat and milk. TFAs generated through food processing (industrial) is the main source in our diet and studies provide converging evidence on their negative effect on cardiovascular health. Since April 2021, the European Commission has put into effect a regulation for TFAs providing maximum 2% of total fat in all industrially produced foods. In light of this development, we review the evidence regarding the health attributes of different types of TFAs, their dietary sources and current intakes, and we describe the history of TFA-related legislative actions in an attempt to anticipate the efficiency of new measures. DATA SYNTHESIS The PubMed database was searched including original research (observational and intervention studies), systematic reviews and meta-analyses. Scientific reports of competent authorities and organizations have also been screened. CONCLUSIONS Trans-fat elimination provides a fine example of how evidence has led to the application of horizontal regulatory measures regarding legal food ingredients in order to protect consumers' health. In EU Member States, TFAs currently provide on average less than 1% of energy (1%E) and intakes marginally exceed recommendations primarily among young adults. Large dietary surveys however provide evidence for additional, less-well known sources of TFAs in the diet. Raising public awareness of "hidden" trans-fat found naturally in foods such as cheese, as well as of the trans-fat generated through traditional cooking practices is needed, if the goal to eliminate trans-fat from the diet is to be met.
Collapse
|
Review |
3 |
5 |