1
|
Martz CA, Ottina KA, Singleton KR, Jasper JS, Wardell SE, Peraza-Penton A, Anderson GR, Winter PS, Wang T, Alley HM, Kwong LN, Cooper ZA, Tetzlaff M, Chen PL, Rathmell JC, Flaherty KT, Wargo JA, McDonnell DP, Sabatini DM, Wood KC. Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci Signal 2014; 7:ra121. [PMID: 25538079 DOI: 10.1126/scisignal.aaa1877] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer cells can activate diverse signaling pathways to evade the cytotoxic action of drugs. We created and screened a library of barcoded pathway-activating mutant complementary DNAs to identify those that enhanced the survival of cancer cells in the presence of 13 clinically relevant, targeted therapies. We found that activation of the RAS-MAPK (mitogen-activated protein kinase), Notch1, PI3K (phosphoinositide 3-kinase)-mTOR (mechanistic target of rapamycin), and ER (estrogen receptor) signaling pathways often conferred resistance to this selection of drugs. Activation of the Notch1 pathway promoted acquired resistance to tamoxifen (an ER-targeted therapy) in serially passaged breast cancer xenografts in mice, and treating mice with a γ-secretase inhibitor to inhibit Notch signaling restored tamoxifen sensitivity. Markers of Notch1 activity in tumor tissue correlated with resistance to tamoxifen in breast cancer patients. Similarly, activation of Notch1 signaling promoted acquired resistance to MAPK inhibitors in BRAF(V600E) melanoma cells in culture, and the abundance of Notch1 pathway markers was increased in tumors from a subset of melanoma patients. Thus, Notch1 signaling may be a therapeutic target in some drug-resistant breast cancers and melanomas. Additionally, multiple resistance pathways were activated in melanoma cell lines with intrinsic resistance to MAPK inhibitors, and simultaneous inhibition of these pathways synergistically induced drug sensitivity. These data illustrate the potential for systematic identification of the signaling pathways controlling drug resistance that could inform clinical strategies and drug development for multiple types of cancer. This approach may also be used to advance clinical options in other disease contexts.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
141 |
2
|
Marshall ME, Hinz TK, Kono SA, Singleton KR, Bichon B, Ware KE, Marek L, Frederick BA, Raben D, Heasley LE. Fibroblast growth factor receptors are components of autocrine signaling networks in head and neck squamous cell carcinoma cells. Clin Cancer Res 2011; 17:5016-25. [PMID: 21673064 DOI: 10.1158/1078-0432.ccr-11-0050] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We previously reported that a fibroblast growth factor (FGF) receptor (FGFR) signaling pathway drives growth of lung cancer cell lines of squamous and large cell histologies. Herein, we explored FGFR dependency in cell lines derived from the tobacco-related malignancy, head and neck squamous cell carcinoma (HNSCC). EXPERIMENTAL DESIGN FGF and FGFR mRNA and protein expression was assessed in nine HNSCC cell lines. Dependence on secreted FGF2 for cell growth was tested with FP-1039, an FGFR1-Fc fusion protein. FGFR and epidermal growth factor receptor (EGFR) dependence was defined by sensitivity to multiple inhibitors selective for FGFRs or EGFR. RESULTS FGF2 was expressed in eight of the nine HNSCC cell lines examined. Also, FGFR2 and FGFR3 were frequently expressed, whereas only two lines expressed FGFR1. FP-1039 inhibited growth of HNSCC cell lines expressing FGF2, identifying FGF2 as an autocrine growth factor. FGFR inhibitors selectively reduced in vitro growth and extracellular signal-regulated kinase signaling in three HNSCC cell lines, whereas three distinct lines exhibited responsiveness to both EGFR and FGFR inhibitors. Combinations of these drugs yielded additive growth inhibition. Finally, three cell lines were highly sensitive to EGFR tyrosine kinase inhibitors (TKI) with no contribution from FGFR pathways. CONCLUSIONS FGFR signaling was dominant or codominant with EGFR in six HNSCC lines, whereas three lines exhibited little or no role for FGFRs and were highly EGFR dependent. Thus, the HNSCC cell lines can be divided into subsets defined by sensitivity to EGFR and FGFR-specific TKIs. FGFR inhibitors may represent novel therapeutics to deploy alone or in combination with EGFR inhibitors in HNSCC.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
80 |
3
|
Singleton KR, Crawford L, Tsui E, Manchester HE, Maertens O, Liu X, Liberti MV, Magpusao AN, Stein EM, Tingley JP, Frederick DT, Boland GM, Flaherty KT, McCall SJ, Krepler C, Sproesser K, Herlyn M, Adams DJ, Locasale JW, Cichowski K, Mukherjee S, Wood KC. Melanoma Therapeutic Strategies that Select against Resistance by Exploiting MYC-Driven Evolutionary Convergence. Cell Rep 2017; 21:2796-2812. [PMID: 29212027 PMCID: PMC5728698 DOI: 10.1016/j.celrep.2017.11.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/02/2017] [Accepted: 11/03/2017] [Indexed: 12/12/2022] Open
Abstract
Diverse pathways drive resistance to BRAF/MEK inhibitors in BRAF-mutant melanoma, suggesting that durable control of resistance will be a challenge. By combining statistical modeling of genomic data from matched pre-treatment and post-relapse patient tumors with functional interrogation of >20 in vitro and in vivo resistance models, we discovered that major pathways of resistance converge to activate the transcription factor, c-MYC (MYC). MYC expression and pathway gene signatures were suppressed following drug treatment, and then rebounded during progression. Critically, MYC activation was necessary and sufficient for resistance, and suppression of MYC activity using genetic approaches or BET bromodomain inhibition was sufficient to resensitize cells and delay BRAFi resistance. Finally, MYC-driven, BRAFi-resistant cells are hypersensitive to the inhibition of MYC synthetic lethal partners, including SRC family and c-KIT tyrosine kinases, as well as glucose, glutamine, and serine metabolic pathways. These insights enable the design of combination therapies that select against resistance evolution.
Collapse
|
research-article |
8 |
71 |
4
|
Singleton KR, Hinz TK, Kleczko EK, Marek LA, Kwak J, Harp T, Kim J, Tan AC, Heasley LE. Kinome RNAi Screens Reveal Synergistic Targeting of MTOR and FGFR1 Pathways for Treatment of Lung Cancer and HNSCC. Cancer Res 2015; 75:4398-406. [PMID: 26359452 PMCID: PMC4609283 DOI: 10.1158/0008-5472.can-15-0509] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022]
Abstract
The FGFR1 is a therapeutic target under investigation in multiple solid tumors and clinical trials of selective tyrosine kinase inhibitors (TKI) are underway. Treatment with a single TKI represents a logical step toward personalized cancer therapy, but intrinsic and acquired resistance mechanisms limit their long-term benefit. In this study, we deployed RNAi-based functional genomic screens to identify protein kinases controlling the intrinsic sensitivity of FGFR1-dependent lung cancer and head and neck squamous cell cancer (HNSCC) cells to ponatinib, a multikinase FGFR-active inhibitor. We identified and validated a synthetic lethal interaction between MTOR and ponatinib in non-small cell lung carcinoma cells. In addition, treatment with MTOR-targeting shRNAs and pharmacologic inhibitors revealed that MTOR is an essential protein kinase in other FGFR1-expressing cancer cells. The combination of FGFR inhibitors and MTOR or AKT inhibitors resulted in synergistic growth suppression in vitro. Notably, tumor xenografts generated from FGFR1-dependent lung cancer cells exhibited only modest sensitivity to monotherapy with the FGFR-specific TKI, AZD4547, but when combined with the MTOR inhibitor, AZD2014, significantly attenuated tumor growth and prolonged survival. Our findings support the existence of a signaling network wherein FGFR1-driven ERK and activated MTOR/AKT represent distinct arms required to induce full transformation. Furthermore, they suggest that clinical efficacy of treatments for FGFR1-driven lung cancers and HNSCC may be achieved by combining MTOR inhibitors and FGFR-specific TKIs.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Benzamides/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Disease Models, Animal
- Drug Resistance, Neoplasm
- Drug Synergism
- Gene Library
- Genes, Essential
- Genomics/methods
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Morpholines/pharmacology
- Piperazines/pharmacology
- Protein Binding
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyrazoles/pharmacology
- Pyrimidines
- RNA Interference
- RNA, Small Interfering/genetics
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
|
Research Support, N.I.H., Extramural |
10 |
48 |
5
|
Lin KH, Rutter JC, Xie A, Pardieu B, Winn ET, Bello RD, Forget A, Itzykson R, Ahn YR, Dai Z, Sobhan RT, Anderson GR, Singleton KR, Decker AE, Winter PS, Locasale JW, Crawford L, Puissant A, Wood KC. Using antagonistic pleiotropy to design a chemotherapy-induced evolutionary trap to target drug resistance in cancer. Nat Genet 2020; 52:408-417. [PMID: 32203462 PMCID: PMC7398704 DOI: 10.1038/s41588-020-0590-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 02/11/2020] [Indexed: 02/05/2023]
Abstract
Local adaptation directs populations towards environment-specific fitness maxima through acquisition of positively selected traits. However, rapid environmental changes can identify hidden fitness trade-offs that turn adaptation into maladaptation, resulting in evolutionary traps. Cancer, a disease that is prone to drug resistance, is in principle susceptible to such traps. We therefore performed pooled CRISPR-Cas9 knockout screens in acute myeloid leukemia (AML) cells treated with various chemotherapies to map the drug-dependent genetic basis of fitness trade-offs, a concept known as antagonistic pleiotropy (AP). We identified a PRC2-NSD2/3-mediated MYC regulatory axis as a drug-induced AP pathway whose ability to confer resistance to bromodomain inhibition and sensitivity to BCL-2 inhibition templates an evolutionary trap. Across diverse AML cell-line and patient-derived xenograft models, we find that acquisition of resistance to bromodomain inhibition through this pathway exposes coincident hypersensitivity to BCL-2 inhibition. Thus, drug-induced AP can be leveraged to design evolutionary traps that selectively target drug resistance in cancer.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
41 |
6
|
Frisch R, Singleton KR, Moses PA, Gonzalez IL, Carango P, Marks HG, Funanage VL. Effect of triplet repeat expansion on chromatin structure and expression of DMPK and neighboring genes, SIX5 and DMWD, in myotonic dystrophy. Mol Genet Metab 2001; 74:281-91. [PMID: 11592825 DOI: 10.1006/mgme.2001.3229] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Myotonic dystrophy (DM), an autosomal dominant neuromuscular disease, is associated with expansion of a polymorphic (CTG)n repeat in the 3'-untranslated region of the DM protein kinase (DMPK) gene. The repeat expansion results in decreased levels of DMPK mRNA and protein, but the mechanism for this decreased expression is unknown. Loss of a nuclease-hypersensitive site in the region of the repeat expansion has been observed in muscle and skin fibroblasts from DM patients, indicating a change in local chromatin structure. This change in chromatin structure has been proposed as a mechanism whereby the expression of DMPK and neighboring genes, sine oculis homeobox (Drosophila) homolog 5 (SIX5) and dystrophia myotonica-containing WD repeat motif (DMWD), might be affected. We have developed a polymerase chain reaction (PCR)-based method to assay the chromatin sensitivity of the region adjacent to the repeat expansion in somatic cell hybrids carrying either normal or affected DMPK alleles and show that hybrids carrying expanded alleles exhibit decreased sensitivity to PvuII digestion in this region. Semiquantitative multiplex reverse transcriptase PCR (RT/PCR) assays of gene expression from the chromosomes carrying the expanded alleles showed marked reduction of DMPK mRNA, partial inhibition of SIX5 expression from a congenital DM chromosome, and no reduction of DMWD mRNA. Nested RT/PCR analysis of DMPK mRNA from somatic cell hybrids carrying the repeat expansions revealed that most of the DMPK transcripts expressed from the expanded alleles lacked exons 13 and 14, whereas full-length transcripts were expressed predominantly from the normal alleles. These results suggest that the CTG repeat expansion leads to a decrease in DMPK mRNA levels by affecting splicing at the 3' end of the DMPK pre-mRNA transcript.
Collapse
|
|
24 |
35 |
7
|
Singleton KR, Kim J, Hinz TK, Marek LA, Casás-Selves M, Hatheway C, Tan AC, DeGregori J, Heasley LE. A receptor tyrosine kinase network composed of fibroblast growth factor receptors, epidermal growth factor receptor, v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, and hepatocyte growth factor receptor drives growth and survival of head and neck squamous carcinoma cell lines. Mol Pharmacol 2013; 83:882-93. [PMID: 23371912 PMCID: PMC3608435 DOI: 10.1124/mol.112.084111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/31/2013] [Indexed: 12/14/2022] Open
Abstract
Our laboratory has previously shown that some gefitinib-insensitive head and neck squamous cell carcinoma (HNSCC) cell lines exhibit dominant autocrine fibroblast growth factor receptor (FGFR) signaling. Herein, we deployed a whole-genome loss-of-function screen to identify genes whose knockdown potentiated the inhibitory effect of the FGFR inhibitor, AZ8010, in HNSCC cell lines. Three HNSCC cell lines expressing a genome-wide small hairpin RNA (shRNA) library were treated with AZ8010 and the abundance of shRNA sequences was assessed by deep sequencing. Under-represented shRNAs in treated cells are expected to target genes important for survival with AZ8010 treatment. Synthetic lethal hits were validated with specific inhibitors and independent shRNAs. We found that multiple alternate receptors provided protection from FGFR inhibition, including receptor tyrosine kinases (RTKs), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ERBB2), and hepatocyte growth factor receptor (MET). We showed that specific knockdown of either ERBB2 or MET in combination with FGFR inhibition led to increased inhibition of growth relative to FGFR tyrosine kinase inhibitor (TKI) treatment alone. These results were confirmed using specific small molecule inhibitors of either ERBB family members or MET. Moreover, the triple combination of FGFR, MET, and ERBB family inhibitors showed the largest inhibition of growth and induction of apoptosis compared with the double combinations. These results reveal a role for alternate RTKs in maintaining progrowth and survival signaling in HNSCC cells in the setting of FGFR inhibition. Thus, improved therapies for HNSCC patients could involve rationally designed combinations of TKIs targeting FGFR, ERBB family members, and MET.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
30 |
8
|
Singleton KR, Will DS, Schotanus MP, Haarsma LD, Koetje LR, Bardolph SL, Ubels JL. Elevated extracellular K+ inhibits apoptosis of corneal epithelial cells exposed to UV-B radiation. Exp Eye Res 2009; 89:140-51. [PMID: 19289117 DOI: 10.1016/j.exer.2009.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/12/2009] [Accepted: 02/27/2009] [Indexed: 12/01/2022]
Abstract
The goal of this study was to determine if the high [K(+)] in tears, 20-25 mM, serves to protect corneal epithelial cells from going into apoptosis after exposure to ambient UV-B radiation. Human corneal-limbal epithelial (HCLE) cells in culture were exposed to UV-B at doses of 50-200 mJ/cm(2) followed by measurement of K(+) channel activation and activity of apoptotic pathways. Patch-clamp recording showed activation of K(+) channels after UV-B exposure at 80 mJ/cm(2) or 150 mJ/cm(2) and a decrease in UV-induced K(+) efflux with increasing [K(+)](o). The UV-activated current was partially blocked by the specific K(+) channel blocker, BDS-1. DNA fragmentation, as measured by the TUNEL assay, was induced after exposure to UV-B at 100-200 mJ/cm(2). DNA fragmentation was significantly decreased when cells were incubated in 25, 50 or 100mM K(o)(+) after exposure to UV-B. The effector caspase, caspase-3, was activated by exposure to UV-B at 50-200 mJ/cm(2), but there was a significant decrease in activation when the cells were incubated in 25, 50 or 100mM K(o)(+) following exposure to UV-B. A decrease in mitochondrial potential, a possible activator of caspase-3, occurred after exposure to UV-B at 100-200 mJ/cm(2). This decrease in mitochondrial potential was prevented by 100mM K(o)(+); however, 25 or 50mM K(o)(+) provided minimal protection. Caspase-9, which is in the pathway from mitochondrial potential change to caspase-3 activation, showed little activation by UV-B radiation. Caspase-8, an initiator caspase that activates caspase-3, was activated by exposure to UV-B at 50-200 mJ/cm(2), and this UV-activation was significantly reduced by 25-100mM K(o)(+). The data show that the physiologically relevant [K(+)](o) of 25 mM can inhibit UV-B induced activation of apoptotic pathways. This suggests that the relatively high [K(+)] in tears reduces loss of K(+) from corneal epithelial cells in response to UV exposure, thereby contributing to the protection of the ocular surface from ambient UV radiation.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
16 |
24 |
9
|
Kim J, Vasu VT, Mishra R, Singleton KR, Yoo M, Leach SM, Farias-Hesson E, Mason RJ, Kang J, Ramamoorthy P, Kern JA, Heasley LE, Finigan JH, Tan AC. Bioinformatics-driven discovery of rational combination for overcoming EGFR-mutant lung cancer resistance to EGFR therapy. Bioinformatics 2014; 30:2393-8. [PMID: 24812339 DOI: 10.1093/bioinformatics/btu323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MOTIVATION Non-small-cell lung cancer (NSCLC) is the leading cause of cancer death in the United States. Targeted tyrosine kinase inhibitors (TKIs) directed against the epidermal growth factor receptor (EGFR) have been widely and successfully used in treating NSCLC patients with activating EGFR mutations. Unfortunately, the duration of response is short-lived, and all patients eventually relapse by acquiring resistance mechanisms. RESULT We performed an integrative systems biology approach to determine essential kinases that drive EGFR-TKI resistance in cancer cell lines. We used a series of bioinformatics methods to analyze and integrate the functional genetics screen and RNA-seq data to identify a set of kinases that are critical in survival and proliferation in these TKI-resistant lines. By connecting the essential kinases to compounds using a novel kinase connectivity map (K-Map), we identified and validated bosutinib as an effective compound that could inhibit proliferation and induce apoptosis in TKI-resistant lines. A rational combination of bosutinib and gefitinib showed additive and synergistic effects in cancer cell lines resistant to EGFR TKI alone. CONCLUSIONS We have demonstrated a bioinformatics-driven discovery roadmap for drug repurposing and development in overcoming resistance in EGFR-mutant NSCLC, which could be generalized to other cancer types in the era of personalized medicine. AVAILABILITY AND IMPLEMENTATION K-Map can be accessible at: http://tanlab.ucdenver.edu/kMap. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
21 |
10
|
Liberti MV, Allen AE, Ramesh V, Dai Z, Singleton KR, Guo Z, Liu JO, Wood KC, Locasale JW. Evolved resistance to partial GAPDH inhibition results in loss of the Warburg effect and in a different state of glycolysis. J Biol Chem 2020; 295:111-124. [PMID: 31748414 PMCID: PMC6952593 DOI: 10.1074/jbc.ra119.010903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/10/2019] [Indexed: 12/20/2022] Open
Abstract
Aerobic glycolysis or the Warburg effect (WE) is characterized by increased glucose uptake and incomplete oxidation to lactate. Although the WE is ubiquitous, its biological role remains controversial, and whether glucose metabolism is functionally different during fully oxidative glycolysis or during the WE is unknown. To investigate this question, here we evolved resistance to koningic acid (KA), a natural product that specifically inhibits glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a rate-controlling glycolytic enzyme, during the WE. We found that KA-resistant cells lose the WE but continue to conduct glycolysis and surprisingly remain dependent on glucose as a carbon source and also on central carbon metabolism. Consequently, this altered state of glycolysis led to differential metabolic activity and requirements, including emergent activities in and dependences on fatty acid metabolism. These findings reveal that aerobic glycolysis is a process functionally distinct from conventional glucose metabolism and leads to distinct metabolic requirements and biological functions.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
12 |
11
|
Kleczko EK, Kim J, Keysar SB, Heasley LR, Eagles JR, Simon M, Marshall ME, Singleton KR, Jimeno A, Tan AC, Heasley LE. An Inducible TGF-β2-TGFβR Pathway Modulates the Sensitivity of HNSCC Cells to Tyrosine Kinase Inhibitors Targeting Dominant Receptor Tyrosine Kinases. PLoS One 2015; 10:e0123600. [PMID: 25946135 PMCID: PMC4422719 DOI: 10.1371/journal.pone.0123600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/20/2015] [Indexed: 11/23/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is overexpressed in approximately 90% of head and neck squamous cell carcinomas (HNSCC), and molecularly targeted therapy against the EGFR with the monoclonal antibody cetuximab modestly increases overall survival in head and neck cancer patients. We hypothesize that co-signaling through additional pathways limits the efficacy of cetuximab and EGFR-specific tyrosine kinase inhibitors (TKIs) in the clinical treatment of HNSCC. Analysis of gene expression changes in HNSCC cell lines treated 4 days with TKIs targeting EGFR and/or fibroblast growth factor receptors (FGFRs) identified transforming growth factor beta 2 (TGF-β2) induction in the three cell lines tested. Measurement of TGF-β2 mRNA validated this observation and extended it to additional cell lines. Moreover, TGF-β2 mRNA was increased in primary patient HNSCC xenografts treated for 4 weeks with cetuximab, demonstrating in vivo relevance of these findings. Functional genomics analyses with shRNA libraries identified TGF-β2 and TGF-β receptors (TGFβRs) as synthetic lethal genes in the context of TKI treatment. Further, direct RNAi-mediated silencing of TGF-β2 inhibited cell growth, both alone and in combination with TKIs. Also, a pharmacological TGFβRI inhibitor similarly inhibited basal growth and enhanced TKI efficacy. In summary, the studies support a TGF-β2-TGFβR pathway as a TKI-inducible growth pathway in HNSCC that limits efficacy of EGFR-specific inhibitors.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
5 |
12
|
Singleton KR, Wood KC. Narrowing the focus: a toolkit to systematically connect oncogenic signaling pathways with cancer phenotypes. Genes Cancer 2016; 7:218-228. [PMID: 27738492 PMCID: PMC5059112 DOI: 10.18632/genesandcancer.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Functional genomics approaches such as gain- and loss-of-function screening can efficiently reveal genes that control cancer cell growth, survival, signal transduction, and drug resistance, but distilling the results of large-scale screens into actionable therapeutic strategies is challenging given our incomplete understanding of the functions of many genes. Research over several decades, including the results of large-scale cancer sequencing projects, has made it clear that many oncogenic properties are controlled by a common set of core oncogenic signaling pathways. By directly screening this core set of pathways, rather than much larger numbers of individual genes, it may be possible to more directly and efficiently connect functional genomic screening results with therapeutic targets. Here, we describe the recent development of methods to directly screen oncogenic pathways in high-throughput. We summarize the results of studies that have used pathway-centric screening to map the pathways of resistance to targeted therapies in diverse cancer types, then conclude by expanding on potential future applications of this approach.
Collapse
|
Journal Article |
9 |
5 |
13
|
Hinz TK, Kleczko EK, Singleton KR, Calhoun J, Marek LA, Kim J, Tan AC, Heasley LE. Functional RNAi Screens Define Distinct Protein Kinase Vulnerabilities in EGFR-Dependent HNSCC Cell Lines. Mol Pharmacol 2019; 96:862-870. [PMID: 31554698 PMCID: PMC7385532 DOI: 10.1124/mol.119.117804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/14/2019] [Indexed: 12/15/2022] Open
Abstract
The inhibitory epidermal growth factor receptor (EGFR) antibody, cetuximab, is an approved therapy for head and neck squamous cell carcinoma (HNSCC). Despite tumor response observed in some HNSCC patients, cetuximab alone or combined with radio- or chemotherapy fails to yield long-term control or cures. We hypothesize that a flexible receptor tyrosine kinase coactivation signaling network supports HNSCC survival in the setting of EGFR blockade, and that drugs disrupting this network will provide superior tumor control when combined with EGFR inhibitors. In this work, we submitted EGFR-dependent HNSCC cell lines to RNA interference-based functional genomics screens to identify, in an unbiased fashion, essential protein kinases for growth and survival as well as synthetic lethal targets for combined inhibition with EGFR antagonists. Mechanistic target of rapamycin kinase (MTOR) and erythroblastosis oncogene B (ERBB)3 were identified as high-ranking essential kinase hits in the HNSCC cell lines. MTOR dependency was confirmed by distinct short hairpin RNAs (shRNAs) and high sensitivity of the cell lines to AZD8055, whereas ERBB3 dependency was validated by shRNA-mediated silencing. Furthermore, a synthetic lethal kinome shRNA screen with a pan-ERBB inhibitor, AZD8931, identified multiple components of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway, consistent with ERK reactivation and/or incomplete ERK pathway inhibition in response to EGFR inhibitor monotherapy. As validation, distinct mitogen-activated protein kinase kinase (MEK) inhibitors yielded synergistic growth inhibition when combined with the EGFR inhibitors, gefitinib and AZD8931. The findings identify ERBB3 and MTOR as important pharmacological vulnerabilities in HNSCC and support combining MEK and EGFR inhibitors to enhance clinical efficacy in HNSCC. SIGNIFICANCE STATEMENT: Many cancers are driven by nonmutated receptor tyrosine kinase coactivation networks that defy full inhibition with single targeted drugs. This study identifies erythroblastosis oncogene B (ERBB)3 as an essential protein kinase in epidermal growth factor receptor-dependent head and neck squamous cell cancer (HNSCC) cell lines and a synthetic lethal interaction with the extracellular signal-regulated kinase mitogen-activated protein kinase pathway that provides a rationale for combining pan-ERBB and mitogen-activated protein kinase inhibitors as a therapeutic approach in subsets of HNSCC.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
4 |
14
|
Singleton KR, Earley KT, Heasley LE. Analysis of Drug Resistance Using Kinome-Wide Functional Screens. Methods Mol Biol 2017; 1636:163-177. [PMID: 28730479 DOI: 10.1007/978-1-4939-7154-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The clinical success of tyrosine kinase inhibitors specific for BCR-ABL-, EGFR-, ALK-, and ROS1-driven cancers continues to spur the quest to match specific oncogene-defined tumor types with an appropriate molecularly targeted therapy. Unfortunately, responses to these agents are not durable with intrinsic or acquired resistance limiting benefit. Additionally, efforts to identify the appropriate targets of new drugs have focused on nonfunctional assays such as large-scale sequencing for somatic mutations or analysis of gene copy number. Acknowledging both the problem of resistance and the shortcomings of the current methods for detecting appropriate drug targets, much interest has been focused on RNAi-based screens. These screens utilize a library of shRNAs targeting the whole genome or a subset of genes and provide a high-throughput and unbiased means to functionally assess genes impacting various aspects of tumor biology, especially proliferation and survival. The function of genes can be measured in the context of a specific drug treatment, termed a synthetic lethal screen, or genes may be assessed for their individual dependency, termed an essential gene screen. Here, we describe a method for performing both of these types of screens using a kinome-targeted shRNA library in human cancer cell lines.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
1 |
15
|
Maltas J, Killarney ST, Singleton KR, Strobl MAR, Washart R, Wood KC, Wood KB. Drug dependence in cancer is exploitable by optimally constructed treatment holidays. Nat Ecol Evol 2024; 8:147-162. [PMID: 38012363 PMCID: PMC10918730 DOI: 10.1038/s41559-023-02255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/19/2023] [Indexed: 11/29/2023]
Abstract
Cancers with acquired resistance to targeted therapy can become simultaneously dependent on the presence of the targeted therapy drug for survival, suggesting that intermittent therapy may slow resistance. However, relatively little is known about which tumours are likely to become dependent and how to schedule intermittent therapy optimally. Here we characterized drug dependence across a panel of over 75 MAPK-inhibitor-resistant BRAFV600E mutant melanoma models at the population and single-clone levels. Melanocytic differentiated models exhibited a much greater tendency to give rise to drug-dependent progeny than their dedifferentiated counterparts. Mechanistically, acquired loss of microphthalmia-associated transcription factor in differentiated melanoma models drives ERK-JunB-p21 signalling to enforce drug dependence. We identified the optimal scheduling of 'drug holidays' using simple mathematical models that we validated across short and long timescales. Without detailed knowledge of tumour characteristics, we found that a simple adaptive therapy protocol can produce near-optimal outcomes using only measurements of total population size. Finally, a spatial agent-based model showed that optimal schedules derived from exponentially growing cells in culture remain nearly optimal in the context of tumour cell turnover and limited environmental carrying capacity. These findings may guide the implementation of improved evolution-inspired treatment strategies for drug-dependent cancers.
Collapse
|
|
1 |
|
16
|
Kleczko EK, Heasley LR, Marshall ME, Singleton KR, Heasley LE. Abstract 3387: Tyrosine kinase inhibitors induce TGF-β2 expression in head and neck squamous cell carcinoma cell lines as a mechanism of acquired resistance. Cancer Res 2013. [DOI: 10.1158/1538-7445.am2013-3387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Worldwide, head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer. Because the epidermal growth factor receptor (EGFR) is overexpressed in about 90% of HNSCC tumors, molecularly targeted therapy against EGFR was thought to hold promise for HNSCC treatment. Cetuximab, a monoclonal antibody against EGFR, has been approved to treat HNSCC in the US. Still the 5-year survival rate for HNSCC is only 40-50%, despite the use of cetuximab in the clinic. The modest effect of cetuximab on survival indicates that EGFR inhibition alone will not be effective in treating HNSCC. The efficacy of cetuximab in treating HNSCC may be limited by acquired resistance or the activity of alternative dominant growth factor pathways in HNSCC. Previously, our lab has shown that in addition to EGFR signaling, the fibroblast growth factor 2 (FGF2) and its receptors (FGFRs) participate as an important autocrine signaling pathway in some gefitinib-insensitive HNSCC cell lines, further indicating that inhibiting the EGFR pathway alone will not be effective in treating HNSCC. To identify genes that change in response to EGFR-specific tyrosine kinase inhibitors (TKIs) and to FGFR-specific TKIs that may mediate acquired resistance, we performed an Affymetrix GeneChip screen in which the cell lines UMSCC25, 584-A2, and Ca9-22 were treated for 4 days with 0.3μM AZ8010, a TKI selective for FGFRs, and/or 0.1μM gefitinib, an EGFR-selective TKI. We found that in all three cell lines, TGF-β2 mRNA was upregulated following blockade of the dominant receptor pathway. Both ELISA and qRT-PCR were used to validate this induction of TGF-β2 in these three cell lines. Treatment with a small molecule inhibitor of TGF-β receptor I (TGFβRI) provided an additive reduction of clonogenic growth when combined with EGFR and/or FGFR TKIs. Additionally, silencing TGF-β2 with shRNA in UMSCC25 cells lead to an additive decrease in clonogenic growth in combination with EGFR and/or FGFR TKIs. Furthermore, we observed an induction of NF-κB activity in the cell lines following treatment with EGFR and/or FGFR TKIs. This induction was mitigated by the use of a TGF-β2 neutralizing antibody, suggesting that TGF-β2 is signaling through a non-canonical pathway in our model. In addition to observing a rapid increase in TGF-β2 expression, the cell line UMSCC25 was chronically adapted to increasing concentrations of gefitinib over the course of several months. We observed a sustained increase in TGF-β2 expression in the resistant cells compared to the control cells. This data suggests that TGF-β2 induction may provide a novel mechanism of acquired resistance to TKIs, and supports the hypothesis that combination therapy will be more effective than monotherapy in treating HNSCC.
Citation Format: Emily K. Kleczko, Lydia R. Heasley, Marianne E. Marshall, Katherine R. Singleton, Lynn E. Heasley. Tyrosine kinase inhibitors induce TGF-β2 expression in head and neck squamous cell carcinoma cell lines as a mechanism of acquired resistance. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 3387. doi:10.1158/1538-7445.AM2013-3387
Collapse
|
|
12 |
|
17
|
Maltas J, Killarney ST, Singleton KR, Strobl MAR, Washart R, Wood KC, Wood KB. Author Correction: Drug dependence in cancer is exploitable by optimally constructed treatment holidays. Nat Ecol Evol 2024; 8:176. [PMID: 38086953 PMCID: PMC11339707 DOI: 10.1038/s41559-023-02300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
|
Published Erratum |
1 |
|
18
|
Bassil CF, Anderson GR, Mayro B, Askin KN, Winter PS, Gruber S, Hall TM, Hoj JP, Cerda-Smith C, Hutchinson HM, Killarney ST, Singleton KR, Qin L, Jubien-Girard K, Favreau C, Martin AR, Robert G, Benhida R, Auberger P, Pendergast AM, Lonard DM, Puissant A, Wood KC. MCB-613 exploits a collateral sensitivity in drug resistant EGFR-mutant non-small cell lung cancer through covalent inhibition of KEAP1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524094. [PMID: 36711936 PMCID: PMC9882253 DOI: 10.1101/2023.01.17.524094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Targeted therapies have revolutionized cancer chemotherapy. Unfortunately, most patients develop multifocal resistance to these drugs within a matter of months. Here, we used a high-throughput phenotypic small molecule screen to identify MCB-613 as a compound that selectively targets EGFR-mutant, EGFR inhibitor-resistant non-small cell lung cancer (NSCLC) cells harboring diverse resistance mechanisms. Subsequent proteomic and functional genomic screens involving MCB-613 identified its target in this context to be KEAP1, revealing that this gene is selectively essential in the setting of EGFR inhibitor resistance. In-depth molecular characterization demonstrated that (1) MCB-613 binds KEAP1 covalently; (2) a single molecule of MCB-613 is capable of bridging two KEAP1 monomers together; and, (3) this modification interferes with the degradation of canonical KEAP1 substrates such as NRF2. Surprisingly, NRF2 knockout sensitizes cells to MCB-613, suggesting that the drug functions through modulation of an alternative KEAP1 substrate. Together, these findings advance MCB-613 as a new tool for exploiting the selective essentiality of KEAP1 in drug-resistant, EGFR-mutant NSCLC cells.
Collapse
|
Preprint |
2 |
|
19
|
Singleton KR, Tan AC, Kim J, Heasley L. Abstract B35: Alternate receptor tyrosine kinases provide protection from FGFR inhibition in HNSCC cells as identified by genome-wide shRNA screening. Clin Cancer Res 2012. [DOI: 10.1158/1078-0432.mechres-b35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The efficacy of many biologically targeted cancer therapies is limited by intrinsic and acquired resistance. Head and neck squamous carcinoma (HNSCC) patients show only a 4–10% response to the epidermal growth factor receptor (EGFR) inhibitors, gefitinib and erlotinib, despite EGFR over-expression in over 90% of tumors. Our lab has previously shown that gefitinib insensitive non-small cell lung cancer (NSCLC) cell lines exhibit dominant autocrine fibroblast growth factor receptor (FGFR) signaling. RNAi-based loss-of-function screens are an important tool to identify synthetic lethal interactions between the inhibition of two genes in order to efficiently identify functional survival mechanisms and potent drug combinations. We deployed a whole genome screen to identify genes whose knockdown potentiated the inhibitory effect of the FGFR inhibitor, AZ12908010, in HNSCC cell lines. We found that multiple alternate receptors provided protection from FGFR inhibition in these cell lines, including the receptor tyrosine kinases (RTKs) epidermal growth factor receptor 2 (ErbB2) and hepatocyte growth factor receptor (Met). We validated the results of the screen by showing that specific knockdown of either ErbB2 or Met in combination with FGFR inhibitor treatment led to increased inhibition of growth relative to FGFR tyrosine kinase inhibitor (TKI) treatment alone. These results were confirmed using specific small molecule inhibitors of either ErbB2 or Met. The combination therapies did not lead to greater inhibition of growth in the cell lines where ErbB2 and Met were not identified as synthetic lethal with FGFR. We extended the study to find that the combination of knockdown of either ErbB2 or Met with FGFR inhibition decreased the growth of additional cell lines, indicating that the combination therapies could be broadly applicable. These results reveal a role for alternate RTKs in maintaining pro-growth and survival signaling in HNSCC cells in the setting of FGFR inhibition. Thus, improved therapies for HNSCC patients could involve rationally designed combinations of TKIs targeting FGFR and either ErbB family members or Met.
Collapse
|
|
13 |
|