1
|
Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, Muzny D, Platzer M, Howell GR, Burrows C, Bird CP, Frankish A, Lovell FL, Howe KL, Ashurst JL, Fulton RS, Sudbrak R, Wen G, Jones MC, Hurles ME, Andrews TD, Scott CE, Searle S, Ramser J, Whittaker A, Deadman R, Carter NP, Hunt SE, Chen R, Cree A, Gunaratne P, Havlak P, Hodgson A, Metzker ML, Richards S, Scott G, Steffen D, Sodergren E, Wheeler DA, Worley KC, Ainscough R, Ambrose KD, Ansari-Lari MA, Aradhya S, Ashwell RIS, Babbage AK, Bagguley CL, Ballabio A, Banerjee R, Barker GE, Barlow KF, Barrett IP, Bates KN, Beare DM, Beasley H, Beasley O, Beck A, Bethel G, Blechschmidt K, Brady N, Bray-Allen S, Bridgeman AM, Brown AJ, Brown MJ, Bonnin D, Bruford EA, Buhay C, Burch P, Burford D, Burgess J, Burrill W, Burton J, Bye JM, Carder C, Carrel L, Chako J, Chapman JC, Chavez D, Chen E, Chen G, Chen Y, Chen Z, Chinault C, Ciccodicola A, Clark SY, Clarke G, Clee CM, Clegg S, Clerc-Blankenburg K, Clifford K, Cobley V, Cole CG, Conquer JS, Corby N, Connor RE, David R, Davies J, Davis C, Davis J, Delgado O, Deshazo D, Dhami P, Ding Y, Dinh H, Dodsworth S, Draper H, Dugan-Rocha S, Dunham A, Dunn M, Durbin KJ, Dutta I, Eades T, Ellwood M, Emery-Cohen A, Errington H, Evans KL, Faulkner L, Francis F, Frankland J, Fraser AE, Galgoczy P, Gilbert J, Gill R, Glöckner G, Gregory SG, Gribble S, Griffiths C, Grocock R, Gu Y, Gwilliam R, Hamilton C, Hart EA, Hawes A, Heath PD, Heitmann K, Hennig S, Hernandez J, Hinzmann B, Ho S, Hoffs M, Howden PJ, Huckle EJ, Hume J, Hunt PJ, Hunt AR, Isherwood J, Jacob L, Johnson D, Jones S, de Jong PJ, Joseph SS, Keenan S, Kelly S, Kershaw JK, Khan Z, Kioschis P, Klages S, Knights AJ, Kosiura A, Kovar-Smith C, Laird GK, Langford C, Lawlor S, Leversha M, Lewis L, Liu W, Lloyd C, Lloyd DM, Loulseged H, Loveland JE, Lovell JD, Lozado R, Lu J, Lyne R, Ma J, Maheshwari M, Matthews LH, McDowall J, McLaren S, McMurray A, Meidl P, Meitinger T, Milne S, Miner G, Mistry SL, Morgan M, Morris S, Müller I, Mullikin JC, Nguyen N, Nordsiek G, Nyakatura G, O'Dell CN, Okwuonu G, Palmer S, Pandian R, Parker D, Parrish J, Pasternak S, Patel D, Pearce AV, Pearson DM, Pelan SE, Perez L, Porter KM, Ramsey Y, Reichwald K, Rhodes S, Ridler KA, Schlessinger D, Schueler MG, Sehra HK, Shaw-Smith C, Shen H, Sheridan EM, Shownkeen R, Skuce CD, Smith ML, Sotheran EC, Steingruber HE, Steward CA, Storey R, Swann RM, Swarbreck D, Tabor PE, Taudien S, Taylor T, Teague B, Thomas K, Thorpe A, Timms K, Tracey A, Trevanion S, Tromans AC, d'Urso M, Verduzco D, Villasana D, Waldron L, Wall M, Wang Q, Warren J, Warry GL, Wei X, West A, Whitehead SL, Whiteley MN, Wilkinson JE, Willey DL, Williams G, Williams L, Williamson A, Williamson H, Wilming L, Woodmansey RL, Wray PW, Yen J, Zhang J, Zhou J, Zoghbi H, Zorilla S, Buck D, Reinhardt R, Poustka A, Rosenthal A, Lehrach H, Meindl A, Minx PJ, Hillier LW, Willard HF, Wilson RK, Waterston RH, Rice CM, Vaudin M, Coulson A, Nelson DL, Weinstock G, Sulston JE, Durbin R, Hubbard T, Gibbs RA, Beck S, Rogers J, Bentley DR. The DNA sequence of the human X chromosome. Nature 2005; 434:325-37. [PMID: 15772651 PMCID: PMC2665286 DOI: 10.1038/nature03440] [Citation(s) in RCA: 775] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 02/07/2005] [Indexed: 01/19/2023]
Abstract
The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Centromere/genetics
- Chromosomes, Human, X/genetics
- Chromosomes, Human, Y/genetics
- Contig Mapping
- Crossing Over, Genetic/genetics
- Dosage Compensation, Genetic
- Evolution, Molecular
- Female
- Genetic Linkage/genetics
- Genetics, Medical
- Genomics
- Humans
- Male
- Polymorphism, Single Nucleotide/genetics
- RNA/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Testis/metabolism
Collapse
|
research-article |
20 |
775 |
2
|
Marioni RE, Harris SE, Zhang Q, McRae AF, Hagenaars SP, Hill WD, Davies G, Ritchie CW, Gale CR, Starr JM, Goate AM, Porteous DJ, Yang J, Evans KL, Deary IJ, Wray NR, Visscher PM. GWAS on family history of Alzheimer's disease. Transl Psychiatry 2018; 8:99. [PMID: 29777097 PMCID: PMC5959890 DOI: 10.1038/s41398-018-0150-6] [Citation(s) in RCA: 381] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a public health priority for the 21st century. Risk reduction currently revolves around lifestyle changes with much research trying to elucidate the biological underpinnings. We show that self-report of parental history of Alzheimer's dementia for case ascertainment in a genome-wide association study of 314,278 participants from UK Biobank (27,696 maternal cases, 14,338 paternal cases) is a valid proxy for an AD genetic study. After meta-analysing with published consortium data (n = 74,046 with 25,580 cases across the discovery and replication analyses), three new AD-associated loci (P < 5 × 10-8) are identified. These contain genes relevant for AD and neurodegeneration: ADAM10, BCKDK/KAT8 and ACE. Novel gene-based loci include drug targets such as VKORC1 (warfarin dose). We report evidence that the association of SNPs in the TOMM40 gene with AD is potentially mediated by both gene expression and DNA methylation in the prefrontal cortex. However, it is likely that multiple variants are affecting the trait and gene methylation/expression. Our discovered loci may help to elucidate the biological mechanisms underlying AD and, as they contain genes that are drug targets for other diseases and disorders, warrant further exploration for potential precision medicine applications.
Collapse
|
research-article |
7 |
381 |
3
|
Min JL, Hemani G, Hannon E, Dekkers KF, Castillo-Fernandez J, Luijk R, Carnero-Montoro E, Lawson DJ, Burrows K, Suderman M, Bretherick AD, Richardson TG, Klughammer J, Iotchkova V, Sharp G, Al Khleifat A, Shatunov A, Iacoangeli A, McArdle WL, Ho KM, Kumar A, Söderhäll C, Soriano-Tárraga C, Giralt-Steinhauer E, Kazmi N, Mason D, McRae AF, Corcoran DL, Sugden K, Kasela S, Cardona A, Day FR, Cugliari G, Viberti C, Guarrera S, Lerro M, Gupta R, Bollepalli S, Mandaviya P, Zeng Y, Clarke TK, Walker RM, Schmoll V, Czamara D, Ruiz-Arenas C, Rezwan FI, Marioni RE, Lin T, Awaloff Y, Germain M, Aïssi D, Zwamborn R, van Eijk K, Dekker A, van Dongen J, Hottenga JJ, Willemsen G, Xu CJ, Barturen G, Català-Moll F, Kerick M, Wang C, Melton P, Elliott HR, Shin J, Bernard M, Yet I, Smart M, Gorrie-Stone T, Shaw C, Al Chalabi A, Ring SM, Pershagen G, Melén E, Jiménez-Conde J, Roquer J, Lawlor DA, Wright J, Martin NG, Montgomery GW, Moffitt TE, Poulton R, Esko T, Milani L, Metspalu A, Perry JRB, Ong KK, Wareham NJ, Matullo G, Sacerdote C, Panico S, Caspi A, Arseneault L, Gagnon F, Ollikainen M, Kaprio J, Felix JF, Rivadeneira F, Tiemeier H, van IJzendoorn MH, Uitterlinden AG, Jaddoe VWV, Haley C, McIntosh AM, Evans KL, Murray A, Räikkönen K, Lahti J, Nohr EA, Sørensen TIA, Hansen T, Morgen CS, Binder EB, Lucae S, Gonzalez JR, Bustamante M, Sunyer J, Holloway JW, Karmaus W, Zhang H, Deary IJ, Wray NR, Starr JM, Beekman M, van Heemst D, Slagboom PE, Morange PE, Trégouët DA, Veldink JH, Davies GE, de Geus EJC, Boomsma DI, Vonk JM, Brunekreef B, Koppelman GH, Alarcón-Riquelme ME, Huang RC, Pennell CE, van Meurs J, Ikram MA, Hughes AD, Tillin T, Chaturvedi N, Pausova Z, Paus T, Spector TD, Kumari M, Schalkwyk LC, Visscher PM, Davey Smith G, Bock C, Gaunt TR, Bell JT, Heijmans BT, Mill J, Relton CL. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat Genet 2021; 53:1311-1321. [PMID: 34493871 PMCID: PMC7612069 DOI: 10.1038/s41588-021-00923-x] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/12/2021] [Indexed: 12/25/2022]
Abstract
Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to understand mechanisms underpinning gene regulation and disease. In the present study, we describe results of DNAm quantitative trait locus (mQTL) analyses on 32,851 participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites in blood. We present a database of >270,000 independent mQTLs, of which 8.5% comprise long-range (trans) associations. Identified mQTL associations explain 15-17% of the additive genetic variance of DNAm. We show that the genetic architecture of DNAm levels is highly polygenic. Using shared genetic control between distal DNAm sites, we constructed networks, identifying 405 discrete genomic communities enriched for genomic annotations and complex traits. Shared genetic variants are associated with both DNAm levels and complex diseases, but only in a minority of cases do these associations reflect causal relationships from DNAm to trait or vice versa, indicating a more complex genotype-phenotype map than previously anticipated.
Collapse
|
research-article |
4 |
246 |
4
|
Oldekop JA, Holmes G, Harris WE, Evans KL. A global assessment of the social and conservation outcomes of protected areas. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2016; 30:133-41. [PMID: 26096222 DOI: 10.1111/cobi.12568] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 05/19/2015] [Accepted: 05/31/2015] [Indexed: 05/22/2023]
Abstract
Protected areas (PAs) are a key strategy for protecting biological resources, but they vary considerably in their effectiveness and are frequently reported as having negative impacts on local people. This has contributed to a divisive and unresolved debate concerning the compatibility of environmental and socioeconomic development goals. Elucidating the relationship between positive and negative social impacts and conservation outcomes of PAs is key for the development of more effective and socially just conservation. We conducted a global meta-analysis on 165 PAs using data from 171 published studies. We assessed how PAs affect the well-being of local people, the factors associated with these impacts, and crucially the relationship between PAs' conservation and socioeconomic outcomes. Protected areas associated with positive socioeconomic outcomes were more likely to report positive conservation outcomes. Positive conservation and socioeconomic outcomes were more likely to occur when PAs adopted comanagement regimes, empowered local people, reduced economic inequalities, and maintained cultural and livelihood benefits. Whereas the strictest regimes of PA management attempted to exclude anthropogenic influences to achieve biological conservation objectives, PAs that explicitly integrated local people as stakeholders tended to be more effective at achieving joint biological conservation and socioeconomic development outcomes. Strict protection may be needed in some circumstances, yet our results demonstrate that conservation and development objectives can be synergistic and highlight management strategies that increase the probability of maximizing both conservation performance and development outcomes of PAs.
Collapse
|
Meta-Analysis |
9 |
203 |
5
|
Hall J, Whalley HC, Job DE, Baig BJ, McIntosh AM, Evans KL, Thomson PA, Porteous DJ, Cunningham-Owens DG, Johnstone EC, Lawrie SM. A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nat Neurosci 2006; 9:1477-8. [PMID: 17072305 DOI: 10.1038/nn1795] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 10/03/2006] [Indexed: 02/02/2023]
Abstract
NRG1, encoding neuregulin 1, is a susceptibility gene for schizophrenia, but no functional mutation causally related to the disorder has yet been identified. Here we investigate the effects of a variant in the human NRG1 promoter region in subjects at high risk of schizophrenia. We show that this variant is associated with (i) decreased activation of frontal and temporal lobe regions, (ii) increased development of psychotic symptoms and (iii) decreased premorbid IQ.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
198 |
6
|
Zhang Q, Vallerga CL, Walker RM, Lin T, Henders AK, Montgomery GW, He J, Fan D, Fowdar J, Kennedy M, Pitcher T, Pearson J, Halliday G, Kwok JB, Hickie I, Lewis S, Anderson T, Silburn PA, Mellick GD, Harris SE, Redmond P, Murray AD, Porteous DJ, Haley CS, Evans KL, McIntosh AM, Yang J, Gratten J, Marioni RE, Wray NR, Deary IJ, McRae AF, Visscher PM. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med 2019; 11:54. [PMID: 31443728 PMCID: PMC6708158 DOI: 10.1186/s13073-019-0667-1] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND DNA methylation changes with age. Chronological age predictors built from DNA methylation are termed 'epigenetic clocks'. The deviation of predicted age from the actual age ('age acceleration residual', AAR) has been reported to be associated with death. However, it is currently unclear how a better prediction of chronological age affects such association. METHODS In this study, we build multiple predictors based on training DNA methylation samples selected from 13,661 samples (13,402 from blood and 259 from saliva). We use the Lothian Birth Cohorts of 1921 (LBC1921) and 1936 (LBC1936) to examine whether the association between AAR (from these predictors) and death is affected by (1) improving prediction accuracy of an age predictor as its training sample size increases (from 335 to 12,710) and (2) additionally correcting for confounders (i.e., cellular compositions). In addition, we investigated the performance of our predictor in non-blood tissues. RESULTS We found that in principle, a near-perfect age predictor could be developed when the training sample size is sufficiently large. The association between AAR and mortality attenuates as prediction accuracy increases. AAR from our best predictor (based on Elastic Net, https://github.com/qzhang314/DNAm-based-age-predictor ) exhibits no association with mortality in both LBC1921 (hazard ratio = 1.08, 95% CI 0.91-1.27) and LBC1936 (hazard ratio = 1.00, 95% CI 0.79-1.28). Predictors based on small sample size are prone to confounding by cellular compositions relative to those from large sample size. We observed comparable performance of our predictor in non-blood tissues with a multi-tissue-based predictor. CONCLUSIONS This study indicates that the epigenetic clock can be improved by increasing the training sample size and that its association with mortality attenuates with increased prediction of chronological age.
Collapse
|
research-article |
6 |
195 |
7
|
McIntosh AM, Moorhead TWJ, Job D, Lymer GKS, Muñoz Maniega S, McKirdy J, Sussmann JED, Baig BJ, Bastin ME, Porteous D, Evans KL, Johnstone EC, Lawrie SM, Hall J. The effects of a neuregulin 1 variant on white matter density and integrity. Mol Psychiatry 2008; 13:1054-9. [PMID: 17925794 DOI: 10.1038/sj.mp.4002103] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Theories of abnormal anatomical and functional connectivity in schizophrenia and bipolar disorder are supported by evidence from functional magnetic resonance imaging (MRI), structural MRI and diffusion tensor imaging (DTI). The presence of similar abnormalities in unaffected relatives suggests such disconnectivity is genetically mediated, albeit through unspecified loci. Neuregulin 1 (NRG1) is a psychosis susceptibility gene with effects on neuronal migration, axon guidance and myelination that could potentially explain these findings. In the current study, unaffected subjects were genotyped at the NRG1 single nucleotide polymorphism (SNP) rs6994992 (SNP8NRG243177) locus, previously associated with increased risk for psychosis, and the effect of genetic variation at this locus on white matter density (T(1)-weighted MRI) and integrity (DTI) was ascertained. Subjects with the risk-associated TT genotype had reduced white matter density in the anterior limb of the internal capsule and evidence of reduced structural connectivity in the same region using DTI. We therefore provide the first imaging evidence that genetic variation in NRG1 is associated with reduced white matter density and integrity in human subjects. This finding is discussed in the context of NRG1 effects on neuronal migration, axon guidance and myelination.
Collapse
|
|
17 |
167 |
8
|
Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS. SUSPECTS: enabling fast and effective prioritization of positional candidates. Bioinformatics 2006; 22:773-4. [PMID: 16423925 DOI: 10.1093/bioinformatics/btk031] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
UNLABELLED SUSPECTS is a web-based server which combines annotation and sequence-based approaches to prioritize disease candidate genes in large regions of interest. It uses multiple lines of evidence to rank genes quickly and effectively while limiting the effect of annotation bias to significantly improve performance. AVAILABILITY SUSPECTS is freely available at http://www.genetics.med.ed.ac.uk/suspects/ SUPPLEMENTARY INFORMATION A quick-start guide in Macromedia Flash format is available at http://www.genetics.med.ed.ac.uk/suspects/help.shtml and Excel spreadsheets detailing the comparative performance of the software are included as Supplementary material.
Collapse
|
Journal Article |
19 |
163 |
9
|
Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS. Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinformatics 2005; 6:55. [PMID: 15766383 PMCID: PMC1274252 DOI: 10.1186/1471-2105-6-55] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Accepted: 03/14/2005] [Indexed: 11/26/2022] Open
Abstract
Background Regions of interest identified through genetic linkage studies regularly exceed 30 centimorgans in size and can contain hundreds of genes. Traditionally this number is reduced by matching functional annotation to knowledge of the disease or phenotype in question. However, here we show that disease genes share patterns of sequence-based features that can provide a good basis for automatic prioritization of candidates by machine learning. Results We examined a variety of sequence-based features and found that for many of them there are significant differences between the sets of genes known to be involved in human hereditary disease and those not known to be involved in disease. We have created an automatic classifier called PROSPECTR based on those features using the alternating decision tree algorithm which ranks genes in the order of likelihood of involvement in disease. On average, PROSPECTR enriches lists for disease genes two-fold 77% of the time, five-fold 37% of the time and twenty-fold 11% of the time. Conclusion PROSPECTR is a simple and effective way to identify genes involved in Mendelian and oligogenic disorders. It performs markedly better than the single existing sequence-based classifier on novel data. PROSPECTR could save investigators looking at large regions of interest time and effort by prioritizing positional candidate genes for mutation detection and case-control association studies.
Collapse
|
Journal Article |
20 |
159 |
10
|
Hargens AR, Romine JS, Sipe JC, Evans KL, Mubarak SJ, Akeson WH. Peripheral nerve-conduction block by high muscle-compartment pressure. J Bone Joint Surg Am 1979. [DOI: 10.2106/00004623-197961020-00006] [Citation(s) in RCA: 143] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
|
46 |
143 |
11
|
Hargens AR, Schmidt DA, Evans KL, Gonsalves MR, Cologne JB, Garfin SR, Mubarak SJ, Hagan PL, Akeson WH. Quantitation of skeletal-muscle necrosis in a model compartment syndrome. J Bone Joint Surg Am 1981. [DOI: 10.2106/00004623-198163040-00014] [Citation(s) in RCA: 136] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
|
44 |
136 |
12
|
Hargens AR, Akeson WH, Mubarak SJ, Owen CA, Evans KL, Garetto LP, Gonsalves MR, Schmidt DA. Fluid balance within the canine anterolateral compartment and its relationship to compartment syndromes. J Bone Joint Surg Am 1978. [DOI: 10.2106/00004623-197860040-00012] [Citation(s) in RCA: 127] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
|
47 |
127 |
13
|
Thomson PA, Wray NR, Millar JK, Evans KL, Hellard SL, Condie A, Muir WJ, Blackwood DHR, Porteous DJ. Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatry 2005; 10:657-68, 616. [PMID: 15838535 DOI: 10.1038/sj.mp.4001669] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Translin-associated factor X/Disrupted in Schizophrenia 1 (TRAX/DISC) region was first implicated as a susceptibility locus for schizophrenia by analysis of a large Scottish family in which a t(1;11) translocation cosegregates with schizophrenia, bipolar disorder and recurrent major depression. We now report evidence for association between bipolar disorder and schizophrenia and this locus in the general Scottish population. A systematic study of linkage disequilibrium in a representative sample of the Scottish population was undertaken across the 510 kb of TRAX and DISC1. SNPs representing each haplotype block were selected for case-control association studies of both schizophrenia and bipolar disorder. Significant association with bipolar disorder in women P=0.00026 (P=0.0016 in men and women combined) was detected in a region of DISC1. This same region also showed nominally significant association with schizophrenia in both men and women combined, P=0.0056. Two further regions, one in TRAX and the second in DISC1, showed weaker evidence for sex-specific associations of individual haplotypes with bipolar disorder in men and women respectively, P<0.01. Only the association between bipolar women and DISC1 remained significant after correction for multiple testing. This result provides further supporting evidence for DISC1 as a susceptibility factor for both bipolar disorder and schizophrenia, consistent with the diagnoses in the original Scottish translocation family.
Collapse
|
|
20 |
126 |
14
|
McCartney DL, Hillary RF, Stevenson AJ, Ritchie SJ, Walker RM, Zhang Q, Morris SW, Bermingham ML, Campbell A, Murray AD, Whalley HC, Gale CR, Porteous DJ, Haley CS, McRae AF, Wray NR, Visscher PM, McIntosh AM, Evans KL, Deary IJ, Marioni RE. Epigenetic prediction of complex traits and death. Genome Biol 2018; 19:136. [PMID: 30257690 PMCID: PMC6158884 DOI: 10.1186/s13059-018-1514-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Genome-wide DNA methylation (DNAm) profiling has allowed for the development of molecular predictors for a multitude of traits and diseases. Such predictors may be more accurate than the self-reported phenotypes and could have clinical applications. RESULTS Here, penalized regression models are used to develop DNAm predictors for ten modifiable health and lifestyle factors in a cohort of 5087 individuals. Using an independent test cohort comprising 895 individuals, the proportion of phenotypic variance explained in each trait is examined for DNAm-based and genetic predictors. Receiver operator characteristic curves are generated to investigate the predictive performance of DNAm-based predictors, using dichotomized phenotypes. The relationship between DNAm scores and all-cause mortality (n = 212 events) is assessed via Cox proportional hazards models. DNAm predictors for smoking, alcohol, education, and waist-to-hip ratio are shown to predict mortality in multivariate models. The predictors show moderate discrimination of obesity, alcohol consumption, and HDL cholesterol. There is excellent discrimination of current smoking status, poorer discrimination of college-educated individuals and those with high total cholesterol, LDL with remnant cholesterol, and total:HDL cholesterol ratios. CONCLUSIONS DNAm predictors correlate with lifestyle factors that are associated with health and mortality. They may supplement DNAm-based predictors of age to identify the lifestyle profiles of individuals and predict disease risk.
Collapse
|
research-article |
7 |
125 |
15
|
Hillary RF, Stevenson AJ, McCartney DL, Campbell A, Walker RM, Howard DM, Ritchie CW, Horvath S, Hayward C, McIntosh AM, Porteous DJ, Deary IJ, Evans KL, Marioni RE. Epigenetic measures of ageing predict the prevalence and incidence of leading causes of death and disease burden. Clin Epigenetics 2020; 12:115. [PMID: 32736664 PMCID: PMC7394682 DOI: 10.1186/s13148-020-00905-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Individuals of the same chronological age display different rates of biological ageing. A number of measures of biological age have been proposed which harness age-related changes in DNA methylation profiles. These measures include five 'epigenetic clocks' which provide an index of how much an individual's biological age differs from their chronological age at the time of measurement. The five clocks encompass methylation-based predictors of chronological age (HorvathAge, HannumAge), all-cause mortality (DNAm PhenoAge, DNAm GrimAge) and telomere length (DNAm Telomere Length). A sixth epigenetic measure of ageing differs from these clocks in that it acts as a speedometer providing a single time-point measurement of the pace of an individual's biological ageing. This measure of ageing is termed DunedinPoAm. In this study, we test the association between these six epigenetic measures of ageing and the prevalence and incidence of the leading causes of disease burden and mortality in high-income countries (n ≤ 9537, Generation Scotland: Scottish Family Health Study). RESULTS DNAm GrimAge predicted incidence of clinically diagnosed chronic obstructive pulmonary disease (COPD), type 2 diabetes and ischemic heart disease after 13 years of follow-up (hazard ratios = 2.22, 1.52 and 1.41, respectively). DunedinPoAm predicted the incidence of COPD and lung cancer (hazard ratios = 2.02 and 1.45, respectively). DNAm PhenoAge predicted incidence of type 2 diabetes (hazard ratio = 1.54). DNAm Telomere Length associated with the incidence of ischemic heart disease (hazard ratio = 0.80). DNAm GrimAge associated with all-cause mortality, the prevalence of COPD and spirometry measures at the study baseline. These associations were present after adjusting for possible confounding risk factors including alcohol consumption, body mass index, deprivation, education and tobacco smoking and surpassed stringent Bonferroni-corrected significance thresholds. CONCLUSIONS Our data suggest that epigenetic measures of ageing may have utility in clinical settings to complement gold-standard methods for disease assessment and management.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
115 |
16
|
Mueller JC, Partecke J, Hatchwell BJ, Gaston KJ, Evans KL. Candidate gene polymorphisms for behavioural adaptations during urbanization in blackbirds. Mol Ecol 2013; 22:3629-37. [PMID: 23495914 DOI: 10.1111/mec.12288] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 02/06/2023]
Abstract
Successful urban colonization by formerly rural species represents an ideal situation in which to study adaptation to novel environments. We address this issue using candidate genes for behavioural traits that are expected to play a role in such colonization events. We identified and genotyped 16 polymorphisms in candidate genes for circadian rhythms, harm avoidance and migratory and exploratory behaviour in 12 paired urban and rural populations of the blackbird Turdus merula across the Western Palaearctic. An exonic microsatellite in the SERT gene, a candidate gene for harm avoidance behaviour, exhibited a highly significant association with habitat type in an analysis conducted across all populations. Genetic divergence at this locus was consistent in 10 of the 12 population pairs; this contrasts with previously reported stochastic genetic divergence between these populations at random markers. Our results indicate that behavioural traits related to harm avoidance and associated with the SERT polymorphism experience selection pressures during most blackbird urbanization events. These events thus appear to be influenced by homogeneous adaptive processes in addition to previously reported demographic founder events.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
102 |
17
|
Le Hellard S, Ballereau SJ, Visscher PM, Torrance HS, Pinson J, Morris SW, Thomson ML, Semple CAM, Muir WJ, Blackwood DHR, Porteous DJ, Evans KL. SNP genotyping on pooled DNAs: comparison of genotyping technologies and a semi automated method for data storage and analysis. Nucleic Acids Res 2002; 30:e74. [PMID: 12140336 PMCID: PMC137092 DOI: 10.1093/nar/gnf070] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have compared the accuracy, efficiency and robustness of three methods of genotyping single nucleotide polymorphisms on pooled DNAs. We conclude that (i) the frequencies of the two alleles in pools should be corrected with a factor for unequal allelic amplification, which should be estimated from the mean ratio of a set of heterozygotes (k); (ii) the repeatability of an assay is more important than pinpoint accuracy when estimating allele frequencies, and assays should therefore be optimised to increase the repeatability; and (iii) the size of a pool has a relatively small effect on the accuracy of allele frequency estimation. We therefore recommend that large pools are genotyped and replicated a minimum of four times. In addition, we describe statistical approaches to allow rigorous comparison of DNA pool results. Finally, we describe an extension to our ACeDB database that facilitates management and analysis of the data generated by association studies.
Collapse
|
research-article |
23 |
101 |
18
|
Thomson PA, Christoforou A, Morris SW, Adie E, Pickard BS, Porteous DJ, Muir WJ, Blackwood DHR, Evans KL. Association of Neuregulin 1 with schizophrenia and bipolar disorder in a second cohort from the Scottish population. Mol Psychiatry 2007; 12:94-104. [PMID: 16940976 DOI: 10.1038/sj.mp.4001889] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neuregulin 1 (NRG1) is a strong candidate for involvement in the aetiology of schizophrenia. A haplotype, initially identified as showing association in the Icelandic and Scottish populations, has shown a consistent effect size in multiple European populations. Additionally, NRG1 has been implicated in susceptibility to bipolar disorder. In this first study to select markers systematically on the basis of linkage disequilibrium across the entire NRG1 gene, we used haplotype-tagging single-nucleotide polymorphisms to identify single markers and haplotypes associated with schizophrenia and bipolar disorder in an independently ascertained Scottish population. Haplotypes in two regions met an experiment-wide significance threshold of P=0.0016 (Nyholt's SpD) and were permuted to correct for multiple testing. Region A overlaps with the Icelandic haplotype and shows nominal association with schizophrenia (P=0.00032), bipolar disorder (P=0.0011), and the combined case group (P=0.0017). This region includes the 5' exon of the NRG1 GGF2 isoform and overlaps the expressed sequence tag (EST) cluster Hs.97362. However, no haplotype in Region A remains significant after permutation analysis (P>0.05). Region B contains a haplotype associated with both schizophrenia (P=0.00014), and the combined case group (P=0.000062), although it does not meet Nyholt's threshold in bipolar disorder alone (P=0.0022). This haplotype remained significant after permutation analysis in both the schizophrenia and combined case groups (P=0.024 and P=0.016, respectively). It spans a approximately 136 kb region that includes the coding sequence of the sensory and motor neuron derived factor (SMDF) isoform and 3' exons of all other known NRG1 isoforms. Our study identifies a new of NRG1 region involved in schizophrenia and bipolar disorder in the Scottish population.
Collapse
|
|
18 |
96 |
19
|
Pickard BS, Malloy MP, Christoforou A, Thomson PA, Evans KL, Morris SW, Hampson M, Porteous DJ, Blackwood DHR, Muir WJ. Cytogenetic and genetic evidence supports a role for the kainate-type glutamate receptor gene, GRIK4, in schizophrenia and bipolar disorder. Mol Psychiatry 2006; 11:847-57. [PMID: 16819533 DOI: 10.1038/sj.mp.4001867] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the search for the biological causes of schizophrenia and bipolar disorder, glutamate neurotransmission has emerged as one of a number of candidate processes and pathways where underlying gene deficits may be present. The analysis of chromosomal rearrangements in individuals diagnosed with neuropsychiatric disorders is an established route to candidate gene identification in both Mendelian and complex disorders. Here we describe a set of genes disrupted by, or proximal to, chromosomal breakpoints (2p12, 2q31.3, 2q21.2, 11q23.3 and 11q24.2) in a patient where chronic schizophrenia coexists with mild learning disability (US: mental retardation). Of these disrupted genes, the most promising candidate is a member of the kainate-type ionotropic glutamate receptor family, GRIK4 (KA1). A subsequent systematic case-control association study on GRIK4 assessed its contribution to psychiatric illness in the karyotypically normal population. This identified two discrete regions of disease risk within the GRIK4 locus: three single single nucleotide polymorphism (SNP) markers with a corresponding underlying haplotype associated with susceptibility to schizophrenia (P=0.0005, odds ratio (OR) of 1.453, 95% CI 1.182-1.787) and two single SNP markers and a haplotype associated with a protective effect against bipolar disorder (P=0.0002, OR of 0.624, 95% CI 0.485-0.802). After permutation analysis to correct for multiple testing, schizophrenia and bipolar disorder haplotypes remained significant (P=0.0430, s.e. 0.0064 and P=0.0190, s.e. 0.0043, respectively). We propose that these convergent cytogenetic and genetic findings provide molecular evidence for common aetiologies for different psychiatric conditions and further support the 'glutamate hypothesis' of psychotic illness.
Collapse
|
|
19 |
88 |
20
|
McCartney DL, Stevenson AJ, Walker RM, Gibson J, Morris SW, Campbell A, Murray AD, Whalley HC, Porteous DJ, McIntosh AM, Evans KL, Deary IJ, Marioni RE. Investigating the relationship between DNA methylation age acceleration and risk factors for Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:429-437. [PMID: 30167451 PMCID: PMC6111045 DOI: 10.1016/j.dadm.2018.05.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction The “epigenetic clock” is a DNA methylation–based estimate of biological age and is correlated with chronological age—the greatest risk factor for Alzheimer's disease (AD). Genetic and environmental risk factors exist for AD, several of which are potentially modifiable. In this study, we assess the relationship between the epigenetic clock and AD risk factors. Methods Multilevel models were used to assess the relationship between age acceleration (the residual of biological age regressed onto chronological age) and AD risk factors relating to cognitive reserve, lifestyle, disease, and genetics in the Generation Scotland study (n = 5100). Results We report significant associations between age acceleration and body mass index, total cholesterol to high-density lipoprotein cholesterol ratios, socioeconomic status, high blood pressure, and smoking behavior (Bonferroni-adjusted P < .05). Discussion Associations are present between environmental risk factors for AD and age acceleration. Measures to modify such risk factors might improve the risk profile for AD and the rate of biological ageing. Future longitudinal analyses are therefore warranted.
Collapse
|
Journal Article |
7 |
85 |
21
|
McCartney DL, Zhang F, Hillary RF, Zhang Q, Stevenson AJ, Walker RM, Bermingham ML, Boutin T, Morris SW, Campbell A, Murray AD, Whalley HC, Porteous DJ, Hayward C, Evans KL, Chandra T, Deary IJ, McIntosh AM, Yang J, Visscher PM, McRae AF, Marioni RE. An epigenome-wide association study of sex-specific chronological ageing. Genome Med 2019; 12:1. [PMID: 31892350 PMCID: PMC6938636 DOI: 10.1186/s13073-019-0693-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/15/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Advanced age is associated with cognitive and physical decline and is a major risk factor for a multitude of disorders. There is also a gap in life expectancy between males and females. DNA methylation differences have been shown to be associated with both age and sex. Here, we investigate age-by-sex differences in blood-based DNA methylation in an unrelated cohort of 2586 individuals between the ages of 18 and 87 years, with replication in a further 4450 individuals between the ages of 18 and 93 years. METHODS Linear regression models were applied, with stringent genome-wide significance thresholds (p < 3.6 × 10-8) used in both the discovery and replication data. A second, highly conservative mixed linear model method that better controls the false-positive rate was also applied, using the same genome-wide significance thresholds. RESULTS Using the linear regression method, 52 autosomal and 597 X-linked CpG sites, mapping to 251 unique genes, replicated with concordant effect size directions in the age-by-sex interaction analysis. The site with the greatest difference mapped to GAGE10, an X-linked gene. Here, DNA methylation levels remained stable across the male adult age range (DNA methylation by age r = 0.02) but decreased across female adult age range (DNA methylation by age r = - 0.61). One site (cg23722529) with a significant age-by-sex interaction also had a quantitative trait locus (rs17321482) that is a genome-wide significant variant for prostate cancer. The mixed linear model method identified 11 CpG sites associated with the age-by-sex interaction. CONCLUSION The majority of differences in age-associated DNA methylation trajectories between sexes are present on the X chromosome. Several of these differences occur within genes that have been implicated in sexually dimorphic traits.
Collapse
|
research-article |
6 |
81 |
22
|
Pickard BS, Thomson PA, Christoforou A, Evans KL, Morris SW, Porteous DJ, Blackwood DHR, Muir WJ. The PDE4B gene confers sex-specific protection against schizophrenia. Psychiatr Genet 2007; 17:129-33. [PMID: 17417055 DOI: 10.1097/ypg.0b013e328014492b] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Phosphodiesterase 4B (PDE4B) is a candidate gene for schizophrenia and affective disorders through its disruption by a chromosomal translocation in an individual with schizophrenia, its inhibition by the antidepressant rolipram, and its physical interaction with another key candidate, Disrupted in Schizophrenia (DISC1). OBJECTIVE To determine the contribution made by PDE4B to the population risk of schizophrenia and bipolar disorder by carrying out a case-control association study. METHODS Twenty-six tagging single nucleotide polymorphisms were selected across the PDE4B gene and genotyped in DNA samples from 386 schizophrenia cases, 368 bipolar disorder cases and 455 controls. MAIN RESULTS Single single nucleotide polymorphisms and a resulting haplotype conferred a protective effect against schizophrenia in the female population. The haplotype result remained significant after correction for multiple testing (P=0.012). CONCLUSION The observation that a PDE4B haplotype alters the genetic risk of schizophrenia in the Scottish population complements the known participation of this gene in biological processes associated with mental illness. Further studies are needed to replicate this finding and identify underlying sequence variants.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
78 |
23
|
Gibson J, Russ TC, Clarke TK, Howard DM, Hillary RF, Evans KL, Walker RM, Bermingham ML, Morris SW, Campbell A, Hayward C, Murray AD, Porteous DJ, Horvath S, Lu AT, McIntosh AM, Whalley HC, Marioni RE. A meta-analysis of genome-wide association studies of epigenetic age acceleration. PLoS Genet 2019; 15:e1008104. [PMID: 31738745 PMCID: PMC6886870 DOI: 10.1371/journal.pgen.1008104] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/02/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022] Open
Abstract
'Epigenetic age acceleration' is a valuable biomarker of ageing, predictive of morbidity and mortality, but for which the underlying biological mechanisms are not well established. Two commonly used measures, derived from DNA methylation, are Horvath-based (Horvath-EAA) and Hannum-based (Hannum-EAA) epigenetic age acceleration. We conducted genome-wide association studies of Horvath-EAA and Hannum-EAA in 13,493 unrelated individuals of European ancestry, to elucidate genetic determinants of differential epigenetic ageing. We identified ten independent SNPs associated with Horvath-EAA, five of which are novel. We also report 21 Horvath-EAA-associated genes including several involved in metabolism (NHLRC, TPMT) and immune system pathways (TRIM59, EDARADD). GWAS of Hannum-EAA identified one associated variant (rs1005277), and implicated 12 genes including several involved in innate immune system pathways (UBE2D3, MANBA, TRIM46), with metabolic functions (UBE2D3, MANBA), or linked to lifespan regulation (CISD2). Both measures had nominal inverse genetic correlations with father's age at death, a rough proxy for lifespan. Nominally significant genetic correlations between Hannum-EAA and lifestyle factors including smoking behaviours and education support the hypothesis that Hannum-based epigenetic ageing is sensitive to variations in environment, whereas Horvath-EAA is a more stable cellular ageing process. We identified novel SNPs and genes associated with epigenetic age acceleration, and highlighted differences in the genetic architecture of Horvath-based and Hannum-based epigenetic ageing measures. Understanding the biological mechanisms underlying individual differences in the rate of epigenetic ageing could help explain different trajectories of age-related decline.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
72 |
24
|
Hillary RF, Stevenson AJ, Cox SR, McCartney DL, Harris SE, Seeboth A, Higham J, Sproul D, Taylor AM, Redmond P, Corley J, Pattie A, Hernández MDCV, Muñoz-Maniega S, Bastin ME, Wardlaw JM, Horvath S, Ritchie CW, Spires-Jones TL, McIntosh AM, Evans KL, Deary IJ, Marioni RE. An epigenetic predictor of death captures multi-modal measures of brain health. Mol Psychiatry 2021; 26:3806-3816. [PMID: 31796892 PMCID: PMC8550950 DOI: 10.1038/s41380-019-0616-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 11/08/2022]
Abstract
Individuals of the same chronological age exhibit disparate rates of biological ageing. Consequently, a number of methodologies have been proposed to determine biological age and primarily exploit variation at the level of DNA methylation (DNAm). A novel epigenetic clock, termed 'DNAm GrimAge' has outperformed its predecessors in predicting the risk of mortality as well as many age-related morbidities. However, the association between DNAm GrimAge and cognitive or neuroimaging phenotypes remains unknown. We explore these associations in the Lothian Birth Cohort 1936 (n = 709, mean age 73 years). Higher DNAm GrimAge was strongly associated with all-cause mortality over the eighth decade (Hazard Ratio per standard deviation increase in GrimAge: 1.81, P < 2.0 × 10-16). Higher DNAm GrimAge was associated with lower age 11 IQ (β = -0.11), lower age 73 general cognitive ability (β = -0.18), decreased brain volume (β = -0.25) and increased brain white matter hyperintensities (β = 0.17). There was tentative evidence for a longitudinal association between DNAm GrimAge and cognitive decline from age 70 to 79. Sixty-nine of 137 health- and brain-related phenotypes tested were significantly associated with GrimAge. Adjusting all models for childhood intelligence attenuated to non-significance a small number of associations (12/69 associations; 6 of which were cognitive traits), but not the association with general cognitive ability (33.9% attenuation). Higher DNAm GrimAge associates with lower cognitive ability and brain vascular lesions in older age, independently of early-life cognitive ability. This epigenetic predictor of mortality associates with different measures of brain health and may aid in the prediction of age-related cognitive decline.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
71 |
25
|
Evans KL, Courteney-Harris R, Bailey CM, Evans JN, Parsons DS. Management of posterior laryngeal and laryngotracheoesophageal clefts. ARCHIVES OF OTOLARYNGOLOGY--HEAD & NECK SURGERY 1995; 121:1380-5. [PMID: 7488367 DOI: 10.1001/archotol.1995.01890120038007] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To review the clinical features, associated congenital abnormalities, management, and morbidity of infants presenting with posterior laryngeal and laryngotracheal clefts. DESIGN Case series. SETTING Great Ormond Street Hospital for Sick Children NHS Trust, London, England. PATIENTS Consecutive sample of 44 patients presenting with posterior laryngeal and laryngotracheal clefts between December 10, 1979, and January 30, 1992. MAIN OUTCOME MEASURES Clinical features, incidence of surgery, and associated morbidity and mortality related to different types of airway cleft. RESULTS The main presenting features were stridor and aspiration, which were more evident with the more extensive clefts. Twenty-five patients (56%) had associated congenital abnormalities. Fourteen patients (32%) were treated conservatively. Sixteen patients (36%) underwent primary endoscopic surgical repair. Eight patients (18%) underwent primary repair via an anterior laryngofissure; and six patients (14%) underwent primary repair via a lateral pharyngotomy. Eight patients (18%) required revision surgery, two (4%) of them on more than one occasion. Ten patients (23%) required fundoplication to control gastroesophageal reflux. Six patients (14%) died. CONCLUSIONS The identification of an airway cleft requires a high index of suspicion. Morbidity and mortality are reduced by securing the airway, controlling gastroesophageal reflux, and using a multidisciplinary pediatric team. We recommend the anterior laryngofissure because of the ease of surgical access.
Collapse
|
|
30 |
71 |