1
|
Beger RD, Dunn WB, Bandukwala A, Bethan B, Broadhurst D, Clish CB, Dasari S, Derr L, Evans A, Fischer S, Flynn T, Hartung T, Herrington D, Higashi R, Hsu PC, Jones C, Kachman M, Karuso H, Kruppa G, Lippa K, Maruvada P, Mosley J, Ntai I, O'Donovan C, Playdon M, Raftery D, Shaughnessy D, Souza A, Spaeder T, Spalholz B, Tayyari F, Ubhi B, Verma M, Walk T, Wilson I, Witkin K, Bearden DW, Zanetti KA. Towards quality assurance and quality control in untargeted metabolomics studies. Metabolomics 2019; 15:4. [PMID: 30830465 PMCID: PMC6443086 DOI: 10.1007/s11306-018-1460-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022]
Abstract
We describe here the agreed upon first development steps and priority objectives of a community engagement effort to address current challenges in quality assurance (QA) and quality control (QC) in untargeted metabolomic studies. This has included (1) a QA and QC questionnaire responded to by the metabolomics community in 2015 which recommended education of the metabolomics community, development of appropriate standard reference materials and providing incentives for laboratories to apply QA and QC; (2) a 2-day 'Think Tank on Quality Assurance and Quality Control for Untargeted Metabolomic Studies' held at the National Cancer Institute's Shady Grove Campus and (3) establishment of the Metabolomics Quality Assurance and Quality Control Consortium (mQACC) to drive forward developments in a coordinated manner.
Collapse
|
research-article |
6 |
93 |
2
|
Duffy J, Urbas A, Niemitz M, Lippa K, Marginean I. Differentiation of fentanyl analogues by low-field NMR spectroscopy. Anal Chim Acta 2018; 1049:161-169. [PMID: 30612647 DOI: 10.1016/j.aca.2018.12.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 11/26/2022]
Abstract
Forensic laboratories commonly receive new psychoactive substances such as fentanyl analogues and other synthetic opioids that are difficult to identify. Slight changes to chemical structures, e.g. shifting the position of functional groups such as methyl groups or halogens on the aromatic ring, may not be distinguished using traditional methods. NMR is a powerful tool used to elucidate distinctive structural information needed to differentiate regioisomers. However, the cost, size, and cryogen maintenance of superconducting NMR spectrometers can be impractical for some forensic laboratories. Recent studies have shown potential applications of low-field NMR as an alternative in forensic drug analysis. These benchtop, semi-portable instruments are less costly, have a smaller footprint, do not use cryogens, and require little maintenance. In this study, we show that 65 fentanyl and related substances, including various types of positional isomers, were readily differentiated using low-field (62 MHz) 1H NMR spectroscopy. In addition, the use of quantum mechanical spin system analysis was investigated for the purposes of translating experimentally observed high-field 1H spectra to lower field strengths. Spin system analysis of 600 MHz NMR spectra was conducted on a subset (15) of the reference materials analyzed. The results were used to calculate 62 MHz spectra for comparison purposes with the experimental spectra. This was successfully demonstrated, showing that field-strength independent 1H NMR spectral libraries are feasible and can facilitate reference material data dissemination across forensic drug laboratories.
Collapse
|
Journal Article |
7 |
38 |
3
|
Satterfield MB, Lippa K, Lu ZQ, Salit ML. Microarray Scanner Performance Over a Five-Week Period as Measured With Cy5 and Cy3 Serial Dilution Slides. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 2008; 113:157-174. [PMID: 27096118 PMCID: PMC4654599 DOI: 10.6028/jres.113.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/19/2008] [Indexed: 06/05/2023]
Abstract
To investigate scanner performance and guide development of an instrument qualification method, slides with replicates of successive dilutions of cyanine 5 (Cy5) and cyanine 3 (Cy3) dyes (referred to as dye slides) were scanned. The successive dilutions form a dose-response curve from which performance can be assessed. The effects of a variety of factors, including the number of scans and slide storage conditions, on scanner performance over a five-week period were investigated and tracked with time series charts of dye signal intensity, signal-to-noise (S/N), signal background, slope, and limit of detection (LOD). Scanner drift was tracked with a known stable reference material, Standard Reference Material (SRM) 2242. The greatest effect on the figures of merit was the dye, with the Cy5 dye showing signs of degradation after one week of scanning independent of all other factors while the Cy3 dye remained relatively stable. Use of the charts to track scanner performance over time holds promise for development of a method for microarray scanner performance qualification. Although not a prescription for performance qualification, this introductory study provides sufficient information regarding the use of dye slides to enable the user to institute a preliminary test method.
Collapse
|
research-article |
17 |
5 |
4
|
Jeerage KM, Berry J, Murray J, Goodman C, Piotrowski P, Jones C, Cecelski CE, Carney J, Lippa K, Lovestead T. The need for multicomponent gas standards for breath biomarker analysis. J Breath Res 2022; 16. [PMID: 35584612 DOI: 10.1088/1752-7163/ac70ef] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/18/2022] [Indexed: 11/11/2022]
Abstract
Exhaled breath is a non-invasive, information-rich matrix with the potential to diagnose or monitor disease, including infectious disease. Despite significant effort dedicated to biomarker identification in case control studies, very few breath tests are established in practice. In this topical review, we identify how gas standards support breath analysis today and what is needed to support further expansion and translation to practice. We examine forensic and clinical breath tests and discuss how confidence has been built through unambiguous biomarker identification and quantitation supported by gas calibration standards. Based on this discussion, we identify a need for multicomponent gas standards with part-per-trillion to part-per-million concentrations. We highlight National Institute of Standards and Technology (NIST) gas standards developed for atmospheric measurements that are also relevant to breath analysis and describe investigations of long-term stability, chemical reactions, and interactions with gas cylinder wall treatments. An overview of emerging online instruments and their need for gas standards is also presented. This review concludes with a discussion of our ongoing research to examine the feasibility of producing multicomponent gas standards at breath-relevant concentrations. Such standards could be used to investigate interference from ubiquitous endogenous compounds and as a starting point for standards tailored to specific breath tests.
Collapse
|
|
3 |
2 |
6
|
Westwood S, Lippa K, Shimuzu Y, Lalerle B, Saito T, Duewer D, Dai X, Davies S, Ricci M, Baldan A, Lang B, Sarge S, Wang H, Pratt K, Josephs R, Mariassy M, Pfeifer D, Warren J, Bremser W, Ellison S, Toman B, Nelson M, Huang T, Fajgelj A, Gören A, Mackay L, Wielgosz R. Methods for the SI-traceable value assignment of the purity of organic compounds (IUPAC Technical Report). PURE APPL CHEM 2023. [DOI: 10.1515/pac-2020-0804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
The “purity” of an organic compound typically refers, in practice, to an assignment of the mass fraction content of the primary organic component present in the material. The “purity” value of an organic primary calibrator material is the ultimate source of metrological traceability of any quantitative measurement of the content of that compound in a given matrix. The primary calibrator may consist of a Certified Reference Material (CRM) whose purity has been assigned by the CRM producer or a laboratory may choose to value-assign a material to the extent necessary for their intended application by using appropriately valid methods. This report provides an overview of the approach, performance and applicability of the principal methods used to determine organic purity including mass balance, quantitative NMR, thermal methods and direct-assay techniques. A statistical section reviews best practice for combination of data, value assignment as the upper limit values corresponding to 100 % purity are approached and how to report and propagate the standard uncertainty associated with the assigned values.
Collapse
|
|
2 |
|
7
|
Torta F, Hoffmann N, Burla B, Alecu I, Arita M, Bamba T, Bennett SAL, Bertrand-Michel J, Brügger B, Cala MP, Camacho-Muñoz D, Checa A, Chen M, Chocholoušková M, Cinel M, Chu-Van E, Colsch B, Coman C, Connell L, Sousa BC, Dickens AM, Fedorova M, Eiríksson FF, Gallart-Ayala H, Ghorasaini M, Giera M, Guan XL, Haid M, Hankemeier T, Harms A, Höring M, Holčapek M, Hornemann T, Hu C, Hülsmeier AJ, Huynh K, Jones CM, Ivanisevic J, Izumi Y, Köfeler HC, Lam SM, Lange M, Lee JC, Liebisch G, Lippa K, Lopez-Clavijo AF, Manzi M, Martinefski MR, Math RGH, Mayor S, Meikle PJ, Monge ME, Moon MH, Muralidharan S, Nicolaou A, Nguyen-Tran T, O'Donnell VB, Orešič M, Ramanathan A, Riols F, Saigusa D, Schock TB, Schwartz-Zimmermann H, Shui G, Singh M, Takahashi M, Thorsteinsdóttir M, Tomiyasu N, Tournadre A, Tsugawa H, Tyrrell VJ, van der Gugten G, Wakelam MO, Wheelock CE, Wolrab D, Xu G, Xu T, Bowden JA, Ekroos K, Ahrends R, Wenk MR. Concordant inter-laboratory derived concentrations of ceramides in human plasma reference materials via authentic standards. Nat Commun 2024; 15:8562. [PMID: 39362843 PMCID: PMC11449902 DOI: 10.1038/s41467-024-52087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
In this community effort, we compare measurements between 34 laboratories from 19 countries, utilizing mixtures of labelled authentic synthetic standards, to quantify by mass spectrometry four clinically used ceramide species in the NIST (National Institute of Standards and Technology) human blood plasma Standard Reference Material (SRM) 1950, as well as a set of candidate plasma reference materials (RM 8231). Participants either utilized a provided validated method and/or their method of choice. Mean concentration values, and intra- and inter-laboratory coefficients of variation (CV) were calculated using single-point and multi-point calibrations, respectively. These results are the most precise (intra-laboratory CVs ≤ 4.2%) and concordant (inter-laboratory CVs < 14%) community-derived absolute concentration values reported to date for four clinically used ceramides in the commonly analyzed SRM 1950. We demonstrate that calibration using authentic labelled standards dramatically reduces data variability. Furthermore, we show how the use of shared RM can correct systematic quantitative biases and help in harmonizing lipidomics. Collectively, the results from the present study provide a significant knowledge base for translation of lipidomic technologies to future clinical applications that might require the determination of reference intervals (RIs) in various human populations or might need to estimate reference change values (RCV), when analytical variability is a key factor for recall during multiple testing of individuals.
Collapse
|
research-article |
1 |
|