1
|
Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, Iyer AK. PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Front Pharmacol 2017; 8:561. [PMID: 28878676 PMCID: PMC5572324 DOI: 10.3389/fphar.2017.00561] [Citation(s) in RCA: 1200] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
Several cancers are highly refractory to conventional chemotherapy. The survival of tumors in several cases is assisted by checkpoint immunomodulation to maintain the imbalance between immune surveillance and cancer cell proliferation. Check point antibody inhibitors, such as anti-PD-1/PD-L1, are a novel class of inhibitors that function as a tumor suppressing factor via modulation of immune cell-tumor cell interaction. These checkpoint blockers are rapidly becoming a highly promising cancer therapeutic approach that yields remarkable antitumor responses with limited side effects. In recent times, more than four check point antibody inhibitors have been commercialized for targeting PD-1, PDL-1, and CTLA-4. Despite the huge success and efficacy of the anti-PD therapy response, it is limited to specific types of cancers, which attributes to the insufficient and heterogeneous expression of PD-1 in the tumor microenvironment. Herein, we review the current landscape of the PD-1/PD-L1 mechanistic role in tumor immune evasion and therapeutic outcome for cancer treatment. We also review the current progress in clinical trials, combination of drug therapy with immunotherapy, safety, and future of check point inhibitors for multiple types of cancer.
Collapse
|
Review |
8 |
1200 |
2
|
Tatiparti K, Sau S, Kashaw SK, Iyer AK. siRNA Delivery Strategies: A Comprehensive Review of Recent Developments. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E77. [PMID: 28379201 PMCID: PMC5408169 DOI: 10.3390/nano7040077] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/07/2017] [Accepted: 03/31/2017] [Indexed: 01/01/2023]
Abstract
siRNA is a promising therapeutic solution to address gene overexpression or mutations as a post-transcriptional gene regulation process for several pathological conditions such as viral infections, cancer, genetic disorders, and autoimmune disorders like arthritis. This therapeutic method is currently being actively pursued in cancer therapy because siRNA has been found to suppress the oncogenes and address mutations in tumor suppressor genes and elucidate the key molecules in cellular pathways in cancer. It is also effective in personalized gene therapy for several diseases due to its specificity, adaptability, and broad targeting capability. However, naked siRNA is unstable in the bloodstream and cannot efficiently cross cell membranes besides being immunogenic. Therefore, careful design of the delivery systems is essential to fully utilize the potential of this therapeutic solution. This review presents a comprehensive update on the challenges of siRNA delivery and the current strategies used to develop nanoparticulate delivery systems.
Collapse
|
Review |
8 |
282 |
3
|
Sau S, Alsaab HO, Kashaw SK, Tatiparti K, Iyer AK. Advances in antibody-drug conjugates: A new era of targeted cancer therapy. Drug Discov Today 2017. [PMID: 28627385 DOI: 10.1016/j.drudis.2017.05.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Antibody-drug conjugates (ADCs), a potent class of anticancer therapeutics, comprise a high-affinity antibody (Ab) and cytotoxic payload coupled via a suitable linker for selective tumor cell killing. In the initial phase of their development, two ADCs, Mylotarg®, and Adcetris® were approved by the US Food and Drug Administration (FDA) for treating hematological cancer, but the real breakthrough came with the discovery of the breast cancer-targeting ADC, Kadcyla®. With advances in bioengineering, linker chemistry, and potent cytotoxic payload, ADC technology has become a more powerful tool for targeted cancer therapy. In addition, ADCs with improved safety using humanized Abs with a unified 'drug:antibody ratio' (DAR) have been achieved. Concomitantly, there has been a significant increase in the number of clinical trials with anticancer ADCs with high translation potential.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
124 |
4
|
Reddy S, Tatiparti K, Sau S, Iyer AK. Recent advances in nano delivery systems for blood-brain barrier (BBB) penetration and targeting of brain tumors. Drug Discov Today 2021; 26:1944-1952. [PMID: 33865978 DOI: 10.1016/j.drudis.2021.04.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/24/2021] [Accepted: 04/08/2021] [Indexed: 02/09/2023]
Abstract
Gliomas constitute about 80% of brain tumors and have a meager two-year survival rate. The treatment options available are very few because of poor prognosis and a lack of targeted nanodelivery systems that can cross the blood-brain barrier (BBB) and the blood-tumor barrier. This short review attempts to clarify the challenges for delivery systems designed to cross the BBB, and provides a brief description of the different types of targeted nanodelivery system that have shown potential for success in delivering drugs to the brain. Further, this review describes the most recent studies that have developed nanoparticles for brain delivery in the past five years. We also provide an insight into the most recent clinical trials designed to assess the efficacy of these nanodelivery systems for glioma.
Collapse
|
Review |
4 |
70 |
5
|
Koneru T, McCord E, Pawar S, Tatiparti K, Sau S, Iyer AK. Transferrin: Biology and Use in Receptor-Targeted Nanotherapy of Gliomas. ACS OMEGA 2021; 6:8727-8733. [PMID: 33842744 PMCID: PMC8028004 DOI: 10.1021/acsomega.0c05848] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/26/2021] [Indexed: 06/06/2023]
Abstract
Gliomas constitute 80% of malignant brain tumors. The survival rate of patients diagnosed with malignant gliomas is only 34.4%, as seen in both adults as well as children. The biggest challenge in treatment of gliomas is the impenetrable blood-brain barrier. With the availability of only a very few choices of chemotherapeutics in the treatment of gliomas, it is imperative that a novel strategy to effectively deliver drugs into the brain is researched and applied. The most popular strategy that is gaining importance is the receptor-mediated uptake of targeted nanoparticles comprising of ligands specific to the receptors. This review discusses briefly one such receptor called the transferrin receptor that is highly expressed in the brain and can be applied effectively for targeted nanoparticle delivery systems in gliomas.
Collapse
|
Review |
4 |
50 |
6
|
McCord E, Pawar S, Koneru T, Tatiparti K, Sau S, Iyer AK. Folate Receptors' Expression in Gliomas May Possess Potential Nanoparticle-Based Drug Delivery Opportunities. ACS OMEGA 2021; 6:4111-4118. [PMID: 33623837 PMCID: PMC7893640 DOI: 10.1021/acsomega.0c05500] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/22/2021] [Indexed: 05/05/2023]
Abstract
Brain cancer effected around estimated 23 890 adults and 3540 children under the age of 15 in 2020. The chemotherapeutic agents that are already approved by the FDA for brain cancer are proving to be not highly effective because of the interference from the tumor microenvironment as well as their own toxicities. Added to this is the impedance presented by the extremely restrictive permeability of the blood brain barrier (BBB). Targeted nanoparticulate drug delivery systems offer a good opportunity to traverse the BBB and selectively target the tumor cells. Folate receptors are found to be one of the most useful targets for drug delivery to the brain. Hence, this Mini-Review discusses the folate receptors and their application in the treatment of brain cancers using targeted nanoparticles.
Collapse
|
Review |
4 |
40 |
7
|
Sau S, Tatiparti K, Alsaab HO, Kashaw SK, Iyer AK. A tumor multicomponent targeting chemoimmune drug delivery system for reprograming the tumor microenvironment and personalized cancer therapy. Drug Discov Today 2018; 23:1344-1356. [PMID: 29551455 DOI: 10.1016/j.drudis.2018.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/11/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
Nanoparticle library engineered with tunable size, shape, and geometry will provide a better idea of targeting multicomponent of tumor microenvironment consisting of epithelial cells, tumor hypoxia, tumor immune cells and angiogenic blood vessels.
Collapse
|
Review |
7 |
19 |
8
|
Vanamala K, Tatiparti K, Bhise K, Sau S, Scheetz MH, Rybak MJ, Andes D, Iyer AK. Novel approaches for the treatment of methicillin-resistant Staphylococcus aureus: Using nanoparticles to overcome multidrug resistance. Drug Discov Today 2021; 26:31-43. [PMID: 33091564 PMCID: PMC7855522 DOI: 10.1016/j.drudis.2020.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/15/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes serious infections in both community and hospital settings, with high mortality rates. Treatment of MRSA infections is challenging because of the rapidly evolving resistance mechanisms combined with the protective biofilms of S. aureus. Together, these characteristic resistance mechanisms continue to render conventional treatment modalities ineffective. The use of nanoformulations with unique modes of transport across bacterial membranes could be a useful strategy for disease-specific delivery. In this review, we summarize treatment approaches for MRSA, including novel techniques in nanoparticulate designing for better therapeutic outcomes; and facilitate an understanding that nanoparticulate delivery systems could be a robust approach in the successful treatment of MRSA.
Collapse
|
Review |
4 |
19 |
9
|
Tatiparti K, Rauf MA, Sau S, Iyer AK. Carbonic Anhydrase-IX Guided Albumin Nanoparticles for Hypoxia-mediated Triple-Negative Breast Cancer Cell Killing and Imaging of Patient-derived Tumor. Molecules 2020; 25:molecules25102362. [PMID: 32438691 PMCID: PMC7287925 DOI: 10.3390/molecules25102362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Triple-Negative Breast Cancer (TNBC) is considered as the most onerous cancer subtype, lacking the estrogen, progesterone, and HER2 receptors. Evaluating new markers is an unmet need for improving targeted therapy against TNBC. TNBC depends on several factors, including hypoxia development, which contributes to therapy resistance, immune evasion, and tumor stroma formation. In this study, we studied the curcumin analogue (3,4-Difluorobenzylidene Curcumin; CDF) encapsulated bovine serum albumin (BSA) nanoparticle for tumor targeting. For tumor targeting, we conjugated Acetazolamide (ATZ) with CDF and encapsulated it in the BSA to form a nanoparticle (namely BSA-CDF-ATZ). The in vitro cytotoxicity study suggested that BSA-CDF-ATZ is more efficient when compared to free CDF. The BSA-CDF-ATZ nanoparticles showed significantly higher cell killing in hypoxic conditions compared to normoxic conditions, suggesting better internalization of the nanoparticles into cancer cells under hypoxia. Fluorescent-dye labeled BSA-CDF-ATZ revealed higher cell uptake of the nanoparticle compared to free dye indicative of better delivery, substantiated by a high rate of apoptosis-mediated cell death compared to free CDF. The significantly higher tumor accumulation and low liver and spleen uptake in TNBC patient-derived tumor xenograft models confirm the significant potential of BSA-CDF-ATZ for targeted TNBC imaging and therapy.
Collapse
|
Journal Article |
5 |
11 |
10
|
Rauf MA, Tasleem M, Bhise K, Tatiparti K, Sau S, Iyer AK. Nano-therapeutic strategies to target coronavirus. VIEW 2021; 2:20200155. [PMID: 34766165 PMCID: PMC8250313 DOI: 10.1002/viw.20200155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/28/2020] [Accepted: 12/24/2020] [Indexed: 01/05/2023] Open
Abstract
The coronaviruses have caused severe acute respiratory syndrome (SARS), the Middle East respiratory syndrome (MERS), and the more recent coronavirus pneumonia (COVID-19). The global COVID-19 pandemic requires urgent action to develop anti-virals, new therapeutics, and vaccines. In this review, we discuss potential therapeutics including human recombinant ACE2 soluble, inflammatory cytokine inhibitors, and direct anti-viral agents such as remdesivir and favipiravir, to limit their fatality. We also discuss the structure of the SARS-CoV-2, which is crucial to the timely development of therapeutics, and previous attempts to generate vaccines against SARS-CoV and MERS-CoV. Finally, we provide an overview of the role of nanotechnology in the development of therapeutics as well as in the diagnosis of the infection. This information is key for computational modeling and nanomedicine-based new therapeutics by counteracting the variable proteins in the virus. Further, we also try to effectively share the latest information about many different aspects of COVID-19 vaccine developments and possible management to further scientific endeavors.
Collapse
|
Review |
4 |
10 |
11
|
Alzhrani R, Alsaab HO, Vanamal K, Bhise K, Tatiparti K, Barari A, Sau S, Iyer AK. Overcoming the Tumor Microenvironmental Barriers of Pancreatic Ductal Adenocarcinomas for Achieving Better Treatment Outcomes. ADVANCED THERAPEUTICS 2021; 4:2000262. [PMID: 34212073 PMCID: PMC8240487 DOI: 10.1002/adtp.202000262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with the lowest survival rate among all solid tumors. The lethality of PDAC arises from late detection and propensity of the tumor to metastasize and develop resistance against chemo and radiation therapy. A highly complex tumor microenvironment composed of dense stroma, immune cells, fibroblast, and disorganized blood vessels, is the main obstacle to current PDAC therapy. Despite the tremendous success of immune checkpoint inhibitors (ICIs) in cancers, PDAC remains one of the poorest responders of ICIs therapy. The immunologically "cold" phenotype of PDAC is attributed to the low mutational burden, high infiltration of myeloid-derived suppressor cells and T-regs, contributing to a significant immunotherapy resistance mechanism. Thus, the development of innovative strategies for turning immunologically "cold" tumor into "hot" ones is an unmet need to improve the outcome of PDAC ICIs therapies. Other smart strategies, such as nanomedicines, sonic Hedgehog inhibitor, or smoothened inhibitor, are discussed to enhance chemotherapeutic agents' efficiency by disrupting the PDAC stroma. This review highlights the current challenges and various preclinical and clinical strategies to overcome current PDAC therapy difficulties, thus significantly advancing PDAC research knowledge.
Collapse
|
research-article |
4 |
8 |
12
|
Rauf MA, Tatiparti K, Sau S, Iyer AK. Abstract 1721: Hypoxia penetrating ultra-small nanoparticle for anti-cancer effect in Glioblastoma. Cancer Res 2020. [DOI: 10.1158/1538-7445.am2020-1721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Glioblastoma multiforme (GBM) is a lethal brain tumor currently without successful treatment options. Chemotherapeutic agents are the frontline in the management of GBM. Nonetheless, accessibility of the brain tumor is greatly impeded by the poor blood-brain barrier (BBB) penetration of drugs, which needs immediate attention. Ultra-small multifunctional nanoparticle offers a great promise in overcoming the delivery barriers to GBM. The primary goal of our research is to develop BBB targeted nanoparticle that can selectively deliver drugs to GBM and trigger cell death. We developed Anti-GBM drug, such as temozolomide (TMZ) encapsulated biocompatible, ultra-small nanoparticle using Lactoferrin (LAC) protein. Further, we chemically conjugated LAC with tumor hypoxia biomarker homing molecule, Acetazolamide (ATZ) to obtain LAC-ATZ nanoparticle. To validate our hypothesis of hypoxia targeting, we evaluated the carbonic anhydrase-IX (CAIX) receptor expression in human brain tumor section. The IHC data demonstrated significant overexpression of CAIX in tumor tissue compared to healthy human brain tissue section. Literatures have reported overexpression of LRP-1 in endothelial blood vessel of GBM tumor. Thus, use of LAC-ATZ will enhance its penetration across the BBB and delivery of TMZ in hypoxic core of GBM. To achieve the effective BBB penetration, we engineered LAC-ATZ@TMZ nanoparticle that demonstrated homogenous ultra-small particle size of average diameter of 20-30 nm using TEM analysis. The SDS-PAGE analysis demonstrated the conjugation of LAC with ATZ. Our preliminary data in GBM cells, U87MG suggested the dose dependent cell uptake of DiD-fluorescence labeled LAC-ATZ nanoparticle. The nanoparticles are selective in targeting the U87MG cell when compared to healthy microglial BV2 cells. Thus, it is supporting the potential of LAC-ATZ nanoparticle for targeting the GBM tumor with limited effect in healthy brain tissue. We developed conditioned BBB cell culture model to demonstrate the penetration of LAC-ATZ across the BBB. Based on the exciting preliminary outcome in this study builds a strong rational of using LAC-ATZ nanoparticle for overcoming the bottle neck barrier of BBB with improved anti-GBM response.
Keywords:
Glioblastoma multiforme (GBM), blood-brain barrier (BBB), Lactoferrin (LAC), Acetazolamide (ATZ)
Citation Format: Mohd A. Rauf, Katyayani Tatiparti, Samaresh Sau, Arun K. Iyer. Hypoxia penetrating ultra-small nanoparticle for anti-cancer effect in Glioblastoma [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 1721.
Collapse
|
|
5 |
|
13
|
Iyengar D, Tatiparti K, Gavande NS, Sau S, Iyer AK. Nanomedicine for overcoming therapeutic and diagnostic challenges associated with pancreatic cancer. Drug Discov Today 2022; 27:1554-1559. [PMID: 35247592 DOI: 10.1016/j.drudis.2022.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022]
Abstract
Pancreatic cancer is the second leading cause of cancer-related death in the USA. The 5-year survival rate for pancreatic cancer is as low as 10%, making it one of the most deadly cancers. This dismal prognosis is caused, in part, by the lack of early detection and screening options, leading to late-stage detection of the disease, at a point at which chemotherapy is no longer effective. However, nanoparticle (NP) drug delivery systems have increased the efficacy of chemotherapeutics by improving the targeting ability of drugs to the tumor site, while also decreasing the risk of local and systemic toxicity. Such efforts can contribute to the development of early diagnosis and routine screening tests, which will drastically improve the survival rates and prognosis of patients with pancreatic cancer.
Collapse
|
|
3 |
|
14
|
Tatiparti K, Rauf MA, Sau S, Alzhrani R, Iyer A. Ultra‐Small Biomimetic Nanoparticles for Alzheimer’s Disease Targeted Drug Delivery. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.09774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
5 |
|
15
|
Rauf MA, Tasleem M, Bhise K, Tatiparti K, Sau S, Iyer AK. Inside Back Cover: Nano‐therapeutic strategies to target coronavirus (View 3/2021). VIEW 2021. [DOI: 10.1002/viw2.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
|
4 |
|