1
|
Tian X, Song L, Farshadfar K, Rudolph M, Rominger F, Oeser T, Ariafard A, Hashmi ASK. Acyl Migration versus Epoxidation in Gold Catalysis: Facile, Switchable, and Atom-Economic Synthesis of Acylindoles and Quinoline Derivatives. Angew Chem Int Ed Engl 2020; 59:471-478. [PMID: 31622542 PMCID: PMC6972584 DOI: 10.1002/anie.201912334] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 12/13/2022]
Abstract
We report a switchable synthesis of acylindoles and quinoline derivatives via gold-catalyzed annulations of anthranils and ynamides. α-Imino gold carbenes, generated in situ from anthranils and an N,O-coordinated gold(III) catalyst, undergo electrophilic attack to the aryl π-bond, followed by unexpected and highly selective 1,4- or 1,3-acyl migrations to form 6-acylindoles or 5-acylindoles. With the (2-biphenyl)di-tert-butylphosphine (JohnPhos) ligand, gold(I) carbenes experienced carbene/carbonyl additions to deliver quinoline oxides. Some of these epoxides are valuable substrates for the preparation of 3-hydroxylquinolines, quinolin-3(4H)-ones, and polycyclic compounds via facile in situ rearrangements. The reaction can be efficiently conducted on a gram scale and the obtained products are valuable substrates for preparing other potentially useful compounds. A computational study explained the unexpected selectivities and the dependency of the reaction pathway on the oxidation state and ligands of gold. With gold(III) the barrier for the formation of the strained oxirane ring is too high; whereas with gold(I) this transition state becomes accessible. Furthermore, energetic barriers to migration of the substituents on the intermediate sigma-complexes support the observed substitution pattern in the final product.
Collapse
|
research-article |
5 |
91 |
2
|
Gholivand K, Salami R, Farshadfar K, Butcher RJ. Synthesis and structural characterization of Pd(II) and Cu(I) complexes containing dithiophosphorus ligand and their catalytic activities for Heck reaction. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
9 |
21 |
3
|
Tian X, Song L, Farshadfar K, Rudolph M, Rominger F, Oeser T, Ariafard A, Hashmi ASK. Acyl Migration versus Epoxidation in Gold Catalysis: Facile, Switchable, and Atom‐Economic Synthesis of Acylindoles and Quinoline Derivatives. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912334] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
|
6 |
20 |
4
|
Gholivand K, Farshadfar K, Roe SM, Hosseini M, Gholami A. Investigation of structure-directing interactions within copper(i)thiocyanate complexes through X-ray analyses and non-covalent interaction (NCI) theoretical approach. CrystEngComm 2016. [DOI: 10.1039/c6ce01339b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
9 |
17 |
5
|
Farshadfar K, Chipman A, Yates BF, Ariafard A. DFT Mechanistic Investigation into BF3-Catalyzed Alcohol Oxidation by a Hypervalent Iodine(III) Compound. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
|
6 |
16 |
6
|
Gholivand K, Hosseini M, Ebrahimi Valmoozi AA, Farshadfar K. Polymorphism, pseudo-polymorphism, and conformerism in the crystal structure of piperazine-N,N′-bis(N,O-diphenyl phosphoramidate). CrystEngComm 2017. [DOI: 10.1039/c7ce00039a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
|
8 |
14 |
7
|
Chipman A, Gouranourimi A, Farshadfar K, Olding A, Yates BF, Ariafard A. A Computational Mechanistic Investigation into Reduction of Gold(III) Complexes by Amino Acid Glycine: A New Variant for Amine Oxidation. Chemistry 2018; 24:8361-8368. [PMID: 29655208 DOI: 10.1002/chem.201800403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/02/2018] [Indexed: 01/10/2023]
Abstract
Density functional theory (DFT) was utilized to explore the reduction of gold(III) complexes by the amino acid glycine (Gly). Interestingly, when the nitrogen atom of Gly coordinates to the gold(III) center, its Cα -hydrogen atom becomes so acidic that it can be easily deprotonated by a mild base like water. The deprotonation converts the amino acid into a potent reductant by which gold(III) is reduced to gold(I) with a moderate activation energy. To our knowledge, this is the first contribution suggesting that primary amines are oxidized to imines via direct α-carbon deprotonation. This finding may provide new insights into the mechanistic interpretation of amine oxidations catalyzed/mediated by a center with high cathodic reduction potential. This work also provides a rationalization behind why gold(III) complexes with amine-based polydentate ligands are reluctant to undergo a redox process. Gold(III) reduction occurs most efficiently if the Cα proton leaves in the plane of the Cα , N and Au atoms. Chelation prevents this alignment, resulting in the gold(III) complex being unreactive toward reduction. It has been experimentally found that gold(III) is capable of oxidizing Gly to glyoxylic acid (GA) as the initial product. The latter, in the presence of another gold(III) complex, has been reported to undergo oxidative decarboxylation to afford CO2 and HCOOH. This process is found to be mediated by formation of a geminal diol intermediate produced by reaction of water with the aldehyde functional group of the coordinated GA.
Collapse
|
Journal Article |
7 |
12 |
8
|
Chen X, Zhou Y, Jin J, Farshadfar K, Ariafard A, Rao W, Chan PWH. Gold Catalyzed Cyclopropanation/[5+3] Cycloaddition of 1,4,9‐ and 1,4,10‐Allenenynes to Bicyclo[3.3.1]nonane Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
5 |
11 |
9
|
Song L, Tian X, Farshadfar K, Shiri F, Rominger F, Ariafard A, Hashmi ASK. An unexpected synthesis of azepinone derivatives through a metal-free photochemical cascade reaction. Nat Commun 2023; 14:831. [PMID: 36788212 PMCID: PMC9929248 DOI: 10.1038/s41467-023-36190-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Azepinone derivatives are privileged in organic synthesis and pharmaceuticals. Synthetic approaches to these frameworks are limited to complex substrates, strong bases, high power UV light or noble metal catalysis. We herein report a mild synthesis of azepinone derivatives by a photochemical generation of 2-aryloxyaryl nitrene, [2 + 1] annulation, ring expansion/water addition cascade reaction without using any metal catalyst. Among the different nitrene precursors tested, 2-aryloxyaryl azides performed best under blue light irradiation and Brønsted acid catalysis. The reaction scope is broad and the obtained products underwent divergent transformations to afford other related compounds. A computational study suggests a pathway involving a step-wise aziridine formation, followed by a ring-expansion to the seven-membered heterocycle. Finally, water is added in a regio-selective manner, this is accelerated by the added TsOH.
Collapse
|
research-article |
2 |
8 |
10
|
Jin J, Zhao Y, Kyne SH, Farshadfar K, Ariafard A, Chan PWH. Copper(I)-catalysed site-selective C(sp 3)-H bond chlorination of ketones, (E)-enones and alkylbenzenes by dichloramine-T. Nat Commun 2021; 12:4065. [PMID: 34210971 PMCID: PMC8249392 DOI: 10.1038/s41467-021-23988-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Strategies that enable intermolecular site-selective C-H bond functionalisation of organic molecules provide one of the cornerstones of modern chemical synthesis. In chloroalkane synthesis, such methods for intermolecular site-selective aliphatic C-H bond chlorination have, however, remained conspicuously rare. Here, we present a copper(I)-catalysed synthetic method for the efficient site-selective C(sp3)-H bond chlorination of ketones, (E)-enones and alkylbenzenes by dichloramine-T at room temperature. A key feature of the broad substrate scope is tolerance to unsaturation, which would normally pose an immense challenge in chemoselective aliphatic C-H bond functionalisation. By unlocking dichloramine-T's potential as a chlorine radical atom source, the product site-selectivities achieved are among the most selective in alkane functionalisation and should find widespread utility in chemical synthesis. This is exemplified by the late-stage site-selective modification of a number of natural products and bioactive compounds, and gram-scale preparation and formal synthesis of two drug molecules.
Collapse
|
research-article |
4 |
8 |
11
|
Farshadfar K, Chipman A, Hosseini M, Yates BF, Ariafard A. A Modified Cationic Mechanism for PdCl2-Catalyzed Transformation of a Homoallylic Alcohol to an Allyl Ether. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
6 |
7 |
12
|
Shahabadi N, Shiri F, Hadidi S, Farshadfar K, Sajadimajd S, Roe SM. Equilibrium and site selective analysis for DNA threading intercalation of a new phosphine copper(I) complex: Insights from X-ray analysis, spectroscopic and molecular modeling studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 235:118280. [PMID: 32248034 DOI: 10.1016/j.saa.2020.118280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
To clarify the interaction of phosphine copper(I) complex with DNA, our study reports the synthesis of a new phosphine copper(I) complex, along with a detailed analysis of the geometry characterization and its interaction with double-stranded DNA. The triclinic phase Cu(PPh3)2(L)(I) with a tetrahedral geometry was identified as the product of the reaction of copper(I) iodide with (E,E)-N,N'-1,2-Ethanediylbis[1-(3-pyridinyl)methanimine] ligand and triphenylphosphine by single-crystal X-ray analysis. Molecular interaction of the synthesized complex with the calf thymus deoxyribonucleic acid (ct-DNA) was investigated in the physiological buffer (pH 7.4) by multi-spectroscopic approaches associated with a competitive displacement towards Hoechst 33258 and methylene blue (MB) as groove and intercalator probes. The fluorescence and UV/Vis results detected the formation of a complex-DNA adduct in the ground-state with a binding affinity in order of 104 M-1, which is in keeping with both groove binders and intercalators. The thermodynamic parameters, ΔS0 = -200.31 ± 0.08 cal/mol·K and ΔH0 = -63.11 ± 0.24 kcal/mol, confirmed that the van der Waals interaction is the main driving force for the binding process. Moreover, the ionic strength and pH effect experiments demonstrated the electrostatic interactions between the complex and DNA is negligible. Analysis of the molecular docking simulation declared the flat (E,E)-N,N'-1,2-Ethanediylbis[1-(3-pyridinyl)methanimine] part of the complex was inserted between the sequential A…T/A…T base pairs, while the phosphine substituents were located in the groove, i.e. threading intercalation. Besides, the cytotoxicity of the complex against the MCF-7 human breast cancer cells was detected at IC50 = 10 μg/mL.
Collapse
|
|
5 |
7 |
13
|
Gholivand K, Gholami A, Schenk KJ, Esrafili MD, Farshadfar K. Supramolecular assemblies of organotin(iv)–diphosphoryl adducts: insights from X-rays and DFT. RSC Adv 2015. [DOI: 10.1039/c5ra15645a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The influence of tin-bonded substituents on the organization of the crystal structures and also coordination interactions were discussed using geometrical parameters, Hirshfeld analysis and theoretical calculations.
Collapse
|
|
10 |
7 |
14
|
Hu C, Farshadfar K, Dietl MC, Cervantes-Reyes A, Wang T, Adak T, Rudolph M, Rominger F, Li J, Ariafard A, Hashmi ASK. Gold-Catalyzed [5,5]-Rearrangement. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
|
4 |
7 |
15
|
Shahabadi N, Shiri F, Hadidi S, Farshadfar K, Darbemamieh M, Mark Roe S. The role of both intercalation and groove binding at AT-rich DNA regions in the interaction process of a dinuclear Cu(I) complex probed by spectroscopic and simulation analysis. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
4 |
6 |
16
|
Chipman A, Farshadfar K, Smith JA, Yates BF, Ariafard A. DFT-Based Comparison between Mechanistic Aspects of Amine and Alcohol Oxidation Mediated by IBX. J Org Chem 2019; 85:515-525. [DOI: 10.1021/acs.joc.9b02583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
|
6 |
6 |
17
|
Farshadfar K, Ariafard A. Catalytic role of amines in activation of PhICl 2 from a computational point of view. Chem Commun (Camb) 2021; 57:9108-9111. [PMID: 34498641 DOI: 10.1039/d1cc03618a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We thoroughly investigated mechanistic features of dichlorination of diazoacetates using PhICl2 catalysed by pyridine. We found that the pyridine serves as a catalyst for decomposition of PhICl2 to PhI and Cl2, leading to the dichlorination step being driven by the in situ generated Cl2. This type of activation was found to be applicable to other amine-catalysed chlorination reactions using PhICl2.
Collapse
|
|
4 |
5 |
18
|
Abdolalian P, Tizhoush SK, Farshadfar K, Ariafard A. The role of hypervalent iodine(iii) reagents in promoting alkoxylation of unactivated C(sp 3)-H bonds catalyzed by palladium(ii) complexes. Chem Sci 2021; 12:7185-7195. [PMID: 34123345 PMCID: PMC8153247 DOI: 10.1039/d1sc01230d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
Although Pd(OAc)2-catalysed alkoxylation of the C(sp3)-H bonds mediated by hypervalent iodine(iii) reagents (ArIX2) has been developed by several prominent researchers, there is no clear mechanism yet for such crucial transformations. In this study, we shed light on this important issue with the aid of the density functional theory (DFT) calculations for alkoxylation of butyramide derivatives. We found that the previously proposed mechanism in the literature is not consistent with the experimental observations and thus cannot be operating. The calculations allowed us to discover an unprecedented mechanism composed of four main steps as follows: (i) activation of the C(sp3)-H bond, (ii) oxidative addition, (iii) reductive elimination and (iv) regeneration of the active catalyst. After completion of step (i) via the CMD mechanism, the oxidative addition commences with an X ligand transfer from the iodine(iii) reagent (ArIX2) to Pd(ii) to form a square pyramidal complex in which an iodonium occupies the apical position. Interestingly, a simple isomerization of the resultant five-coordinate complex triggers the Pd(ii) oxidation. Accordingly, the movement of the ligand trans to the Pd-C(sp3) bond to the apical position promotes the electron transfer from Pd(ii) to iodine(iii), resulting in the reduction of iodine(iii) concomitant with the ejection of the second X ligand as a free anion. The ensuing Pd(iv) complex then undergoes the C-O reductive elimination by nucleophilic attack of the solvent (alcohol) on the sp3 carbon via an outer-sphere SN2 mechanism assisted by the X- anion. Noteworthy, starting from the five coordinate complex, the oxidative addition and reductive elimination processes occur with a very low activation barrier (ΔG ‡ 0-6 kcal mol-1). The strong coordination of the alkoxylated product to the Pd(ii) centre causes the regeneration of the active catalyst, i.e. step (iv), to be considerably endergonic, leading to subsequent catalytic cycles to proceed with a much higher activation barrier than the first cycle. We also found that although, in most cases, the alkoxylation reactions proceed via a Pd(ii)-Pd(iv)-Pd(ii) catalytic cycle, the other alternative in which the oxidation state of the Pd(ii) centre remains unchanged during the catalysis could be operative, depending on the nature of the organic substrate.
Collapse
|
research-article |
4 |
5 |
19
|
Farshadfar K, Abdolalian P, Ariafard A. Catalytic Role of Lewis Acids in ArIO‐Mediated Oxidative Fluorination Reactions Revealed by DFT Calculations. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
|
5 |
4 |
20
|
Fard ST, Sekine K, Farshadfar K, Rominger F, Rudolph M, Ariafard A, Hashmi ASK. Gold-Catalyzed Annulation of 1,8-Dialkynylnaphthalenes: Synthesis and Photoelectric Properties of Indenophenalene-Based Derivatives. Chemistry 2021; 27:3552-3559. [PMID: 33210327 PMCID: PMC7898384 DOI: 10.1002/chem.202004846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Indexed: 12/15/2022]
Abstract
A simple gold-catalyzed annulation of 1,8-dialkynylnaphthalenes utilizing a cationic gold catalyst was developed. Such a peri-position of two alkynyl substituents has not been studied in gold catalysis before. Dependent on the substrate, the reactions either follow a mechanism involving vinyl cation intermediates or involve a dual gold catalysis mechanism which in an initial 6-endo-dig-cyclization generates gold(I) vinylidene intermediates that are able to insert into C-H bonds. Indenophenalene derivatives were obtained in moderate to high yields. In addition, the bidirectional gold-catalyzed annulation of tetraynes provided even larger conjugated π-systems. The optoelectronic properties of the products were also investigated.
Collapse
|
research-article |
4 |
4 |
21
|
Farshadfar K, Gouranourimi A, Ariafard A. How the combination of PhIO and I 2 provides a species responsible for conducting organic reactions through radical mechanisms. Org Biomol Chem 2020; 18:8103-8108. [PMID: 33006357 DOI: 10.1039/d0ob01705a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A combination of iodosobenzene (PhIO) and molecular iodine (I2) is well-documented to produce a key species capable of conducting various organic reactions through radical mechanisms. This key species is identified here by density functional theory (DFT) calculations to be the hypoiodite radical (IO˙). The calculations show that two equivalents of IO˙ are generated when I2 reacts with two equivalents of PhIO. One of the ensuing IO˙ species acts as a hydrogen abstractor and thus forms an organic radical and the other one is involved in oxidation of the resultant organic radical to afford the final product.
Collapse
|
|
5 |
3 |
22
|
Piltan M, Farshadfar K, Roe SM. Halogen Bonds Involved in Copper(I) Complexes: A Study Based on the Electronic Charge Density. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
8 |
3 |
23
|
Gholivand K, Tizhoush SK, Kozakiewicz A, Eskandari K, Farshadfar K. Copper( i) complexes of functionalized sulfur-containing ligands: structural and theoretical insights into chalcogen bonding. CrystEngComm 2019. [DOI: 10.1039/c8ce02006j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new copper(i) thiocyanate complexes were studied using geometrical parameters and the lump–hole approach for justification of the strength and nature of chalcogen bonding.
Collapse
|
|
6 |
3 |
24
|
Farshadfar K, Bird MJ, Olivier WJ, Hyland CJT, Smith JA, Ariafard A. Computational Investigation into the Mechanistic Features of Bromide-Catalyzed Alcohol Oxidation by PhIO in Water. J Org Chem 2021; 86:2998-3007. [PMID: 33502190 DOI: 10.1021/acs.joc.0c02903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iodosobenzene (PhIO) is known to be a potent oxidant for alcohols in the presence of catalytic bromide in water. In order to understand this important and practical oxidation process, we have conducted density functional theory studies to shed light on the reaction mechanism. The key finding of this study is that PhIO is not the reactive oxidant itself. Instead, the active oxidant is hypobromite (BrO-), which is generated by the reaction of PhIO with bromide through an SN2-type reaction. Critically, water acts as a cocatalyst in the generation of BrO- through lowering the activation energy of this process. This investigation also demonstrates why BrO- is a more powerful oxidant than PhIO in the oxidation of alcohols. Other halide additives have been reported experimentally to be less effective catalysts than bromide-our calculations provide a clear rationale for these observations. We also examined the effect of replacing water with methanol on the ease of the SN2 reaction, finding that the replacement resulted in a higher activation barrier for the generation of BrO-. Overall, this work demonstrates that the hypervalent iodine(III) reagent PhIO can act as a convenient and controlled precursor of the oxidant hypobromite if the right conditions are present.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
3 |
25
|
Thadkapally S, Farshadfar K, Drew MA, Richardson C, Ariafard A, Pyne SG, Hyland CJT. Rhodium-catalysed tetradehydro-Diels-Alder reactions of enediynes via a rhodium-stabilized cyclic allene. Chem Sci 2020; 11:10945-10950. [PMID: 34094344 PMCID: PMC8162385 DOI: 10.1039/d0sc04390g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Efficient methods for the synthesis of fused-aromatic rings is a critical endeavour in the creation of new pharmaceuticals and materials. A direct method for preparing these systems is the tetradehydro-Diels-Alder reaction, however this is limited by the need for harsh reaction conditions. A potential, but underdeveloped, route to these systems is via transition metal-catalysed cycloaromatisation of ene-diynes. Herein, tethered unconjugated enediynes have been shown to undergo a facile room-temperature RhI-catalysed intramolecular tetradehydro-Diels-Alder reaction to produce highly substituted isobenzofurans, isoindolines and an indane. Furthermore, experimental and computational studies suggest a novel mechanism involving an unprecedented and complex RhI/RhIII/RhI/RhIII redox cycle involving the formation of an unusual strained 7-membered rhodacyclic allene intermediate and a RhIII-stabilized 6-membered ring allene complex.
Collapse
|
Journal Article |
5 |
1 |