1
|
Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, Ksiazek TG, Rollin PE, Zaki SR, Shieh W, Goldsmith CS, Gubler DJ, Roehrig JT, Eaton B, Gould AR, Olson J, Field H, Daniels P, Ling AE, Peters CJ, Anderson LJ, Mahy BW. Nipah virus: a recently emergent deadly paramyxovirus. Science 2000; 288:1432-5. [PMID: 10827955 DOI: 10.1126/science.288.5470.1432] [Citation(s) in RCA: 867] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A paramyxovirus virus termed Nipah virus has been identified as the etiologic agent of an outbreak of severe encephalitis in people with close contact exposure to pigs in Malaysia and Singapore. The outbreak was first noted in late September 1998 and by mid-June 1999, more than 265 encephalitis cases, including 105 deaths, had been reported in Malaysia, and 11 cases of encephalitis or respiratory illness with one death had been reported in Singapore. Electron microscopic, serologic, and genetic studies indicate that this virus belongs to the family Paramyxoviridae and is most closely related to the recently discovered Hendra virus. We suggest that these two viruses are representative of a new genus within the family Paramyxoviridae. Like Hendra virus, Nipah virus is unusual among the paramyxoviruses in its ability to infect and cause potentially fatal disease in a number of host species, including humans.
Collapse
|
|
25 |
867 |
2
|
Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 1999; 354:1257-9. [PMID: 10520635 DOI: 10.1016/s0140-6736(99)04299-3] [Citation(s) in RCA: 508] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Between February and April, 1999, an outbreak of viral encephalitis occurred among pig-farmers in Malaysia. We report findings for the first three patients who died. METHODS Samples of tissue were taken at necropsy. Blood and cerebrospinal-fluid (CSF) samples taken before death were cultured for viruses, and tested for antibodies to viruses. FINDINGS The three pig-farmers presented with fever, headache, and altered level of consciousness. Myoclonus was present in two patients. There were signs of brainstem dysfunction with hypertension and tachycardia. Rapid deterioration led to irreversible hypotension and death. A virus causing syncytial formation of vero cells was cultured from the CSF of two patients after 5 days; the virus stained positively with antibodies against Hendra virus by indirect immunofluorescence. IgM capture ELISA showed that all three patients had IgM antibodies in CSF against Hendra viral antigens. Necropsy showed widespread microinfarction in the central nervous system and other organs resulting from vasculitis-induced thrombosis. There was no clinical evidence of pulmonary involvement. Inclusion bodies likely to be of viral origin were noted in neurons near vasculitic blood vessels. INTERPRETATION The causative agent was a previously undescribed paramyxovirus related to the Hendra virus. Close contact with infected pigs may be the source of the viral transmission. Clinically and epidemiologically the infection is distinct from infection by the Hendra virus. We propose that this Hendra-like virus was the cause of the outbreak of encephalitis in Malaysia.
Collapse
|
Case Reports |
26 |
508 |
3
|
Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH, Chua BH, Chan YP, Lim ME, Lam SK. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect 2002; 4:145-51. [PMID: 11880045 DOI: 10.1016/s1286-4579(01)01522-2] [Citation(s) in RCA: 428] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In late 1998, Nipah virus emerged in peninsular Malaysia and caused fatal disease in domestic pigs and humans and substantial economic loss to the local pig industry. Surveillance of wildlife species during the outbreak showed neutralizing antibodies to Nipah virus mainly in Island flying-foxes (Pteropus hypomelanus) and Malayan flying-foxes (Pteropus vampyrus) but no virus reactive with anti-Nipah virus antibodies was isolated. We adopted a novel approach of collecting urine from these Island flying-foxes and swabs of their partially eaten fruits. Three viral isolates (two from urine and one from a partially eaten fruit swab) that caused Nipah virus-like syncytial cytopathic effect in Vero cells and stained strongly with Nipah- and Hendra-specific antibodies were isolated. Molecular sequencing and analysis of the 11,200-nucleotide fragment representing the beginning of the nucleocapsid gene to the end of the glycoprotein gene of one isolate confirmed the isolate to be Nipah virus with a sequence deviation of five to six nucleotides from Nipah virus isolated from humans. The isolation of Nipah virus from the Island flying-fox corroborates the serological evidence that it is one of the natural hosts of the virus.
Collapse
|
|
23 |
428 |
4
|
Goh KJ, Tan CT, Chew NK, Tan PS, Kamarulzaman A, Sarji SA, Wong KT, Abdullah BJ, Chua KB, Lam SK. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N Engl J Med 2000; 342:1229-35. [PMID: 10781618 DOI: 10.1056/nejm200004273421701] [Citation(s) in RCA: 326] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Between September 1998 and June 1999, there was an outbreak of severe viral encephalitis due to Nipah virus, a newly discovered paramyxovirus, in Malaysia. METHODS We studied the clinical features of the patients with Nipah virus encephalitis who were admitted to a medical center in Kuala Lumpur. The case definition was based on epidemiologic, clinical, cerebrospinal fluid, and neuroimaging findings. RESULTS Ninety-four patients with Nipah virus infection were seen from February to June 1999 (mean age, 37 years; ratio of male patients to female patients, 4.5 to 1). Ninety-three percent had had direct contact with pigs, usually in the two weeks before the onset of illness, suggesting that there was direct viral transmission from pigs to humans and a short incubation period. The main presenting features were fever, headache, dizziness, and vomiting. Fifty-two patients (55 percent) had a reduced level of consciousness and prominent brain-stem dysfunction. Distinctive clinical signs included segmental myoclonus, areflexia and hypotonia, hypertension, and tachycardia and thus suggest the involvement of the brain stem and the upper cervical spinal cord. The initial cerebrospinal fluid findings were abnormal in 75 percent of patients. Antibodies against Hendra virus were detected in serum or cerebrospinal fluid in 76 percent of 83 patients tested. Thirty patients (32 percent) died after rapid deterioration in their condition. An abnormal doll's-eye reflex and tachycardia were factors associated with a poor prognosis. Death was probably due to severe brain-stem involvement. Neurologic relapse occurred after initially mild disease in three patients. Fifty patients (53 percent) recovered fully, and 14 (15 percent) had persistent neurologic deficits. CONCLUSIONS Nipah virus causes a severe, rapidly progressive encephalitis with a high mortality rate and features that suggest involvement of the brain stem. The infection is associated with recent contact with pigs.
Collapse
|
|
25 |
326 |
5
|
Berglund JA, Chua K, Abovich N, Reed R, Rosbash M. The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC. Cell 1997; 89:781-7. [PMID: 9182766 DOI: 10.1016/s0092-8674(00)80261-5] [Citation(s) in RCA: 275] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The yeast splicing factor BBP (branchpoint bridging protein) interacts directly with pre-mRNA at or very near the highly conserved branchpoint sequence UACUAAC within the commitment complex. We also show that the recombinant protein recognizes the UACUAAC sequence. Therefore, BBP is also an acronym for branchpoint binding protein. The mammalian splicing factor SF1 is a BBP ortholog (mBBP) and an E complex component, and also has branchpoint sequence specificity. The relative conservation of this region in yeast and mammals correlates well with the RNA-binding differences between BBP and mBBP, suggesting that BBP contributes to branchpoint sequence definition in both systems.
Collapse
|
|
28 |
275 |
6
|
Abstract
Nipah virus, a novel paramyxovirus, closely related to Hendra virus emerged in northern part of Peninsular Malaysia in 1998. The virus caused an outbreak of severe febrile encephalitis in humans with a high mortality rate, whereas, in pigs, encephalitis and respiratory diseases but with a relatively low mortality rate. The outbreak subsequently spread to various regions of the country and Singapore in the south due to the movement of infected pigs. Nipah virus caused systemic infections in humans, pigs and other mammals. Histopathological and radiological findings were characteristic of the disease. Fruitbats of Pteropid species were identified as the natural reservoir hosts. Evidence suggested that climatic and anthropogenic driven ecological changes coupled with the location of piggeries in orchard and the design of pigsties allowed the spill-over of this novel paramyxovirus from its reservoir host into the domestic pigs and ultimately to humans and other animals.
Collapse
|
Review |
22 |
271 |
7
|
Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, Goldsmith CS, Chua KB, Lam SK, Tan CT, Goh KJ, Chong HT, Jusoh R, Rollin PE, Ksiazek TG, Zaki SR. Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:2153-67. [PMID: 12466131 PMCID: PMC1850894 DOI: 10.1016/s0002-9440(10)64493-8] [Citation(s) in RCA: 268] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In 1998, an outbreak of acute encephalitis with high mortality rates among pig handlers in Malaysia led to the discovery of a novel paramyxovirus named Nipah virus. A multidisciplinary investigation that included epidemiology, microbiology, molecular biology, and pathology was pivotal in the discovery of this new human infection. Clinical and autopsy findings were derived from a series of 32 fatal human cases of Nipah virus infection. Diagnosis was established in all cases by a combination of immunohistochemistry (IHC) and serology. Routine histological stains, IHC, and electron microscopy were used to examine autopsy tissues. The main histopathological findings included a systemic vasculitis with extensive thrombosis and parenchymal necrosis, particularly in the central nervous system. Endothelial cell damage, necrosis, and syncytial giant cell formation were seen in affected vessels. Characteristic viral inclusions were seen by light and electron microscopy. IHC analysis showed widespread presence of Nipah virus antigens in endothelial and smooth muscle cells of blood vessels. Abundant viral antigens were also seen in various parenchymal cells, particularly in neurons. Infection of endothelial cells and neurons as well as vasculitis and thrombosis seem to be critical to the pathogenesis of this new human disease.
Collapse
|
research-article |
23 |
268 |
8
|
Lum LC, Wong KT, Lam SK, Chua KB, Goh AY, Lim WL, Ong BB, Paul G, AbuBakar S, Lambert M. Fatal enterovirus 71 encephalomyelitis. J Pediatr 1998; 133:795-8. [PMID: 9842048 DOI: 10.1016/s0022-3476(98)70155-6] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During an outbreak of hand-foot-mouth disease caused by enterovirus 71 (EV-71) in 1997, 4 children presented with sudden cardiopulmonary collapse and minimal neurologic features. All children received cardiopulmonary resuscitation but died within a few hours of admission. Postmortem studies showed infection by EV-71 with extensive damage to the medulla and pons. We postulate an etiologic link between EV-71 and brainstem encephalomyelitis as the cause of pulmonary edema and death.
Collapse
|
Case Reports |
27 |
261 |
9
|
Chua KB, Crameri G, Hyatt A, Yu M, Tompang MR, Rosli J, McEachern J, Crameri S, Kumarasamy V, Eaton BT, Wang LF. A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans. Proc Natl Acad Sci U S A 2007; 104:11424-9. [PMID: 17592121 PMCID: PMC1899191 DOI: 10.1073/pnas.0701372104] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Indexed: 01/19/2023] Open
Abstract
Respiratory infections constitute the most widespread human infectious disease, and a substantial proportion of them are caused by unknown etiological agents. Reoviruses (respiratory enteric orphan viruses) were first isolated from humans in the early 1950s and so named because they were not associated with any known disease. Here, we report a previously unknown reovirus (named "Melaka virus") isolated from a 39-year-old male patient in Melaka, Malaysia, who was suffering from high fever and acute respiratory disease at the time of virus isolation. Two of his family members developed similar symptoms approximately 1 week later and had serological evidence of infection with the same virus. Epidemiological tracing revealed that the family was exposed to a bat in the house approximately 1 week before the onset of the father's clinical symptoms. Genome sequence analysis indicated a close genetic relationship between Melaka virus and Pulau virus, a reovirus isolated in 1999 from fruit bats in Tioman Island, Malaysia. Screening of sera collected from human volunteers on the island revealed that 14 of 109 (13%) were positive for both Pulau and Melaka viruses. This is the first report of an orthoreovirus in association with acute human respiratory diseases. Melaka virus is serologically not related to the different types of mammalian reoviruses that were known to infect humans asymptomatically. These data indicate that bat-borne reoviruses can be transmitted to and cause clinical diseases in humans.
Collapse
|
research-article |
18 |
169 |
10
|
Guillaume V, Contamin H, Loth P, Georges-Courbot MC, Lefeuvre A, Marianneau P, Chua KB, Lam SK, Buckland R, Deubel V, Wild TF. Nipah virus: vaccination and passive protection studies in a hamster model. J Virol 2004; 78:834-40. [PMID: 14694115 PMCID: PMC368848 DOI: 10.1128/jvi.78.2.834-840.2004] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nipah virus, a member of the paramyxovirus family, was first isolated and identified in 1999 when the virus crossed the species barrier from fruit bats to pigs and then infected humans, inducing an encephalitis with up to 40% mortality. At present there is no prophylaxis for Nipah virus. We investigated the possibility of vaccination and passive transfer of antibodies as interventions against this disease. We show that both of the Nipah virus glycoproteins (G and F) when expressed as vaccinia virus recombinants induced an immune response in hamsters which protected against a lethal challenge by Nipah virus. Similarly, passive transfer of antibody induced by either of the glycoproteins protected the animals. In both the active and passive immunization studies, however, the challenge virus was capable of hyperimmunizing the vaccinated animals, suggesting that although the virus replicates under these conditions, the immune system can eventually control the infection.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
166 |
11
|
AbuBakar S, Chee HY, Al-Kobaisi MF, Xiaoshan J, Chua KB, Lam SK. Identification of enterovirus 71 isolates from an outbreak of hand, foot and mouth disease (HFMD) with fatal cases of encephalomyelitis in Malaysia. Virus Res 1999; 61:1-9. [PMID: 10426204 DOI: 10.1016/s0168-1702(99)00019-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Thirteen enterovirus 71 (EV71) isolates were obtained from both fatal and non-fatal infections of patients seen in Peninsula Malaysia and in Sarawak during an outbreak of hand, foot and mouth disease (HFMD) in Malaysia in 1997, with incidences of fatal brainstem encephalomyelitis. The isolates were identified using immunofluorescence staining, neutralization assays, and partial sequencing of the 5' untranslated regions (UTR). Assessment of the potential genetic relationships of the isolates using the partial 5'UTR sequences suggested clustering of the isolates into at least two main clusters. Isolates from Peninsula Malaysia were found in both clusters whereas Sarawak-derived isolates clustered only in cluster II. Isolates derived from fatal infections, however, occurred in both clusters and no distinctive nucleotide sequences could be attributed to the fatal isolates. Examination of the nucleotide sequences revealed at least 13 nucleotide positions in all the isolates which differ completely from the previously reported EV71 5'UTR sequences. In addition, at least 11 nucleotide position differences within the 5'UTR were noted which differentiated cluster I from cluster II. Predicted secondary RNA structures drawn using the nucleotide sequences also suggested differences between isolates from the two clusters. These findings suggest the presence of at least two potentially virulent EV71 co-circulating in Malaysia during the 1997 HFMD outbreak.
Collapse
|
|
26 |
165 |
12
|
Tan CT, Goh KJ, Wong KT, Sarji SA, Chua KB, Chew NK, Murugasu P, Loh YL, Chong HT, Tan KS, Thayaparan T, Kumar S, Jusoh MR. Relapsed and late-onset Nipah encephalitis. Ann Neurol 2002; 51:703-8. [PMID: 12112075 DOI: 10.1002/ana.10212] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An outbreak of infection with the Nipah virus, a novel paramyxovirus, occurred among pig farmers between September 1998 and June 1999 in Malaysia, involving 265 patients with 105 fatalities. This is a follow-up study 24 months after the outbreak. Twelve survivors (7.5%) of acute encephalitis had recurrent neurological disease (relapsed encephalitis). Of those who initially had acute nonencephalitic or asymptomatic infection, 10 patients (3.4%) had late-onset encephalitis. The mean interval between the first neurological episode and the time of initial infection was 8.4 months. Three patients had a second neurological episode. The onset of the relapsed or late-onset encephalitis was usually acute. Common clinical features were fever, headache, seizures, and focal neurological signs. Four of the 22 relapsed and late-onset encephalitis patients (18%) died. Magnetic resonance imaging typically showed patchy areas of confluent cortical lesions. Serial single-photon emission computed tomography showed the evolution of focal hyperperfusion to hypoperfusion in the corresponding areas. Necropsy of 2 patients showed changes of focal encephalitis with positive immunolocalization for Nipah virus antigens but no evidence of perivenous demyelination. We concluded that a unique relapsing and remitting encephalitis or late-onset encephalitis may result as a complication of persistent Nipah virus infection in the central nervous system.
Collapse
|
|
23 |
154 |
13
|
Wang C, Chua K, Seghezzi W, Lees E, Gozani O, Reed R. Phosphorylation of spliceosomal protein SAP 155 coupled with splicing catalysis. Genes Dev 1998; 12:1409-14. [PMID: 9585501 PMCID: PMC316838 DOI: 10.1101/gad.12.10.1409] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The U2 snRNP component SAP 155 contacts pre-mRNA on both sides of the branch site early in spliceosome assembly and is therefore positioned near or at the spliceosome catalytic center. We have isolated a cDNA encoding human SAP 155 and identified its highly related Saccharomyces cerevisiae homolog (50% identity). The carboxy-terminal two-thirds of SAP 155 shows the highest conservation and is remarkably similar to the regulatory subunit A of the phosphatase PP2A. Significantly, SAP 155 is phosphorylated concomitant with or just after catalytic step one, making this the first example of a protein modification tightly regulated with splicing catalysis.
Collapse
|
research-article |
27 |
147 |
14
|
Chong HT, Kamarulzaman A, Tan CT, Goh KJ, Thayaparan T, Kunjapan SR, Chew NK, Chua KB, Lam SK. Treatment of acute Nipah encephalitis with ribavirin. Ann Neurol 2001; 49:810-3. [PMID: 11409437 DOI: 10.1002/ana.1062] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nipah virus, a newly identified paramyxovirus caused a severe outbreak of encephalitis in Malaysia with high fatalities. We report an open-label trial of ribavirin in 140 patients, with 54 patients who were managed prior to the availability of ribavirin or refused treatment as control. There were 45 deaths (32%) in the ribavirin arm; 29 deaths (54%) occurred in the control arm. This represents a 36% reduction in mortality (p = 0.011). There was no associated serious side effect. This study suggests that ribavirin is able to reduce the mortality of acute Nipah encephalitis.
Collapse
|
|
24 |
128 |
15
|
Bossart KN, Wang LF, Flora MN, Chua KB, Lam SK, Eaton BT, Broder CC. Membrane fusion tropism and heterotypic functional activities of the Nipah virus and Hendra virus envelope glycoproteins. J Virol 2002; 76:11186-98. [PMID: 12388678 PMCID: PMC136767 DOI: 10.1128/jvi.76.22.11186-11198.2002] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are novel paramyxoviruses from pigs and horses, respectively, that are responsible for fatal zoonotic infections of humans. The unique genetic and biological characteristics of these emerging agents has led to their classification as the prototypic members of a new genus within the Paramyxovirinae subfamily called HENIPAVIRUS: These viruses are most closely related to members of the genus Morbillivirus and infect cells through a pH-independent membrane fusion event mediated by the actions of their attachment (G) and fusion (F) glycoproteins. Understanding their cell biological features and exploring the functional characteristics of the NiV and HeV glycoproteins will help define important properties of these emerging viruses and may provide new insights into paramyxovirus membrane fusion mechanisms. Using a recombinant vaccinia virus system and a quantitative assay for fusion, we demonstrate NiV glycoprotein function and the same pattern of cellular tropism recently reported for HeV-mediated fusion, suggesting that NiV likely uses the same cellular receptor for infection. Fusion specificity was verified by inhibition with a specific antiserum or peptides derived from the alpha-helical heptads of NiV or HeV F. Like that of HeV, NiV-mediated fusion also requires both F and G. Finally, interactions between the glycoproteins of the paramyxoviruses have not been well defined, but here we show that the NiV and HeV glycoproteins are capable of highly efficient heterotypic functional activity with each other. However, no heterotypic activity was observed with envelope glycoproteins of the morbilliviruses Measles virus and Canine distemper virus.
Collapse
|
research-article |
23 |
127 |
16
|
Mackenzie JS, Chua KB, Daniels PW, Eaton BT, Field HE, Hall RA, Halpin K, Johansen CA, Kirkland PD, Lam SK, McMinn P, Nisbet DJ, Paru R, Pyke AT, Ritchie SA, Siba P, Smith DW, Smith GA, van den Hurk AF, Wang LF, Williams DT. Emerging viral diseases of Southeast Asia and the Western Pacific. Emerg Infect Dis 2001; 7:497-504. [PMID: 11485641 PMCID: PMC2631848 DOI: 10.3201/eid0707.017703] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Over the past 6 years, a number of zoonotic and vectorborne viral diseases have emerged in Southeast Asia and the Western Pacific. Vectorborne disease agents discussed in this article include Japanese encephalitis, Barmah Forest, Ross River, and Chikungunya viruses. However, most emerging viruses have been zoonotic, with fruit bats, including flying fox species as the probable wildlife hosts, and these will be discussed as well. The first of these disease agents to emerge was Hendra virus, formerly called equine morbillivirus. This was followed by outbreaks caused by a rabies-related virus, Australian bat lyssavirus, and a virus associated with porcine stillbirths and malformations, Menangle virus. Nipah virus caused an outbreak of fatal pneumonia in pigs and encephalitis in humans in the Malay Peninsula. Most recently, Tioman virus has been isolated from flying foxes, but it has not yet been associated with animal or human disease. Of nonzoonotic viruses, the most important regionally have been enterovirus 71 and HIV.
Collapse
|
research-article |
24 |
126 |
17
|
Chua KB, Lam SK, Goh KJ, Hooi PS, Ksiazek TG, Kamarulzaman A, Olson J, Tan CT. The presence of Nipah virus in respiratory secretions and urine of patients during an outbreak of Nipah virus encephalitis in Malaysia. J Infect 2001; 42:40-3. [PMID: 11243752 DOI: 10.1053/jinf.2000.0782] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES To study the excretion of Nipah virus in the upper respiratory secretions and urine of infected patients in relation to other clinical features. METHODS Isolation of Nipah virus from the respiratory secretions and urine was made in Vero cells and identified by indirect immunofluorescence assay using anti-Hendra specific hyperimmune mouse ascitic fluid and FITC-conjugated goat anti-mouse IgG. RESULTS During the peak outbreak of Nipah virus encephalitis in Malaysia, Nipah virus was isolated from the upper respiratory secretions and urine in eight of 20 patients who were virologically and/or serologically confirmed to be infected with the virus. From these eight patients, Nipah virus was isolated from six throat swab specimens, three urine specimens and only one nasal swab specimen. The positive virus isolation rate was related to the collection of these specimens during the early phase of the illness (P = 0.068). The presence of serum anti-Nipah specific IgM appeared to reduce the chance of isolating the virus (P = 0.049). There was no significant difference in the isolation rate with respect to the age, gender, ethnic group and clinical features associated with grave prognosis and mortality outcome of the patients. CONCLUSION This study shows that it is possible to be infected from secretions of infected patients, but epidemiological survey on close contacts so far did not suggest that human-to-human transmission is common.
Collapse
|
|
24 |
116 |
18
|
Kumarasamy V, Wahab AHA, Chua SK, Hassan Z, Chem YK, Mohamad M, Chua KB. Evaluation of a commercial dengue NS1 antigen-capture ELISA for laboratory diagnosis of acute dengue virus infection. J Virol Methods 2006; 140:75-9. [PMID: 17140671 DOI: 10.1016/j.jviromet.2006.11.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2006] [Revised: 10/28/2006] [Accepted: 11/02/2006] [Indexed: 11/25/2022]
Abstract
A commercial dengue NS1 antigen-capture ELISA was evaluated to demonstrate its potential application for early laboratory diagnosis of acute dengue virus infection. Dengue virus NS1 antigen was detected in 199 of 213 acute serum samples from patients with laboratory confirmation of acute dengue virus infection but none of the 354 healthy blood donors' serum specimens. The dengue NS1 antigen-capture ELISA gave an overall sensitivity of 93.4% (199/213) and a specificity of 100% (354/354). The sensitivity was significantly higher in acute primary dengue (97.3%) than in acute secondary dengue (70.0%). The positive predictive value of the dengue NS1 antigen-capture ELISA was 100% and negative predictive value was 97.3%. Comparatively, virus isolation gave an overall positive isolation rate of 68.1% with a positive isolation rate of 73.9 and 31.0% for acute primary dengue and acute secondary dengue, respectively. Molecular detection of dengue RNA by RT-PCR gave an overall positive detection rate of 66.7% with a detection rate of 65.2 and 75.9% for acute primary dengue and acute secondary dengue, respectively. The results indicate that the commercial dengue NS1 antigen-capture ELISA may be superior to virus isolation and RT-PCR for the laboratory diagnosis of acute dengue infection based on a single serum sample.
Collapse
|
Journal Article |
19 |
114 |
19
|
Chua KB, Wang LF, Lam SK, Crameri G, Yu M, Wise T, Boyle D, Hyatt AD, Eaton BT. Tioman virus, a novel paramyxovirus isolated from fruit bats in Malaysia. Virology 2001; 283:215-29. [PMID: 11336547 DOI: 10.1006/viro.2000.0882] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A search for the natural host of Nipah virus has led to the isolation of a previously unknown member of the family Paramyxoviridae. Tioman virus (TiV) was isolated from the urine of fruit bats (Pteropus hypomelanus) found on the island of the same name off the eastern coast of peninsular Malaysia. An electron microscopic study of TiV-infected cells revealed spherical and pleomorphic-enveloped viral particles (100--500 nm in size) with a single fringe of embedded peplomers. Virus morphogenesis occurred at the plasma membrane of infected cells and morphological features of negative-stained ribonucleoprotein complexes were compatible with that of viruses in the family Paramyxoviridae. Serological studies revealed no cross-reactivity with antibodies against a number of known Paramyxoviridae members except for the newly described Menangle virus (MenV), isolated in Australia in 1997. Failure of PCR amplification using MenV-specific primers suggested that this new virus is related to but different from MenV. For molecular characterization of the virus, a cDNA subtraction strategy was employed to isolate virus-specific cDNA from virus-infected cells. Complete gene sequences for the nucleocapsid protein (N) and phosphoprotein (P/V) have been determined and recombinant N and V proteins produced in baculovirus. The recombinant N and V proteins reacted with porcine anti-MenV sera in Western blot, confirming the serological cross-reactivity observed during initial virus characterization. The lack of a C protein-coding region in the P/V gene, the creation of P mRNA by insertion of 2-G residues, and the results of phylogenetic analyses all indicated that TiV is a novel member of the genus Rubulavirus.
Collapse
|
|
24 |
114 |
20
|
Chua KB, Voon K, Crameri G, Tan HS, Rosli J, McEachern JA, Suluraju S, Yu M, Wang LF. Identification and characterization of a new orthoreovirus from patients with acute respiratory infections. PLoS One 2008; 3:e3803. [PMID: 19030226 PMCID: PMC2583042 DOI: 10.1371/journal.pone.0003803] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/23/2008] [Indexed: 01/19/2023] Open
Abstract
First discovered in the early 1950s, reoviruses (respiratory enteric orphan viruses) were not associated with any known disease, and hence named orphan viruses. Recently, our group reported the isolation of the Melaka virus from a patient with acute respiratory disease and provided data suggesting that this new orthoreovirus is capable of human-to-human transmission and is probably of bat origin. Here we report yet another Melaka-like reovirus (named Kampar virus) isolated from the throat swab of a 54 year old male patient in Kampar, Perak, Malaysia who was suffering from high fever, acute respiratory disease and vomiting at the time of virus isolation. Serological studies indicated that Kampar virus was transmitted from the index case to at least one other individual and caused respiratory disease in the contact case. Sequence analysis of the four small class genome segments indicated that Kampar and Melaka viruses are closely related. This was confirmed by virus neutralization assay, showing an effective two-way cross neutralization, i.e., the serum against one virus was able to neutralize the other. Although the exact origin of Kampar virus is unknown, epidemiological tracing revealed that the house of the index case is surrounded by fruit trees frequently visited by fruit bats. There is a high probability that Kampar virus originated from bats and was transmitted to humans via bat droppings or contaminated fruits. The discovery of Kampar virus highlights the increasing trend of emergence of bat zoonotic viruses and the need to expand our understanding of bats as a source of many unknown viruses.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
110 |
21
|
Chua KB, Kasri AR. Hand foot and mouth disease due to enterovirus 71 in Malaysia. Virol Sin 2011; 26:221-8. [PMID: 21847753 PMCID: PMC8222466 DOI: 10.1007/s12250-011-3195-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/24/2011] [Indexed: 10/17/2022] Open
Abstract
Hand foot and mouth disease is a febrile sickness complex characterized by cutaneous eruption (exanthem) on the palms and soles with simultaneous occurrence of muco-cutanous vesiculo-ulcerative lesions (enanthem) affecting the mouth. The illness is caused by a number of enteroviruses with coxsackievirus A16 and enterovirus 71 as the main causative agents. Human enterovirus 71 (EV71) belongs to the species Human enterovirus A under the genus Enterovirus within the family Picornaviridae. EV71 has been associated with an array of clinical diseases including hand foot and mouth disease (HFMD), aseptic meningitis, encephalitis and poliomyelitis-like acute flaccid paralysis. A large outbreak of HFMD due to highly neurovirulent EV71 emerged in Malaysia in 1997, and caused 41 deaths amongst young children. In late 2000, a recurrence of an outbreak of HFMD occurred in Malaysia with 8 fatalities in peninsular Malaysia. Outbreak of HFMD due to EV71 recurred in 2003 with an unknown number of cases and mortalities. A similar outbreak of HFMD with 2 recorded deaths in young children occurred in peninsular Malaysia in late 2005 and this was followed by a larger outbreak in Sarawak (Malaysian Borneo) with 6 reported fatalities in the early part of 2006. The current on-going outbreak of HFMD started in peninsular Malaysia in epidemiological week 12 of 2010. As with other HFMD outbreaks in Malaysia, both EV71 and CA16 were the main aetiological viruses isolated. In similarity with the HFMD outbreak in 2005, the isolation of CA16 preceded the appearance of EV71. Based on the VP1 gene nucleotide sequences, 4 sub-genogroups of EV71 (C1, C2, B3 and B4) co-circulated and caused the outbreak of hand, foot and mouth disease in peninsular Malaysia in 1997. Two sub-genogroups (C1 and B4) were noted to cause the outbreak in 2000 in both peninsular Malaysia and Sarawak. EV71 of sub-genogroup B5 with smaller contribution from sub-genogroup C1 caused the outbreak in 2003. In the 2005 outbreak, besides the EV71 strains of sub-genogroup C1, EV71 strains belonging to sub-genogroup B5 were isolated but formed a cluster which was distinct from the EV71 strains from the sub-genogroup B5 isolated in 2003. The four EV71 strains isolated from clinical specimens of patients with hand, foot and mouth disease in the Sarawak outbreak in early 2006 also belonged to sub-genogroup B5. Phylogenetic analysis of the VP1 gene suggests that the EV71 strains causing the outbreak in Sarawak could have originated from peninsular Malaysia. Epidemiological and molecular data since 1997 show the recurrence of HFMD due to EV71 in Malaysia every 2 to 4 years. In each of the past outbreaks, more than one sub-genogroup of the virus co-circulate.
Collapse
|
research-article |
14 |
107 |
22
|
Abstract
The purpose of this study was to assess the intensity and energy cost of dance simulation in relation to the American College of Sports Medicine (ACSM) recommendations on the quantity and quality of exercise for developing and maintaining cardiorespiratory fitness, and to assess its safety. Forty subjects (21 males and 19 females, age 17.5 +/- 0.7 years) had their heart rate (HR) and oxygen consumption (.VO(2)) measured during maximal treadmill exercise and during a dance simulation game at a self-selected level of difficulty. They were monitored for injuries during and after the study. The results showed a mean HR of 137 beats x min(-1) (139 beats x min(-1) for males and 136 beats x min(-1) for females) and a mean .VO(2) of 24.6 ml x kg(-1) x min(-1) (25.3 ml x kg(-1) x min(-1) for males and 23.8 ml x kg(-1) x min(-1) for females) during the dance simulation game test, with an estimated energy expenditure of 480 W (550 W for males and 410 W for females). The dance intensity only just meets the minimum ACSM guidelines, so dancer-players will need to play for extended periods to improve or maintain cardiorespiratory fitness or to lose weight. No injuries occurred during 201 hours of dance time.
Collapse
|
|
23 |
97 |
23
|
Kitani A, Chua K, Nakamura K, Strober W. Activated self-MHC-reactive T cells have the cytokine phenotype of Th3/T regulatory cell 1 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:691-702. [PMID: 10878341 DOI: 10.4049/jimmunol.165.2.691] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, we show that human self-MHC-reactive (autoreactive) T cell clones are functionally distinct from Ag-specific T cell clones. Self-MHC-reactive T cells exhibited helper function for B cell Ig production when cultured with non-T cells alone, and they exhibit suppressor function when cultured with PWM- or rCD40 ligand (rCD40L)-activated non-T cells, whereas tetanus toxoid (TT)-specific clones exhibited only helper function in the presence of TT with or without PWM or rCD40L. Addition of neutralizing Abs to the cultures showed that the suppression was mediated by TGF-beta but not by IL-10 or IFN-gamma. The self-MHC-reactive clones also inhibited proliferation of primary CD4+ T cells and TT-specific T cell clones, but in this case the inhibition was mediated by both IL-10 and TGF-beta. In further studies, the interactions between self-MHC-reactive T cell clones and non-T cells that led to suppressor cytokine production have been explored. We found that prestimulation of non-T cells for 8 h with PWM or for 48 h for rCD40L results in non-T cells capable of inducing self-MHC-reactive T cell to produce high levels of TGF-beta and IL-10. In addition, these prestimulation times coincided with peak induction of HLA-DR and costimulatory B7 molecule (especially CD86) expression on B cells. Finally, addition of CTLA-4/Fc or blocking F(ab')2 anti-CTLA-4 mAb, plus optimally stimulated non-T cells, to cultures of self-MHC-reactive clones inhibited the induction of TGF-beta but not IL-10 or IFN-gamma production. In summary, these studies show that activated self-MHC-reactive T cells have the cytokine phenotype of Th3 or T regulatory cell 1 and thus may be important regulatory cells that mediate oral and peripheral tolerance and prevent the development of autoimmunity.
Collapse
|
|
25 |
94 |
24
|
Herrero LJ, Lee CSM, Hurrelbrink RJ, Chua BH, Chua KB, McMinn PC. Molecular epidemiology of enterovirus 71 in peninsular Malaysia, 1997-2000. Arch Virol 2003; 148:1369-85. [PMID: 12827466 DOI: 10.1007/s00705-003-0100-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human enterovirus 71 (EV71) (genus Enterovirus, family Picornaviridae) has been responsible for sporadic cases and outbreaks of hand-foot-and-mouth disease (HFMD), aseptic meningitis, encephalitis and poliomyelitis-like disease in Europe, the U.S.A., Australia and Asia. Recently, there has been an increase in EV71 activity in the Asia-Pacific region, with many outbreaks of HFMD associated with brainstem encephalitis manifesting as neurogenic pulmonary oedema with a high case fatality rate. In 1997, and again in 2000, EV71 outbreaks occurred in peninsular Malaysia. Variations in VP1 gene sequences have been shown to divide all known EV71 field isolates into three distinct genogroups (A, B and C). Consequently we examined the VP1 gene sequences of 43 EV71 strains isolated in peninsular Malaysia between 1997 and 2000 in order to determine the genogroup prevalence over the period. In this study we show that four subgenogroups (B3, B4, C1 and C2) of EV71 circulated in peninsular Malaysia between 1997 and 2000. Subgenogroups B3, B4 and C1 have been identified as the primary cause of the outbreaks of EV71 in peninsular Malaysia. Subgenogroup C1 also displayed endemic circulation from 1997 to 2000 and subgenogroup C2 was present at a low level during the 1997 outbreak.
Collapse
|
|
22 |
90 |
25
|
|
Comment |
27 |
88 |