1
|
Rayford KJ, Cooley A, Strode AW, Osi I, Arun A, Lima MF, Misra S, Pratap S, Nde PN. Trypanosoma cruzi dysregulates expression profile of piRNAs in primary human cardiac fibroblasts during early infection phase. Front Cell Infect Microbiol 2023; 13:1083379. [PMID: 36936778 PMCID: PMC10017870 DOI: 10.3389/fcimb.2023.1083379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas Disease, causes severe morbidity, mortality, and economic burden worldwide. Though originally endemic to Central and South America, globalization has led to increased parasite presence in most industrialized countries. About 40% of infected individuals will develop cardiovascular, neurological, and/or gastrointestinal pathologies. Accumulating evidence suggests that the parasite induces alterations in host gene expression profiles in order to facilitate infection and pathogenesis. The role of regulatory gene expression machinery during T. cruzi infection, particularly small noncoding RNAs, has yet to be elucidated. In this study, we aim to evaluate dysregulation of a class of sncRNAs called piRNAs during early phase of T. cruzi infection in primary human cardiac fibroblasts by RNA-Seq. We subsequently performed in silico analysis to predict piRNA-mRNA interactions. We validated the expression of these selected piRNAs and their targets during early parasite infection phase by stem loop qPCR and qPCR, respectively. We found about 26,496,863 clean reads (92.72%) which mapped to the human reference genome. During parasite challenge, 441 unique piRNAs were differentially expressed. Of these differentially expressed piRNAs, 29 were known and 412 were novel. In silico analysis showed several of these piRNAs were computationally predicted to target and potentially regulate expression of genes including SMAD2, EGR1, ICAM1, CX3CL1, and CXCR2, which have been implicated in parasite infection, pathogenesis, and various cardiomyopathies. Further evaluation of the function of these individual piRNAs in gene regulation and expression will enhance our understanding of early molecular mechanisms contributing to infection and pathogenesis. Our findings here suggest that piRNAs play important roles in infectious disease pathogenesis and can serve as potential biomarkers and therapeutic targets.
Collapse
|
2
|
Rumph JT, Stephens VR, Ameli S, Brown LK, Rayford KJ, Nde PN, Osteen KG, Bruner-Tran KL. A Paternal Fish Oil Diet Preconception Reduces Lung Inflammation in a Toxicant-Driven Murine Model of New Bronchopulmonary Dysplasia. Mar Drugs 2023; 21:161. [PMID: 36976210 PMCID: PMC10052688 DOI: 10.3390/md21030161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/25/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
New bronchopulmonary dysplasia (BPD) is a neonatal disease that is theorized to begin in utero and manifests as reduced alveolarization due to inflammation of the lung. Risk factors for new BPD in human infants include intrauterine growth restriction (IUGR), premature birth (PTB) and formula feeding. Using a mouse model, our group recently reported that a paternal history of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure increased his offspring's risk of IUGR, PTB, and new BPD. Additionally, formula supplementation of these neonates worsened the severity of pulmonary disease. In a separate study, we reported that a paternal preconception fish oil diet prevented TCDD-driven IUGR and PTB. Not surprisingly, eliminating these two major risk factors for new BPD also significantly reduced development of neonatal lung disease. However, this prior study did not examine the potential mechanism for fish oil's protective effect. Herein, we sought to determine whether a paternal preconception fish oil diet attenuated toxicant-associated lung inflammation, which is an important contributor to the pathogenesis of new BPD. Compared to offspring of standard diet TCDD-exposed males, offspring of TCDD-exposed males provided a fish oil diet prior to conception exhibited a significant reduction in pulmonary expression of multiple pro-inflammatory mediators (Tlr4, Cxcr2, Il-1 alpha). Additionally, neonatal lungs of pups born to fish oil treated fathers exhibited minimal hemorrhaging or edema. Currently, prevention of BPD is largely focused on maternal strategies to improve health (e.g., smoking cessation) or reduce risk of PTB (e.g., progesterone supplementation). Our studies in mice support a role for also targeting paternal factors to improve pregnancy outcomes and child health.
Collapse
|
3
|
Cooley A, Rayford KJ, Arun A, Villalta F, Lima MF, Pratap S, Nde PN. Trypanosoma cruzi Dysregulates piRNAs Computationally Predicted to Target IL-6 Signaling Molecules During Early Infection of Primary Human Cardiac Fibroblasts. Immune Netw 2022; 22:e51. [PMID: 36627941 PMCID: PMC9807959 DOI: 10.4110/in.2022.22.e51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/20/2022] [Accepted: 10/26/2022] [Indexed: 12/31/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, is an intracellular protozoan parasite, which is now present in most industrialized countries. About 40% of T. cruzi infected individuals will develop severe, incurable cardiovascular, gastrointestinal, or neurological disorders. The molecular mechanisms by which T. cruzi induces cardiopathogenesis remain to be determined. Previous studies showed that increased IL-6 expression in T. cruzi patients was associated with disease severity. IL-6 signaling was suggested to induce pro-inflammatory and pro-fibrotic responses, however, the role of this pathway during early infection remains to be elucidated. We reported that T. cruzi can dysregulate the expression of host PIWI-interacting RNAs (piRNAs) during early infection. Here, we aim to evaluate the dysregulation of IL-6 signaling and the piRNAs computationally predicted to target IL-6 molecules during early T. cruzi infection of primary human cardiac fibroblasts (PHCF). Using in silico analysis, we predict that piR_004506, piR_001356, and piR_017716 target IL6 and SOCS3 genes, respectively. We validated the piRNAs and target gene expression in T. cruzi challenged PHCF. Secreted IL-6, soluble gp-130, and sIL-6R in condition media were measured using a cytokine array and western blot analysis was used to measure pathway activation. We created a network of piRNAs, target genes, and genes within one degree of biological interaction. Our analysis revealed an inverse relationship between piRNA expression and the target transcripts during early infection, denoting the IL-6 pathway targeting piRNAs can be developed as potential therapeutics to mitigate T. cruzi cardiomyopathies.
Collapse
|
4
|
Rayford KJ, Cooley A, Arun A, Rachakonda G, Villalta F, Lima MF, Pratap S, Nde PN. Trypanosoma cruzi
dysregulates expression of piRNA that can regulate IL‐6 signaling in human cardiac fibroblasts during the early phase of infection. FASEB J 2022. [DOI: 10.1096/fasebj.2022.36.s1.r4785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Arun A, Rayford KJ, Cooley A, Rana T, Rachakonda G, Villalta F, Pratap S, Lima MF, Sheibani N, Nde PN. Thrombospondin-1 expression and modulation of Wnt and hippo signaling pathways during the early phase of Trypanosoma cruzi infection of heart endothelial cells. PLoS Negl Trop Dis 2022; 16:e0010074. [PMID: 34986160 PMCID: PMC8730400 DOI: 10.1371/journal.pntd.0010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
The protozoan parasite, Trypanosoma cruzi, causes severe morbidity and mortality in afflicted individuals. Approximately 30% of T. cruzi infected individuals present with cardiac pathology. The invasive forms of the parasite are carried in the vascular system to infect other cells of the body. During transportation, the molecular mechanisms by which the parasite signals and interact with host endothelial cells (EC) especially heart endothelium is currently unknown. The parasite increases host thrombospondin-1 (TSP1) expression and activates the Wnt/β-catenin and hippo signaling pathways during the early phase of infection. The links between TSP1 and activation of the signaling pathways and their impact on parasite infectivity during the early phase of infection remain unknown. To elucidate the significance of TSP1 function in YAP/β-catenin colocalization and how they impact parasite infectivity during the early phase of infection, we challenged mouse heart endothelial cells (MHEC) from wild type (WT) and TSP1 knockout mice with T. cruzi and evaluated Wnt signaling, YAP/β-catenin crosstalk, and how they affect parasite infection. We found that in the absence of TSP1, the parasite induced the expression of Wnt-5a to a maximum at 2 h (1.73±0.13), P< 0.001 and enhanced the level of phosphorylated glycogen synthase kinase 3β at the same time point (2.99±0.24), P<0.001. In WT MHEC, the levels of Wnt-5a were toned down and the level of p-GSK-3β was lowest at 2 h (0.47±0.06), P< 0.01 compared to uninfected control. This was accompanied by a continuous significant increase in the nuclear colocalization of β-catenin/YAP in TSP1 KO MHEC with a maximum Pearson correlation coefficient of (0.67±0.02), P< 0.05 at 6 h. In WT MHEC, the nuclear colocalization of β-catenin/YAP remained steady and showed a reduction at 6 h (0.29±0.007), P< 0.05. These results indicate that TSP1 plays an important role in regulating β-catenin/YAP colocalization during the early phase of T. cruzi infection. Importantly, dysregulation of this crosstalk by pre-incubation of WT MHEC with a β-catenin inhibitor, endo-IWR 1, dramatically reduced the level of infection of WT MHEC. Parasite infectivity of inhibitor treated WT MHEC was similar to the level of infection of TSP1 KO MHEC. These results indicate that the β-catenin pathway induced by the parasite and regulated by TSP1 during the early phase of T. cruzi infection is an important potential therapeutic target, which can be explored for the prophylactic prevention of T. cruzi infection.
Collapse
|
6
|
Rumph JT, Rayford KJ, Stephens VR, Ameli S, Nde PN, Osteen KG, Bruner-Tran KL. A Preconception Paternal Fish Oil Diet Prevents Toxicant-Driven New Bronchopulmonary Dysplasia in Neonatal Mice. TOXICS 2021; 10:7. [PMID: 35051049 PMCID: PMC8778469 DOI: 10.3390/toxics10010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
Abstract
New bronchopulmonary dysplasia is a developmental lung disease associated with placental dysfunction and impaired alveolarization. Risk factors for new BPD include prematurity, delayed postnatal growth, the dysregulation of epithelial-to-mesenchymal transition (EMT), and parental exposure to toxicants. Our group previously reported that a history of paternal toxicant exposure increased the risk of prematurity and low birth weight in offspring. A history of paternal toxicant exposure also increased the offspring's risk of new BPD and disease severity was increased in offspring who additionally received a supplemental formula diet, which has also been linked to poor lung development. Risk factors associated with new BPD are well-defined, but it is unclear whether the disease can be prevented. Herein, we assessed whether a paternal fish oil diet could attenuate the development of new BPD in the offspring of toxicant exposed mice, with and without neonatal formula feeding. We investigated the impact of a paternal fish oil diet preconception because we previously reported that this intervention reduces the risk of TCDD associated placental dysfunction, prematurity, and low birth weight. We found that a paternal fish oil diet significantly reduced the risk of new BPD in neonatal mice with a history of paternal toxicant exposure regardless of neonatal diet. Furthermore, our evidence suggests that the protective effects of a paternal fish oil diet are mediated in part by the modulation of small molecules involved in EMT.
Collapse
|
7
|
Rayford KJ, Cooley A, Lima MF, Nde PN. Abstract P431:
Trypanosoma Cruzi
Induces Alterations In The Piwi-interacting Rna Expression Profile Of Human Cardiomyocytes During The Early Phase Of Infection. Circ Res 2021. [DOI: 10.1161/res.129.suppl_1.p431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trypanosoma cruzi
, the causative agent of Chagas Heart Disease, is an intracellular parasite that was originally endemic to Central and South America. However, due to globalization, the disease is now present in most industrialized countries. About 40% of
T. cruzi
infected individuals will develop a form of cardiomyopathy including aneurysms, arrythmias, fibrosis, hypertrophy. Host gene expression profile has been shown to be significantly dysregulated to facilitate parasite infection and pathogenesis. The role of gene expression regulatory molecules such as small noncoding RNAs during infection has yet to be fully elucidated. In this study, we aim to evaluate if the parasite can regulate the expression profile of an emerging class of small non-coding RNAs, piwi-interacting RNAs (piRNAs), during the early phase of
T. cruzi
infection in primary human cardiacmyocytes (PHCM). We challenged PHCM with invasive
T. cruzi
trypomastigotes and purified RNA for RNA sequencing and analysis. We found that an average of 21,595,866 clean reads (88.4%) mapped to the human reference genome. We observed that the parasite induced significant differential expression of 217 host piRNAs using NOISeq. Furthermore, we employed miRanda and RNA22 to predict mRNA targets of the differentially expressed piRNA. We utilized WEBGESTALT to map piRNAs of interest to their biological pathways.
In silico
analysis showed that both dysregulated known and novel piRNAs could target several genes of interest including NFATC2, which has been reported to play an important role in the onset of cardiomyopathies reported in Chagasic patients. Our novel findings are the first to show that
T. cruzi
can induces differential expression of piRNAs during the early phase PHCM infection.
Collapse
|
8
|
Arun A, Rayford KJ, Cooley A, Rachakonda G, Villalta F, Pratap S, Lima MF, Sheibani N, Nde PN. Thrombospondin-1 Plays an Essential Role in Yes-Associated Protein Nuclear Translocation during the Early Phase of Trypanosoma cruzi Infection in Heart Endothelial Cells. Int J Mol Sci 2020; 21:ijms21144912. [PMID: 32664627 PMCID: PMC7403984 DOI: 10.3390/ijms21144912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 01/03/2023] Open
Abstract
The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease. This neglected tropical disease causes severe morbidity and mortality in endemic regions. About 30% of T. cruzi infected individuals will present with cardiac complications. Invasive trypomastigotes released from infected cells can be carried in the vascular endothelial system to infect neighboring and distant cells. During the process of cellular infection, the parasite induces host cells, to increase the levels of host thrombospondin-1 (TSP-1), to facilitate the process of infection. TSP-1 plays important roles in the functioning of vascular cells, including vascular endothelial cells with important implications in cardiovascular health. Many signal transduction pathways, including the yes-associated protein 1 (YAP)/transcriptional coactivator, with PDZ-binding motif (TAZ) signaling, which are upstream of TSP-1, have been linked to the pathophysiology of heart damage. The molecular mechanisms by which T. cruzi signals, and eventually infects, heart endothelial cells remain unknown. To evaluate the importance of TSP-1 expression in heart endothelial cells during the process of T. cruzi infection, we exposed heart endothelial cells prepared from Wild Type and TSP-1 Knockout mouse to invasive T. cruzi trypomastigotes at multiple time points, and evaluated changes in the hippo signaling cascade using immunoblotting and immunofluorescence assays. We found that the parasite turned off the hippo signaling pathway in TSP-1KO heart endothelial cells. The levels of SAV1 and MOB1A increased to a maximum of 2.70 ± 0.23 and 5.74 ± 1.45-fold at 3 and 6 h, respectively, in TSP-1KO mouse heart endothelial cells (MHEC), compared to WT MHEC, following a parasite challenge. This was accompanied by a significant continuous increase in the nuclear translocation of downstream effector molecule YAP, to a maximum mean nuclear fluorescence intensity of 10.14 ± 0.40 at 6 h, compared to wild type cells. Furthermore, we found that increased nuclear translocated YAP significantly colocalized with the transcription co-activator molecule pan-TEAD, with a maximum Pearson's correlation coefficient of 0.51 ± 0.06 at 6 h, compared to YAP-Pan-TEAD colocalization in the WT MHEC, which decreased significantly, with a minimum Pearson's correlation coefficient of 0.30 ± 0.01 at 6 h. Our data indicate that, during the early phase of infection, upregulated TSP-1 is essential for the regulation of the hippo signaling pathway. These studies advance our understanding of the molecular interactions occurring between heart endothelial cells and T. cruzi, in the presence and absence of TSP-1, providing insights into processes linked to parasite dissemination and pathogenesis.
Collapse
|