1
|
Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O'Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011; 69:292-302. [PMID: 21387374 PMCID: PMC3084507 DOI: 10.1002/ana.22366] [Citation(s) in RCA: 6875] [Impact Index Per Article: 491.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New evidence and consensus has led to further revision of the McDonald Criteria for diagnosis of multiple sclerosis. The use of imaging for demonstration of dissemination of central nervous system lesions in space and time has been simplified, and in some circumstances dissemination in space and time can be established by a single scan. These revisions simplify the Criteria, preserve their diagnostic sensitivity and specificity, address their applicability across populations, and may allow earlier diagnosis and more uniform and widespread use.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
6875 |
2
|
Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, de Seze J, Fujihara K, Greenberg B, Jacob A, Jarius S, Lana-Peixoto M, Levy M, Simon JH, Tenembaum S, Traboulsee AL, Waters P, Wellik KE, Weinshenker BG. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85:177-89. [PMID: 26092914 PMCID: PMC4515040 DOI: 10.1212/wnl.0000000000001729] [Citation(s) in RCA: 3192] [Impact Index Per Article: 319.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
Neuromyelitis optica (NMO) is an inflammatory CNS syndrome distinct from multiple sclerosis (MS) that is associated with serum aquaporin-4 immunoglobulin G antibodies (AQP4-IgG). Prior NMO diagnostic criteria required optic nerve and spinal cord involvement but more restricted or more extensive CNS involvement may occur. The International Panel for NMO Diagnosis (IPND) was convened to develop revised diagnostic criteria using systematic literature reviews and electronic surveys to facilitate consensus. The new nomenclature defines the unifying term NMO spectrum disorders (NMOSD), which is stratified further by serologic testing (NMOSD with or without AQP4-IgG). The core clinical characteristics required for patients with NMOSD with AQP4-IgG include clinical syndromes or MRI findings related to optic nerve, spinal cord, area postrema, other brainstem, diencephalic, or cerebral presentations. More stringent clinical criteria, with additional neuroimaging findings, are required for diagnosis of NMOSD without AQP4-IgG or when serologic testing is unavailable. The IPND also proposed validation strategies and achieved consensus on pediatric NMOSD diagnosis and the concepts of monophasic NMOSD and opticospinal MS.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
3192 |
3
|
Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, Nakashima I, Weinshenker BG. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004; 364:2106-12. [PMID: 15589308 DOI: 10.1016/s0140-6736(04)17551-x] [Citation(s) in RCA: 2290] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neuromyelitis optica is an inflammatory demyelinating disease with generally poor prognosis that selectively targets optic nerves and spinal cord. It is commonly misdiagnosed as multiple sclerosis. Neither disease has a distinguishing biomarker, but optimum treatments differ. The relation of neuromyelitis optica to optic-spinal multiple sclerosis in Asia is uncertain. We assessed the capacity of a putative marker for neuromyelitis optica (NMO-IgG) to distinguish neuromyelitis optica and related disorders from multiple sclerosis. METHODS Indirect immunofluorescence with a composite substrate of mouse tissues identified a distinctive NMO-IgG staining pattern, which we characterised further by dual immunostaining. We tested masked serum samples from 102 North American patients with neuromyelitis optica or with syndromes that suggest high risk of the disorder, and 12 Japanese patients with optic-spinal multiple sclerosis. Control patients had multiple sclerosis, other myelopathies, optic neuropathies, and miscellaneous disorders. We also established clinical diagnoses for 14 patients incidentally shown to have NMO-IgG among 85000 tested for suspected paraneoplastic autoimmunity. FINDINGS NMO-IgG outlines CNS microvessels, pia, subpia, and Virchow-Robin space. It partly colocalises with laminin. Sensitivity and specificity were 73% (95% CI 60-86) and 91% (79-100) for neuromyelitis optica and 58% (30-86) and 100% (66-100) for optic-spinal multiple sclerosis. NMO-IgG was detected in half of patients with high-risk syndromes. Of 14 seropositive cases identified incidentally, 12 had neuromyelitis optica or a high-risk syndrome for the disease. INTERPRETATION NMO-IgG is a specific marker autoantibody of neuromyelitis optica and binds at or near the blood-brain barrier. It distinguishes neuromyelitis optica from multiple sclerosis. Asian optic-spinal multiple sclerosis seems to be the same as neuromyelitis optica.
Collapse
|
|
21 |
2290 |
4
|
Sato DK, Callegaro D, Lana-Peixoto MA, Waters PJ, de Haidar Jorge FM, Takahashi T, Nakashima I, Apostolos-Pereira SL, Talim N, Simm RF, Lino AMM, Misu T, Leite MI, Aoki M, Fujihara K. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology 2014; 82:474-81. [PMID: 24415568 DOI: 10.1212/wnl.0000000000000101] [Citation(s) in RCA: 640] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To evaluate clinical features among patients with neuromyelitis optica spectrum disorders (NMOSD) who have myelin oligodendrocyte glycoprotein (MOG) antibodies, aquaporin-4 (AQP4) antibodies, or seronegativity for both antibodies. METHODS Sera from patients diagnosed with NMOSD in 1 of 3 centers (2 sites in Brazil and 1 site in Japan) were tested for MOG and AQP4 antibodies using cell-based assays with live transfected cells. RESULTS Among the 215 patients with NMOSD, 7.4% (16/215) were positive for MOG antibodies and 64.7% (139/215) were positive for AQP4 antibodies. No patients were positive for both antibodies. Patients with MOG antibodies represented 21.1% (16/76) of the patients negative for AQP4 antibodies. Compared with patients with AQP4 antibodies or patients who were seronegative, patients with MOG antibodies were more frequently male, had a more restricted phenotype (optic nerve more than spinal cord), more frequently had bilateral simultaneous optic neuritis, more often had a single attack, had spinal cord lesions distributed in the lower portion of the spinal cord, and usually demonstrated better functional recovery after an attack. CONCLUSIONS Patients with NMOSD with MOG antibodies have distinct clinical features, fewer attacks, and better recovery than patients with AQP4 antibodies or patients seronegative for both antibodies.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
640 |
5
|
Jarius S, Paul F, Aktas O, Asgari N, Dale RC, de Seze J, Franciotta D, Fujihara K, Jacob A, Kim HJ, Kleiter I, Kümpfel T, Levy M, Palace J, Ruprecht K, Saiz A, Trebst C, Weinshenker BG, Wildemann B. MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. J Neuroinflammation 2018; 15:134. [PMID: 29724224 PMCID: PMC5932838 DOI: 10.1186/s12974-018-1144-2] [Citation(s) in RCA: 537] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/02/2018] [Indexed: 02/11/2023] Open
Abstract
Over the past few years, new-generation cell-based assays have demonstrated a robust association of autoantibodies to full-length human myelin oligodendrocyte glycoprotein (MOG-IgG) with (mostly recurrent) optic neuritis, myelitis and brainstem encephalitis, as well as with acute disseminated encephalomyelitis (ADEM)-like presentations. Most experts now consider MOG-IgG-associated encephalomyelitis (MOG-EM) a disease entity in its own right, immunopathogenetically distinct from both classic multiple sclerosis (MS) and aquaporin-4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorders (NMOSD). Owing to a substantial overlap in clinicoradiological presentation, MOG-EM was often unwittingly misdiagnosed as MS in the past. Accordingly, increasing numbers of patients with suspected or established MS are currently being tested for MOG-IgG. However, screening of large unselected cohorts for rare biomarkers can significantly reduce the positive predictive value of a test. To lessen the hazard of overdiagnosing MOG-EM, which may lead to inappropriate treatment, more selective criteria for MOG-IgG testing are urgently needed. In this paper, we propose indications for MOG-IgG testing based on expert consensus. In addition, we give a list of conditions atypical for MOG-EM ("red flags") that should prompt physicians to challenge a positive MOG-IgG test result. Finally, we provide recommendations regarding assay methodology, specimen sampling and data interpretation.
Collapse
|
Review |
7 |
537 |
6
|
Pittock SJ, Berthele A, Fujihara K, Kim HJ, Levy M, Palace J, Nakashima I, Terzi M, Totolyan N, Viswanathan S, Wang KC, Pace A, Fujita KP, Armstrong R, Wingerchuk DM. Eculizumab in Aquaporin-4-Positive Neuromyelitis Optica Spectrum Disorder. N Engl J Med 2019; 381:614-625. [PMID: 31050279 DOI: 10.1056/nejmoa1900866] [Citation(s) in RCA: 527] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing, autoimmune, inflammatory disorder that typically affects the optic nerves and spinal cord. At least two thirds of cases are associated with aquaporin-4 antibodies (AQP4-IgG) and complement-mediated damage to the central nervous system. In a previous small, open-label study involving patients with AQP4-IgG-positive disease, eculizumab, a terminal complement inhibitor, was shown to reduce the frequency of relapse. METHODS In this randomized, double-blind, time-to-event trial, 143 adults were randomly assigned in a 2:1 ratio to receive either intravenous eculizumab (at a dose of 900 mg weekly for the first four doses starting on day 1, followed by 1200 mg every 2 weeks starting at week 4) or matched placebo. The continued use of stable-dose immunosuppressive therapy was permitted. The primary end point was the first adjudicated relapse. Secondary outcomes included the adjudicated annualized relapse rate, quality-of-life measures, and the score on the Expanded Disability Status Scale (EDSS), which ranges from 0 (no disability) to 10 (death). RESULTS The trial was stopped after 23 of the 24 prespecified adjudicated relapses, given the uncertainty in estimating when the final event would occur. The mean (±SD) annualized relapse rate in the 24 months before enrollment was 1.99±0.94; 76% of the patients continued to receive their previous immunosuppressive therapy during the trial. Adjudicated relapses occurred in 3 of 96 patients (3%) in the eculizumab group and 20 of 47 (43%) in the placebo group (hazard ratio, 0.06; 95% confidence interval [CI], 0.02 to 0.20; P<0.001). The adjudicated annualized relapse rate was 0.02 in the eculizumab group and 0.35 in the placebo group (rate ratio, 0.04; 95% CI, 0.01 to 0.15; P<0.001). The mean change in the EDSS score was -0.18 in the eculizumab group and 0.12 in the placebo group (least-squares mean difference, -0.29; 95% CI, -0.59 to 0.01). Upper respiratory tract infections and headaches were more common in the eculizumab group. There was one death from pulmonary empyema in the eculizumab group. CONCLUSIONS Among patients with AQP4-IgG-positive NMOSD, those who received eculizumab had a significantly lower risk of relapse than those who received placebo. There was no significant between-group difference in measures of disability progression. (Funded by Alexion Pharmaceuticals; PREVENT ClinicalTrials.gov number, NCT01892345; EudraCT number, 2013-001150-10.).
Collapse
|
Clinical Trial, Phase III |
6 |
527 |
7
|
Banwell B, Bennett JL, Marignier R, Kim HJ, Brilot F, Flanagan EP, Ramanathan S, Waters P, Tenembaum S, Graves JS, Chitnis T, Brandt AU, Hemingway C, Neuteboom R, Pandit L, Reindl M, Saiz A, Sato DK, Rostasy K, Paul F, Pittock SJ, Fujihara K, Palace J. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD Panel proposed criteria. Lancet Neurol 2023; 22:268-282. [PMID: 36706773 DOI: 10.1016/s1474-4422(22)00431-8] [Citation(s) in RCA: 489] [Impact Index Per Article: 244.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 09/07/2022] [Accepted: 10/13/2022] [Indexed: 01/26/2023]
Abstract
Serum antibodies directed against myelin oligodendrocyte glycoprotein (MOG) are found in patients with acquired CNS demyelinating syndromes that are distinct from multiple sclerosis and aquaporin-4-seropositive neuromyelitis optica spectrum disorder. Based on an extensive literature review and a structured consensus process, we propose diagnostic criteria for MOG antibody-associated disease (MOGAD) in which the presence of MOG-IgG is a core criterion. According to our proposed criteria, MOGAD is typically associated with acute disseminated encephalomyelitis, optic neuritis, or transverse myelitis, and is less commonly associated with cerebral cortical encephalitis, brainstem presentations, or cerebellar presentations. MOGAD can present as either a monophasic or relapsing disease course, and MOG-IgG cell-based assays are important for diagnostic accuracy. Diagnoses such as multiple sclerosis need to be excluded, but not all patients with multiple sclerosis should undergo screening for MOG-IgG. These proposed diagnostic criteria require validation but have the potential to improve identification of individuals with MOGAD, which is essential to define long-term clinical outcomes, refine inclusion criteria for clinical trials, and identify predictors of a relapsing versus a monophasic disease course.
Collapse
|
Review |
2 |
489 |
8
|
Kim HJ, Paul F, Lana-Peixoto MA, Tenembaum S, Asgari N, Palace J, Klawiter EC, Sato DK, de Seze J, Wuerfel J, Banwell BL, Villoslada P, Saiz A, Fujihara K, Kim SH. MRI characteristics of neuromyelitis optica spectrum disorder: an international update. Neurology 2015; 84:1165-73. [PMID: 25695963 DOI: 10.1212/wnl.0000000000001367] [Citation(s) in RCA: 458] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Since its initial reports in the 19th century, neuromyelitis optica (NMO) had been thought to involve only the optic nerves and spinal cord. However, the discovery of highly specific anti-aquaporin-4 antibody diagnostic biomarker for NMO enabled recognition of more diverse clinical spectrum of manifestations. Brain MRI abnormalities in patients seropositive for anti-aquaporin-4 antibody are common and some may be relatively unique by virtue of localization and configuration. Some seropositive patients present with brain involvement during their first attack and/or continue to relapse in the same location without optic nerve and spinal cord involvement. Thus, characteristics of brain abnormalities in such patients have become of increased interest. In this regard, MRI has an increasingly important role in the differential diagnosis of NMO and its spectrum disorder (NMOSD), particularly from multiple sclerosis. Differentiating these conditions is of prime importance because early initiation of effective immunosuppressive therapy is the key to preventing attack-related disability in NMOSD, whereas some disease-modifying drugs for multiple sclerosis may exacerbate the disease. Therefore, identifying the MRI features suggestive of NMOSD has diagnostic and prognostic implications. We herein review the brain, optic nerve, and spinal cord MRI findings of NMOSD.
Collapse
|
Review |
10 |
458 |
9
|
Misu T, Fujihara K, Kakita A, Konno H, Nakamura M, Watanabe S, Takahashi T, Nakashima I, Takahashi H, Itoyama Y. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Brain 2007; 130:1224-34. [PMID: 17405762 DOI: 10.1093/brain/awm047] [Citation(s) in RCA: 456] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuromyelitis optica (NMO) is an inflammatory and necrotizing disease clinically characterized by selective involvement of the optic nerves and spinal cord. There has been a long controversy as to whether NMO is a variant of multiple sclerosis (MS) or a distinct disease. Recently, an NMO-specific antibody (NMO-IgG) was found in the sera from patients with NMO, and its target antigen was identified as aquaporin 4 (AQP4) water channel protein, mainly expressed in astroglial foot processes. However, the pathogenetic role of the AQP4 in NMO remains unknown. We did an immunohistopathological study on the distribution of AQP4, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), activated complement C9neo and immunoglobulins in the spinal cord lesions and medulla oblongata of NMO (n = 12), MS (n = 6), brain and spinal infarction (n = 7) and normal control (n = 8). The most striking finding was that AQP4 immunoreactivity was lost in 60 out of a total of 67 acute and chronic NMO lesions (90%), but not in MS plaques. The extensive loss of AQP4 accompanied by decreased GFAP staining was evident, especially in the active perivascular lesions, where immunoglobulins and activated complements were deposited. Interestingly, in those NMO lesions, MBP-stained myelinated fibres were relatively preserved despite the loss of AQP4 and GFAP staining. The areas surrounding the lesions in NMO had enhanced expression of AQP4 and GFAP, which reflected reactive gliosis. In contrast, AQP4 immunoreactivity was well preserved and rather strongly stained in the demyelinating MS plaques, and infarcts were also stained for AQP4 from the very acute phase of necrosis to the chronic stage of astrogliosis. In normal controls, AQP4 was diffusely expressed in the entire tissue sections, but the staining in the spinal cord was stronger in the central grey matter than in the white matter. The present study demonstrated that the immunoreactivities of AQP4 and GFAP were consistently lost from the early stage of the lesions in NMO, notably in the perivascular regions with complement and immunoglobulin deposition. These features in NMO were distinct from those of MS and infarction as well as normal controls, and suggest that astrocytic impairment associated with the loss of AQP4 and humoral immunity may be important in the pathogenesis of NMO lesions.
Collapse
|
Comparative Study |
18 |
456 |
10
|
Takahashi T, Fujihara K, Nakashima I, Misu T, Miyazawa I, Nakamura M, Watanabe S, Shiga Y, Kanaoka C, Fujimori J, Sato S, Itoyama Y. Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre. Brain 2007; 130:1235-43. [PMID: 17449477 DOI: 10.1093/brain/awm062] [Citation(s) in RCA: 453] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
NMO-IgG is a disease-specific autoantibody for neuromyelitis optica (NMO) and its target antigen is aquaporin-4 (AQP4) water channel. Recently, we established a sensitive anti-AQP4 antibody assay using human AQP4-transfected cells, which appeared more sensitive than the original NMO-IgG assay. So far, there has been no large-scale study on anti-AQP4 antibody titre in NMO and related disorders. We tested 148 sera of patients with NMO, high-risk syndrome of NMO, multiple sclerosis (MS), clinically isolated syndrome suggestive of MS and miscellaneous diseases. We analysed the relation of anti-AQP4 antibody titres and clinical and laboratory parameters. The sensitivity of anti-AQP4 antibody assay was 91% (95% CI 79-100) for NMO and 85% (65-100) for high-risk syndrome, and the specificity was 100% (91-100) for NMO and high-risk syndrome, that is, none with the other disorders was positive. Among 21 anti-AQP4 antibody-positive cases whose NMO-IgG were tested, 15 were NMO-IgG-positive and 6 were NMO-IgG-negative. Higher anti-AQP4 antibody titres were associated with complete blindness and extensive or large cerebral lesions on MRI. The lengths of spinal cord lesions on MRI were positively correlated with the titres of anti-AQP4 antibody at the nadir of exacerbations. A few patients who had short (approx. one to two vertebral segments) spinal cord lesions on MRI were also seropositive with low anti-AQP4 antibody titres, but did have other clinical and MRI features of NMO. Anti-AQP4 antibody titres became lower after high-dose methylprednisolone, and a follow-up showed anti-AQP4 antibody titres remained low in relapse-free periods under immunosuppression. Cerebrospinal fluid (CSF)-anti-AQP4 antibody was detected when the serum-antibody titres exceeded 512x, at the ratio of 1 (CSF) to 500 (serum). Using a sensitive assay, the results of the present study suggest that NMO and high-risk syndrome may be essentially anti-AQP4 antibody-associated disorders, and that the anti-AQP4 antibody titres have significant clinical and immunological implications in NMO.
Collapse
|
|
18 |
453 |
11
|
Cree BAC, Bennett JL, Kim HJ, Weinshenker BG, Pittock SJ, Wingerchuk DM, Fujihara K, Paul F, Cutter GR, Marignier R, Green AJ, Aktas O, Hartung HP, Lublin FD, Drappa J, Barron G, Madani S, Ratchford JN, She D, Cimbora D, Katz E. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 2019; 394:1352-1363. [PMID: 31495497 DOI: 10.1016/s0140-6736(19)31817-3] [Citation(s) in RCA: 443] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND No approved therapies exist for neuromyelitis optica spectrum disorder (NMOSD), a rare, relapsing, autoimmune, inflammatory disease of the CNS that causes blindness and paralysis. We aimed to assess the efficacy and safety of inebilizumab, an anti-CD19, B cell-depleting antibody, in reducing the risk of attacks and disability in NMOSD. METHODS We did a multicentre, double-blind, randomised placebo-controlled phase 2/3 study at 99 outpatient specialty clinics or hospitals in 25 countries. Eligible participants were adults (≥18 years old) with a diagnosis of NMOSD, an Expanded Disability Status Scale score of 8·0 or less, and a history of at least one attack requiring rescue therapy in the year before screening or at least two attacks requiring rescue therapy in the 2 years before screening. Participants were randomly allocated (3:1) to 300 mg intravenous inebilizumab or placebo with a central interactive voice response system or interactive web response system and permuted block randomisation. Inebilizumab or placebo was administered on days 1 and 15. Participants, investigators, and all clinical staff were masked to the treatments, and inebilizumab and placebo were indistinguishable in appearance. The primary endpoint was time to onset of an NMOSD attack, as determined by the adjudication committee. Efficacy endpoints were assessed in all randomly allocated patients who received at least one dose of study intervention, and safety endpoints were assessed in the as-treated population. The study is registered with ClinicalTrials.gov, number NCT02200770. FINDINGS Between Jan 6, 2015, and Sept 24, 2018, 230 participants were randomly assigned to treatment and dosed, with 174 participants receiving inebilizumab and 56 receiving placebo. The randomised controlled period was stopped before complete enrolment, as recommended by the independent data-monitoring committee, because of a clear demonstration of efficacy. 21 (12%) of 174 participants receiving inebilizumab had an attack versus 22 (39%) of 56 participants receiving placebo (hazard ratio 0·272 [95% CI 0·150-0·496]; p<0·0001). Adverse events occurred in 125 (72%) of 174 participants receiving inebilizumab and 41 (73%) of 56 participants receiving placebo. Serious adverse events occurred in eight (5%) of 174 participants receiving inebilizumab and five (9%) of 56 participants receiving placebo. INTERPRETATION Compared with placebo, inebilizumab reduced the risk of an NMOSD attack. Inebilizumab has potential application as an evidence-based treatment for patients with NMOSD. FUNDING MedImmune and Viela Bio.
Collapse
|
Clinical Trial, Phase II |
6 |
443 |
12
|
Bradl M, Misu T, Takahashi T, Watanabe M, Mader S, Reindl M, Adzemovic M, Bauer J, Berger T, Fujihara K, Itoyama Y, Lassmann H. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol 2009; 66:630-43. [PMID: 19937948 DOI: 10.1002/ana.21837] [Citation(s) in RCA: 430] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Severe inflammation and astrocyte loss with profound demyelination in spinal cord and optic nerves are typical pathological features of neuromyelitis optica (NMO). A diagnostic hallmark of this disease is the presence of serum autoantibodies against the water channel aquaporin-4 (AQP-4) on astrocytes. METHODS We induced acute T-cell-mediated experimental autoimmune encephalomyelitis in Lewis rats and confronted the animals with an additional application of immunoglobulins from AQP-4 antibody-positive and -negative NMO patients, multiple sclerosis patients, and control subjects. RESULTS The immunoglobulins from AQP-4 antibody-positive NMO patients are pathogenic. When they reach serum titers in experimental animals comparable with those seen in NMO patients, they augment clinical disease and induce lesions in the central nervous system that are similar in structure and distribution to those seen in NMO patients, consisting of AQP-4 and astrocyte loss, granulocytic infiltrates, T cells and activated macrophages/microglia cells, and an extensive immunoglobulin and complement deposition on astrocyte processes of the perivascular and superficial glia limitans. AQP-4 antibody containing NMO immunoglobulin injected into naïve rats, young rats with leaky blood-brain barrier, or after transfer of a nonencephalitogenic T-cell line did not induce disease or neuropathological alterations in the central nervous system. Absorption of NMO immunoglobulins with AQP-4-transfected cells, but not with mock-transfected control cells, reduced the AQP-4 antibody titers and was associated with a reduction of astrocyte pathology after transfer. INTERPRETATION Human anti-AQP-4 antibodies are not only important in the diagnosis of NMO but also augment disease and induce NMO-like lesions in animals with T-cell-mediated brain inflammation.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
430 |
13
|
Yamamura T, Kleiter I, Fujihara K, Palace J, Greenberg B, Zakrzewska-Pniewska B, Patti F, Tsai CP, Saiz A, Yamazaki H, Kawata Y, Wright P, De Seze J. Trial of Satralizumab in Neuromyelitis Optica Spectrum Disorder. N Engl J Med 2019; 381:2114-2124. [PMID: 31774956 DOI: 10.1056/nejmoa1901747] [Citation(s) in RCA: 392] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the central nervous system and is associated with autoantibodies to anti-aquaporin-4 (AQP4-IgG) in approximately two thirds of patients. Interleukin-6 is involved in the pathogenesis of the disorder. Satralizumab is a humanized monoclonal antibody targeting the interleukin-6 receptor. The efficacy of satralizumab added to immunosuppressant treatment in patients with NMOSD is unclear. METHODS In a phase 3, randomized, double-blind, placebo-controlled trial, we randomly assigned, in a 1:1 ratio, patients with NMOSD who were seropositive or seronegative for AQP4-IgG to receive either satralizumab, at a dose of 120 mg, or placebo, administered subcutaneously at weeks 0, 2, and 4 and every 4 weeks thereafter, added to stable immunosuppressant treatment. The primary end point was the first protocol-defined relapse in a time-to-event analysis. Key secondary end points were the change from baseline to week 24 in the visual-analogue scale (VAS) pain score (range, 0 to 100, with higher scores indicating more pain) and the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) score (range, 0 to 52, with lower scores indicating more fatigue). Safety was also assessed. RESULTS A total of 83 patients were enrolled, with 41 assigned to the satralizumab group and 42 to the placebo group. The median treatment duration with satralizumab in the double-blind period was 107.4 weeks. Relapse occurred in 8 patients (20%) receiving satralizumab and in 18 (43%) receiving placebo (hazard ratio, 0.38; 95% confidence interval [CI], 0.16 to 0.88). Multiple imputation for censored data resulted in hazard ratios ranging from 0.34 to 0.44 (with corresponding P values of 0.01 to 0.04). Among 55 AQP4-IgG-seropositive patients, relapse occurred in 11% of those in the satralizumab group and in 43% of those in the placebo group (hazard ratio, 0.21; 95% CI, 0.06 to 0.75); among 28 AQP4-IgG-seronegative patients, relapse occurred in 36% and 43%, respectively (hazard ratio, 0.66; 95% CI, 0.20 to 2.24). The between-group difference in the change in the mean VAS pain score was 4.08 (95% CI, -8.44 to 16.61); the between-group difference in the change in the mean FACIT-F score was -3.10 (95% CI, -8.38 to 2.18). The rates of serious adverse events and infections did not differ between groups. CONCLUSIONS Among patients with NMOSD, satralizumab added to immunosuppressant treatment led to a lower risk of relapse than placebo but did not differ from placebo in its effect on pain or fatigue. (Funded by Chugai Pharmaceutical; ClinicalTrials.gov number, NCT02028884.).
Collapse
|
Clinical Trial, Phase III |
6 |
392 |
14
|
Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 2005; 26:4139-47. [PMID: 15664641 DOI: 10.1016/j.biomaterials.2004.09.014] [Citation(s) in RCA: 363] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 09/10/2004] [Indexed: 11/23/2022]
Abstract
In this study, new type of guided bone regeneration (GBR) membranes were fabricated by polycaprolactone (PCL)/CaCO3 composite nano-fibers with two different PCL to calcium carbonate (CaCO3) ratios (PCL:CaCO3=75:25 wt% and 25:75 wt%). The composite nano-fibers were successfully fabricated by electrospinning method and CaCO3 nano-particles on the surface of nano-fibers were confirmed by energy disperse X-ray (EDX) analysis. In order to achieve mechanical stability of GBR membranes, composite nano-fibers were spun on PCL nano-fibrous membranes which has high tensile strength, i.e., the membranes consist of two layers of functional layer (PCL/CaCO3) and mechanical support layer (PCL). Two different GBR membranes were prepared, i.e., GBR membrane (A)=PCL:CaCO3=75:25 wt%+PCL, GBR membrane (B)=PCL:CaCO3=25:75 wt%+PCL. Osteoblast attachment and proliferation of GBR membrane (A) and (B) were discussed by MTS assay and scanning electron microscope (SEM) observation. As a result, absorbance intensity of GBR membrane (A) and tissue culture polystyrene (TCPS) increased during 5 days seeding time. In contrast, although absorbance intensity of GBR membrane (B) also increased, its value was lower than membrane (A). SEM observation showed that no significant difference in osteoblast attachment manner was seen on GBR membrane (A) and (B). Because of good cell attachment manner, there is a potential to utilize PCL/CaCO3 composite nano-fibers to GBR membranes.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
363 |
15
|
Ogawa R, Nakashima I, Takahashi T, Kaneko K, Akaishi T, Takai Y, Sato DK, Nishiyama S, Misu T, Kuroda H, Aoki M, Fujihara K. MOG antibody-positive, benign, unilateral, cerebral cortical encephalitis with epilepsy. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 4:e322. [PMID: 28105459 PMCID: PMC5241006 DOI: 10.1212/nxi.0000000000000322] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 01/21/2023]
Abstract
Objective: To describe the features of adult patients with benign, unilateral cerebral cortical encephalitis positive for the myelin oligodendrocyte glycoprotein (MOG) antibody. Methods: In this retrospective, cross-sectional study, after we encountered an index case of MOG antibody–positive unilateral cortical encephalitis with epileptic seizure, we tested for MOG antibody using our in-house, cell-based assay in a cohort of 24 consecutive adult patients with steroid-responsive encephalitis of unknown etiology seen at Tohoku University Hospital (2008–2014). We then analyzed the findings in MOG antibody–positive cases. Results: Three more patients, as well as the index case, were MOG antibody–positive, and all were adult men (median age 37 years, range 23–39 years). The main symptom was generalized epileptic seizure with or without abnormal behavior or consciousness disturbance. Two patients also developed unilateral benign optic neuritis (before or after seizure). In all patients, brain MRI demonstrated unilateral cerebral cortical fluid-attenuated inversion recovery hyperintense lesions, which were swollen and corresponded to hyperperfusion on SPECT. CSF studies showed moderate mononuclear pleocytosis with some polymorphonuclear cells and mildly elevated total protein levels, but myelin basic protein was not elevated. A screening of encephalitis-associated autoantibodies, including aquaporin-4, glutamate receptor, and voltage-gated potassium channel antibodies, was negative. All patients received antiepilepsy drugs and fully recovered after high-dose methylprednisolone, and the unilateral cortical MRI lesions subsequently disappeared. No patient experienced relapse. Conclusions: These MOG antibody–positive cases represent unique benign unilateral cortical encephalitis with epileptic seizure. The pathology may be autoimmune, although the findings differ from MOG antibody–associated demyelination and Rasmussen and other known immune-mediated encephalitides.
Collapse
|
Journal Article |
8 |
316 |
16
|
Marignier R, Hacohen Y, Cobo-Calvo A, Pröbstel AK, Aktas O, Alexopoulos H, Amato MP, Asgari N, Banwell B, Bennett J, Brilot F, Capobianco M, Chitnis T, Ciccarelli O, Deiva K, De Sèze J, Fujihara K, Jacob A, Kim HJ, Kleiter I, Lassmann H, Leite MI, Linington C, Meinl E, Palace J, Paul F, Petzold A, Pittock S, Reindl M, Sato DK, Selmaj K, Siva A, Stankoff B, Tintore M, Traboulsee A, Waters P, Waubant E, Weinshenker B, Derfuss T, Vukusic S, Hemmer B. Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurol 2021; 20:762-772. [PMID: 34418402 DOI: 10.1016/s1474-4422(21)00218-0] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/07/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a recently identified autoimmune disorder that presents in both adults and children as CNS demyelination. Although there are clinical phenotypic overlaps between MOGAD, multiple sclerosis, and aquaporin-4 antibody-associated neuromyelitis optica spectrum disorder (NMOSD) cumulative biological, clinical, and pathological evidence discriminates between these conditions. Patients should not be diagnosed with multiple sclerosis or NMOSD if they have anti-MOG antibodies in their serum. However, many questions related to the clinical characterisation of MOGAD and pathogenetic role of MOG antibodies are still unanswered. Furthermore, therapy is mainly based on standard protocols for aquaporin-4 antibody-associated NMOSD and multiple sclerosis, and more evidence is needed regarding how and when to treat patients with MOGAD.
Collapse
|
Review |
4 |
311 |
17
|
Waters P, Woodhall M, O'Connor KC, Reindl M, Lang B, Sato DK, Juryńczyk M, Tackley G, Rocha J, Takahashi T, Misu T, Nakashima I, Palace J, Fujihara K, Leite MI, Vincent A. MOG cell-based assay detects non-MS patients with inflammatory neurologic disease. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2015; 2:e89. [PMID: 25821844 PMCID: PMC4370386 DOI: 10.1212/nxi.0000000000000089] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/20/2015] [Indexed: 11/29/2022]
Abstract
Objective: To optimize sensitivity and disease specificity of a myelin oligodendrocyte glycoprotein (MOG) antibody assay. Methods: Consecutive sera (n = 1,109) sent for aquaporin-4 (AQP4) antibody testing were screened for MOG antibodies (Abs) by cell-based assays using either full-length human MOG (FL-MOG) or the short-length form (SL-MOG). The Abs were initially detected by Alexa Fluor goat anti-human IgG (H + L) and subsequently by Alexa Fluor mouse antibodies to human IgG1. Results: When tested at 1:20 dilution, 40/1,109 sera were positive for AQP4-Abs, 21 for SL-MOG, and 180 for FL-MOG. Only one of the 40 AQP4-Ab–positive sera was positive for SL-MOG-Abs, but 10 (25%) were positive for FL-MOG-Abs (p = 0.0069). Of equal concern, 48% (42/88) of sera from controls (patients with epilepsy) were positive by FL-MOG assay. However, using an IgG1-specific secondary antibody, only 65/1,109 (5.8%) sera were positive on FL-MOG, and AQP4-Ab– positive and control sera were negative. IgM reactivity accounted for the remaining anti-human IgG (H + L) positivity toward FL-MOG. The clinical diagnoses were obtained in 33 FL-MOG–positive patients, blinded to the antibody data. IgG1-Abs to FL-MOG were associated with optic neuritis (n = 11), AQP4-seronegative neuromyelitis optica spectrum disorder (n = 4), and acute disseminated encephalomyelitis (n = 1). All 7 patients with probable multiple sclerosis (MS) were MOG-IgG1 negative. Conclusions: The limited disease specificity of FL-MOG-Abs identified using Alexa Fluor goat anti-human IgG (H + L) is due in part to detection of IgM-Abs. Use of the FL-MOG and restricting to IgG1-Abs substantially improves specificity for non-MS demyelinating diseases. Classification of evidence: This study provides Class II evidence that the presence of serum IgG1- MOG-Abs in AQP4-Ab–negative patients distinguishes non-MS CNS demyelinating disorders from MS (sensitivity 24%, 95% confidence interval [CI] 9%–45%; specificity 100%, 95% CI 88%–100%).
Collapse
|
Journal Article |
10 |
306 |
18
|
Kitley J, Leite MI, Nakashima I, Waters P, McNeillis B, Brown R, Takai Y, Takahashi T, Misu T, Elsone L, Woodhall M, George J, Boggild M, Vincent A, Jacob A, Fujihara K, Palace J. Prognostic factors and disease course in aquaporin-4 antibody-positive patients with neuromyelitis optica spectrum disorder from the United Kingdom and Japan. Brain 2012; 135:1834-49. [DOI: 10.1093/brain/aws109] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
|
13 |
291 |
19
|
Lucchinetti CF, Guo Y, Popescu BFG, Fujihara K, Itoyama Y, Misu T. The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol 2014; 24:83-97. [PMID: 24345222 DOI: 10.1111/bpa.12099] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 12/13/2022] Open
Abstract
Neuromyelitis optica (NMO) is a disabling autoimmune astrocytopathy characterized by typically severe and recurrent attacks of optic neuritis and longitudinally extensive myelitis. Until recently, NMO was considered an acute aggressive variant of multiple sclerosis (MS), despite the fact that early studies postulated that NMO and MS may be two distinct diseases with a common clinical picture. With the discovery of a highly specific serum autoantibody (NMO-IgG), Lennon and colleagues provided the first unequivocal evidence distinguishing NMO from MS and other central nervous system (CNS) inflammatory demyelinating disorders. The target antigen of NMO-IgG was confirmed to be aquaporin-4 (AQP4), the most abundant water channel protein in the CNS, mainly expressed on astrocytic foot processes at the blood-brain barrier, subpial and subependymal regions. Pathological studies demonstrated that astrocytes were selectively targeted in NMO as evidenced by the extensive loss of immunoreactivities for the astrocytic proteins, AQP4 and glial fibrillary acidic protein (GFAP), as well as perivascular deposition of immunoglobulins and activation of complement even within lesions with a relative preservation of myelin. In support of these pathological findings, GFAP levels in the cerebrospinal fluid (CSF) during acute NMO exacerbations were found to be remarkably elevated in contrast to MS where CSF-GFAP levels did not substantially differ from controls. Additionally, recent experimental studies showed that AQP4 antibody is pathogenic, resulting in selective astrocyte destruction and dysfunction in vitro, ex vivo and in vivo. These findings strongly suggest that NMO is an autoimmune astrocytopathy where damage to astrocytes exceeds both myelin and neuronal damage. This chapter will review recent neuropathological studies that have provided novel insights into the pathogenic mechanisms, cellular targets, as well as the spectrum of tissue damage in NMO.
Collapse
|
Review |
11 |
281 |
20
|
Hor JY, Asgari N, Nakashima I, Broadley SA, Leite MI, Kissani N, Jacob A, Marignier R, Weinshenker BG, Paul F, Pittock SJ, Palace J, Wingerchuk DM, Behne JM, Yeaman MR, Fujihara K. Epidemiology of Neuromyelitis Optica Spectrum Disorder and Its Prevalence and Incidence Worldwide. Front Neurol 2020; 11:501. [PMID: 32670177 PMCID: PMC7332882 DOI: 10.3389/fneur.2020.00501] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an uncommon inflammatory disease of the central nervous system, manifesting clinically as optic neuritis, myelitis, and certain brain and brainstem syndromes. Cases clinically diagnosed as NMOSD may include aquaporin 4 (AQP4)-antibody-seropositive autoimmune astrocytopathic disease, myelin oligodendrocyte glycoprotein (MOG)-antibody-seropositive inflammatory demyelinating disease, and double-seronegative disease. AQP4-antibody disease has a high female-to-male ratio (up to 9:1), and its mean age at onset of ~40 years is later than that seen in multiple sclerosis. For MOG-antibody disease, its gender ratio is closer to 1:1, and it is more common in children than in adults. Its clinical phenotypes differ but overlap with those of AQP4-antibody disease and include acute disseminated encephalomyelitis, brainstem and cerebral cortical encephalitis, as well as optic neuritis and myelitis. Double-seronegative disease requires further research and clarification. Population-based studies over the past two decades report the prevalence and incidence of NMOSD in different populations worldwide. One relevant finding is the varying prevalence observed in different racial groups. Consistently, the prevalence of NMOSD among Whites is ~1/100,000 population, with an annual incidence of <1/million population. Among East Asians, the prevalence is higher, at ~3.5/100,000 population, while the prevalence in Blacks may be up to 10/100,000 population. For MOG-antibody disease, hospital-based studies largely do not observe any significant racial preponderance so far. This disorder comprises a significant proportion of NMOSD cases that are AQP4-antibody-seronegative. A recent Dutch nationwide study reported the annual incidence of MOG-antibody disease as 1.6/million population (adult: 1.3/million, children: 3.1/million). Clinical and radiological differences between AQP4-antibody and MOG-antibody associated diseases have led to interest in the revisions of NMOSD definition and expanded stratification based on detection of a specific autoantibody biomarker. More population-based studies in different geographical regions and racial groups will be useful to further inform the prevalence and incidence of NMOSD and their antibody-specific subgroups. Accessibility to AQP4-antibody and MOG-antibody testing, which is limited in many centers, is a challenge to overcome. Environmental and genetic studies will be useful accompaniments to identify other potential pathogenetic factors and specific biomarkers in NMOSD.
Collapse
|
Review |
5 |
232 |
21
|
Misu T, Fujihara K, Nakashima I, Sato S, Itoyama Y. Intractable hiccup and nausea with periaqueductal lesions in neuromyelitis optica. Neurology 2005; 65:1479-82. [PMID: 16275842 DOI: 10.1212/01.wnl.0000183151.19351.82] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Intractable hiccup and nausea (IHN) was found in eight of 47 cases of relapsing neuromyelitis optica (NMO) (17%) but in none of 130 cases of multiple sclerosis (MS). IHN resolved with methylprednisolone. In six cases, MRI detected linear medullary lesions involving the pericanal region, the area postrema, and the nucleus tractus solitarius. Like long and centrally located myelitis, a linear medullary lesion causing IHN may distinguish NMO from MS.
Collapse
|
|
20 |
226 |
22
|
Watanabe S, Nakashima I, Misu T, Miyazawa I, Shiga Y, Fujihara K, Itoyama Y. Therapeutic efficacy of plasma exchange in NMO-IgG-positive patients with neuromyelitis optica. Mult Scler 2016; 13:128-32. [PMID: 17294622 DOI: 10.1177/1352458506071174] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system (CNS) with a poor prognosis in terms of the optic-spinal function. Recently, a serum autoantibody (NMO-IgG) binding to the blood–brain barrier region was detected exclusively in patients with NMO and its high risk group. We treated six NMO-IgG-positive patients (all female; age 21–67 years old, median 41; three with optic neuritis and three with myelitis) who were unresponsive to high-dose intravenous methylprednisolone (HIMP), with plasma exchange (PE) (three to five exchanges, 2–3 L each). Three of the patients(one with optic neuritis and two with myelitis) showed definite functional improvement following PE. The clinical improvement started to appear after one or two exchanges, while there was little or no improvement in the other three patients. Such quick clinical responses to PE suggest a pathogenetic role of humoral immune factors in NMO, although delayed responses to the corticosteroid therapy might have contributed to the therapeutic efficacy, in part. Further clinical and in vitro studies are needed to determine whether the removal of NMO-IgG is directly relevant to the therapeutic efficacy. PE may hasten the functional recovery from corticosteroid-resistant relapses in some NMO-IgG-positive patients with NMO.
Collapse
|
|
9 |
216 |
23
|
Takai Y, Misu T, Kaneko K, Chihara N, Narikawa K, Tsuchida S, Nishida H, Komori T, Seki M, Komatsu T, Nakamagoe K, Ikeda T, Yoshida M, Takahashi T, Ono H, Nishiyama S, Kuroda H, Nakashima I, Suzuki H, Bradl M, Lassmann H, Fujihara K, Aoki M. Myelin oligodendrocyte glycoprotein antibody-associated disease: an immunopathological study. Brain 2020; 143:1431-1446. [PMID: 32412053 DOI: 10.1093/brain/awaa102] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/31/2019] [Accepted: 02/17/2020] [Indexed: 11/14/2022] Open
Abstract
Conformation-sensitive antibodies against myelin oligodendrocyte glycoprotein (MOG) are detectable in patients with optic neuritis, myelitis, opticomyelitis, acute or multiphasic disseminated encephalomyelitis (ADEM/MDEM) and brainstem/cerebral cortical encephalitis, but are rarely detected in patients with prototypic multiple sclerosis. So far, there has been no systematic study on the pathological relationship between demyelinating lesions and cellular/humoral immunity in MOG antibody-associated disease. Furthermore, it is unclear whether the pathomechanisms of MOG antibody-mediated demyelination are similar to the demyelination patterns of multiple sclerosis, neuromyelitis optica spectrum disorders (NMOSD) with AQP4 antibody, or ADEM. In this study, we immunohistochemically analysed biopsied brain tissues from 11 patients with MOG antibody-associated disease and other inflammatory demyelinating diseases. Patient median onset age was 29 years (range 9-64), and the median interval from attack to biopsy was 1 month (range 0.5-96). The clinical diagnoses were ADEM (n = 2), MDEM (n = 1), multiple brain lesions without encephalopathy (n = 3), leukoencephalopathy (n = 3) and cortical encephalitis (n = 2). All these cases had multiple/extensive lesions on MRI and were oligoclonal IgG band-negative. Most demyelinating lesions in 10 of 11 cases showed a perivenous demyelinating pattern previously reported in ADEM (153/167 lesions) and a fusion pattern (11/167 lesions) mainly in the cortico-medullary junctions and white matter, and only three lesions in two cases showed confluent demyelinated plaques. In addition, 60 of 167 demyelinating lesions (mainly in the early phase) showed MOG-dominant myelin loss, but relatively preserved oligodendrocytes, which were distinct from those of AQP4 antibody-positive NMOSD exhibiting myelin-associated glycoprotein-dominant oligodendrogliopathy. In MOG antibody-associated diseases, MOG-laden macrophages were found in the perivascular spaces and demyelinating lesions, and infiltrated cells were abundant surrounding multiple blood vessels in and around the demyelinating lesions, mainly consisting of macrophages (CD68; 1814 ± 1188 cells/mm2), B cells (CD20; 468 ± 817 cells/mm2), and T cells (CD3; 2286 ± 1951 cells/mm2), with CD4-dominance (CD4+ versus CD8+; 1281 ± 1196 cells/mm2 versus 851 ± 762 cells/mm2, P < 0.01). Humoral immunity, evidenced by perivascular deposits of activated complements and immunoglobulins, was occasionally observed in some MOG antibody-associated demyelinating lesions, and the frequency was much lower than that in AQP4 antibody-positive NMOSD. Subpial lesions with perivenous demyelination were observed in both ADEM and cortical encephalitis. Our study suggests that ADEM-like perivenous inflammatory demyelination with MOG-dominant myelin loss is a characteristic finding of MOG antibody-associated disease regardless of whether the diagnostic criteria of ADEM are met. These pathological features are clearly different from those of multiple sclerosis and AQP4 antibody-positive NMOSD, suggesting an independent autoimmune demyelinating disease entity.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
185 |
24
|
Takano R, Misu T, Takahashi T, Sato S, Fujihara K, Itoyama Y. Astrocytic damage is far more severe than demyelination in NMO: A clinical CSF biomarker study. Neurology 2010; 75:208-16. [DOI: 10.1212/wnl.0b013e3181e2414b] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
|
15 |
180 |
25
|
Bennett JL, de Seze J, Lana-Peixoto M, Palace J, Waldman A, Schippling S, Tenembaum S, Banwell B, Greenberg B, Levy M, Fujihara K, Chan KH, Kim HJ, Asgari N, Sato DK, Saiz A, Wuerfel J, Zimmermann H, Green A, Villoslada P, Paul F. Neuromyelitis optica and multiple sclerosis: Seeing differences through optical coherence tomography. Mult Scler 2015; 21:678-88. [PMID: 25662342 PMCID: PMC4425816 DOI: 10.1177/1352458514567216] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 11/27/2014] [Indexed: 01/12/2023]
Abstract
Neuromyelitis optica (NMO) is an inflammatory autoimmune disease of the central nervous system that preferentially targets the optic nerves and spinal cord. The clinical presentation may suggest multiple sclerosis (MS), but a highly specific serum autoantibody against the astrocytic water channel aquaporin-4 present in up to 80% of NMO patients enables distinction from MS. Optic neuritis may occur in either condition resulting in neuro-anatomical retinal changes. Optical coherence tomography (OCT) has become a useful tool for analyzing retinal damage both in MS and NMO. Numerous studies showed that optic neuritis in NMO typically results in more severe retinal nerve fiber layer (RNFL) and ganglion cell layer thinning and more frequent development of microcystic macular edema than in MS. Furthermore, while patients’ RNFL thinning also occurs in the absence of optic neuritis in MS, subclinical damage seems to be rare in NMO. Thus, OCT might be useful in differentiating NMO from MS and serve as an outcome parameter in clinical studies.
Collapse
|
Review |
10 |
180 |