1
|
Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, Li X, Xiong W, Li G, Zeng Z, Guo C. Role of tumor microenvironment in tumorigenesis. J Cancer 2017; 8:761-773. [PMID: 28382138 PMCID: PMC5381164 DOI: 10.7150/jca.17648] [Citation(s) in RCA: 931] [Impact Index Per Article: 116.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022] Open
Abstract
Tumorigenesis is a complex and dynamic process, consisting of three stages: initiation, progression, and metastasis. Tumors are encircled by extracellular matrix (ECM) and stromal cells, and the physiological state of the tumor microenvironment (TME) is closely connected to every step of tumorigenesis. Evidence suggests that the vital components of the TME are fibroblasts and myofibroblasts, neuroendocrine cells, adipose cells, immune and inflammatory cells, the blood and lymphatic vascular networks, and ECM. This manuscript, based on the current studies of the TME, offers a more comprehensive overview of the primary functions of each component of the TME in cancer initiation, progression, and invasion. The manuscript also includes primary therapeutic targeting markers for each player, which may be helpful in treating tumors.
Collapse
|
Review |
8 |
931 |
2
|
Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, Li X, Cao K, Deng H, He Y, Liao Q, Xiang B, Zhou M, Guo C, Zeng Z, Li G, Li X, Xiong W. The role of microenvironment in tumor angiogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:204. [PMID: 32993787 PMCID: PMC7526376 DOI: 10.1186/s13046-020-01709-5] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022]
Abstract
Tumor angiogenesis is necessary for the continued survival and development of tumor cells, and plays an important role in their growth, invasion, and metastasis. The tumor microenvironment—composed of tumor cells, surrounding cells, and secreted cytokines—provides a conducive environment for the growth and survival of tumors. Different components of the tumor microenvironment can regulate tumor development. In this review, we have discussed the regulatory role of the microenvironment in tumor angiogenesis. High expression of angiogenic factors and inflammatory cytokines in the tumor microenvironment, as well as hypoxia, are presumed to be the reasons for poor therapeutic efficacy of current anti-angiogenic drugs. A combination of anti-angiogenic drugs and antitumor inflammatory drugs or hypoxia inhibitors might improve the therapeutic outcome.
Collapse
|
Review |
5 |
409 |
3
|
Li X, Li C, Zhang L, Wu M, Cao K, Jiang F, Chen D, Li N, Li W. The significance of exosomes in the development and treatment of hepatocellular carcinoma. Mol Cancer 2020; 19:1. [PMID: 31901224 PMCID: PMC6942270 DOI: 10.1186/s12943-019-1085-0] [Citation(s) in RCA: 375] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most commonmalignancy. Exsome plays a significant role in the elucidation of signal transduction pathways between hepatoma cells, angiogenesis and early diagnosis of HCC. Exosomes are small vesicular structures that mediate interaction between different types of cells, and contain a variety of components (including DNA, RNA, and proteins). Numerous studies have shown that these substances in exosomes are involved in growth, metastasis and angiogenesis in liver cancer, and then inhibited the growth of liver cancer by blocking the signaling pathway of liver cancer cells. In addition, the exosomal substances could also be used as markers for screening early liver cancer. In this review, we summarized to reveal the significance of exosomes in the occurrence, development, diagnosis and treatment of HCC, which in turn might help us to further elucidate the mechanism of exosomes in HCC, and promote the use of exosomes in the clinical diagnosis and treatment of HCC.
Collapse
|
Review |
5 |
375 |
4
|
Cao K, Hollenbach J, Shi X, Shi W, Chopek M, Fernández-Viña MA. Analysis of the frequencies of HLA-A, B, and C alleles and haplotypes in the five major ethnic groups of the United States reveals high levels of diversity in these loci and contrasting distribution patterns in these populations. Hum Immunol 2001; 62:1009-30. [PMID: 11543903 DOI: 10.1016/s0198-8859(01)00298-1] [Citation(s) in RCA: 366] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The HLA system is the most polymorphic of all human genetic systems. The frequency of HLA class I alleles and their linkage disequilibrium patterns differ significantly among human populations as shown in studies using serologic methods. Many DNA-defined alleles with identical serotypes may have variable frequencies in different populations. We typed HLA-A, B, and C loci at the allele level by PCR-based methods in 1,296 unrelated subjects from five major outbred groups living in the U.S.A (African, AFAM; Caucasians, CAU; Asian, ORI; Hispanic, HIS, and North American Natives, NAI). We detected 46, 100 and 32 HLA-A, B, and C alleles, respectively. ORI and HIS presented more alleles at each of these loci. There was lack of correlation between the levels of heterozygosity and the number of alleles detected in each population. In AFAM, heterozygosity (>90%) is maximized at all class I loci. HLA-A had the lowest heterozygosity in all populations but CAU. Tight LD was observed between HLA-B and C alleles. AFAM had weaker or nonexistent associations between alleles of HLA-A and B than other populations. Analysis of the genetic distances between these and other populations showed a close relationship between specific US populations and a population from their original continents. ORI exhibited the largest genetic distance with all the other U.S. groups and were closer to NAI. Evidence of admixture with CAU was observed for AFAM and HIS. HIS also had significant frequencies of AFAM and Mexican Indian alleles. Differences in both LD and heterozygosity levels suggest distinct evolutionary histories of the HLA loci in the geographical regions from where the U.S. populations originated.
Collapse
|
Comparative Study |
24 |
366 |
5
|
Li W, Ren G, Huang Y, Su J, Han Y, Li J, Chen X, Cao K, Chen Q, Shou P, Zhang L, Yuan ZR, Roberts AI, Shi S, Le AD, Shi Y. Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ 2012; 19:1505-13. [PMID: 22421969 PMCID: PMC3422473 DOI: 10.1038/cdd.2012.26] [Citation(s) in RCA: 323] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been employed successfully to treat various immune disorders in animal models and clinical settings. Our previous studies have shown that MSCs can become highly immunosuppressive upon stimulation by inflammatory cytokines, an effect exerted through the concerted action of chemokines and nitric oxide (NO). Here, we show that MSCs can also enhance immune responses. This immune-promoting effect occurred when proinflammatory cytokines were inadequate to elicit sufficient NO production. When inducible nitric oxide synthase (iNOS) production was inhibited or genetically ablated, MSCs strongly enhance T-cell proliferation in vitro and the delayed-type hypersensitivity response in vivo. Furthermore, iNOS−/− MSCs significantly inhibited melanoma growth. It is likely that in the absence of NO, chemokines act to promote immune responses. Indeed, in CCR5−/−CXCR3−/− mice, the immune-promoting effect of iNOS−/− MSCs is greatly diminished. Thus, NO acts as a switch in MSC-mediated immunomodulation. More importantly, the dual effect on immune reactions was also observed in human MSCs, in which indoleamine 2,3-dioxygenase (IDO) acts as a switch. This study provides novel information about the pathophysiological roles of MSCs.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
323 |
6
|
Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, Gong Z, Guo C, Li X, Deng H, Cao K, Zhou M, Xiang B, Li X, Li Y, Li G, Xiong W, Zeng Z. Role of metabolism in cancer cell radioresistance and radiosensitization methods. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:87. [PMID: 29688867 PMCID: PMC5914062 DOI: 10.1186/s13046-018-0758-7] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Radioresistance is a major factor leading to the failure of radiotherapy and poor prognosis in tumor patients. Following the application of radiotherapy, the activity of various metabolic pathways considerably changes, which may result in the development of resistance to radiation. MAIN BODY Here, we discussed the relationships between radioresistance and mitochondrial and glucose metabolic pathways, aiming to elucidate the interplay between the tumor cell metabolism and radiotherapy resistance. In this review, we additionally summarized the potential therapeutic targets in the metabolic pathways. SHORT CONCLUSION The aim of this review was to provide a theoretical basis and relevant references, which may lead to the improvement of the sensitivity of radiotherapy and prolong the survival of cancer patients.
Collapse
|
Review |
7 |
294 |
7
|
Taguchi A, Yanagisawa K, Tanaka M, Cao K, Matsuyama Y, Goto H, Takahashi T. Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Res 2008; 68:5540-5. [PMID: 18632605 DOI: 10.1158/0008-5472.can-07-6460] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
MicroRNAs (miRNAs) are a distinct class of small noncoding RNAs that posttranscriptionally repress expression of target genes through imperfect base pairing with the 3' untranslated region. We previously reported amplification and overexpression of the miR-17-92 miRNA cluster at 13q31.3 in lung cancers, as well as growth inhibition by treatment with antisense oligonucleotides against miR-17-5p and miR-20a, constituents of miR-17-92, specifically in miR-17-92-overexpressing lung cancer cell lines. Although these findings clearly suggested important roles of miR-17-92 overexpression in lung cancers, only a few targets for the miR-17-92 cluster have been identified thus far. In this study, we identified hypoxia-inducible factor (HIF)-1 alpha as a novel direct target for miR-17-92 through global expression profiling by mass spectrometric analysis using an isobaric tagging reagent, iTRAQ, combined with bioinformatic target prediction. This is the first report to describe negative regulation of HIF-1 alpha by miRNA, which seemed to occur without disrupting the induction of HIF-1 alpha for cellular adaptation to hypoxia. In addition, overexpression of c-myc led to down-regulation of HIF-1 alpha and induction of miR-17-92, the latter of which was previously reported to be a transcriptional activation activity, suggesting that the induction of miR-17-92 may play a role at least in part in c-myc-mediated repression of HIF-1 alpha. Together with previous reports on the functional negative regulation of c-myc by HIF-1 alpha, our findings suggest the possible existence of an intricate and finely tuned circuit involving c-myc, miR-17-92, and HIF-1 alpha that may play a role in cancer cell proliferation under normoxia in a cellular context-dependent manner.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
227 |
8
|
Shen XF, Cao K, Jiang JP, Guan WX, Du JF. Neutrophil dysregulation during sepsis: an overview and update. J Cell Mol Med 2017; 21:1687-1697. [PMID: 28244690 PMCID: PMC5571534 DOI: 10.1111/jcmm.13112] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/05/2017] [Indexed: 12/15/2022] Open
Abstract
Sepsis remains a leading cause of death worldwide, despite advances in critical care, and understanding of the pathophysiology and treatment strategies. No specific therapy or drugs are available for sepsis. Neutrophils play a critical role in controlling infection under normal conditions, and it is suggested that their migration and antimicrobial activity are impaired during sepsis which contribute to the dysregulation of immune responses. Recent studies further demonstrated that interruption or reversal of the impaired migration and antimicrobial function of neutrophils improves the outcome of sepsis in animal models. In this review, we provide an overview of the associated mediators and signal pathways involved which govern the survival, migration and antimicrobial function of neutrophils in sepsis, and discuss the potential of neutrophils as a target to specifically diagnose and/or predict the outcome of sepsis.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
209 |
9
|
Bowcock AM, Shannon W, Du F, Duncan J, Cao K, Aftergut K, Catier J, Fernandez-Vina MA, Menter A. Insights into psoriasis and other inflammatory diseases from large-scale gene expression studies. Hum Mol Genet 2001; 10:1793-805. [PMID: 11532989 DOI: 10.1093/hmg/10.17.1793] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Approximately 2% of the Caucasian population is affected by psoriasis (PS); a chronic inflammatory skin disease triggered by both genetic and environmental risk factors. In addition to a major contribution from the HLA class I region, PS susceptibility loci have been mapped to a number of regions including 1q21, 3q21, 4qter, 14q31-q32, 17q24-q25, 19p13.3 and 20p. Some of these overlap with loci implicated in other autoimmune/inflammatory diseases. Global gene expression studies are beginning to provide insights into the etiology of these and other complex diseases. We used Affymetrix oligonucleotide arrays comprising approximately 12 000 known genes to initiate a more comprehensive analysis of the transcriptional changes that occur in involved and uninvolved skin of 15 psoriatic patients versus six normal controls. Expression levels of the transcripts detected on the arrays were first used to determine the relationship of samples to each other using hierarchical clustering. This analysis clearly differentiated involved psoriatic skin from uninvolved and normal skin. Clusters of differentially expressed genes with similar expression patterns in the same samples were then identified. Six out of 32 clusters contained a total of 177 transcripts that were differentially expressed in involved psoriatic skin versus normal skin. These differences were independent of the gender, age, skin site and HLA class I status of the patient. Ten of the 177 genes were also differentially expressed in uninvolved skin, and several mapped to regions previously shown to harbor psoriasis susceptibility loci.
Collapse
|
|
24 |
194 |
10
|
Su J, Chen X, Huang Y, Li W, Li J, Cao K, Cao G, Zhang L, Li F, Roberts AI, Kang H, Yu P, Ren G, Ji W, Wang Y, Shi Y. Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death Differ 2014; 21:388-396. [PMID: 24162664 PMCID: PMC3921585 DOI: 10.1038/cdd.2013.149] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/20/2013] [Accepted: 09/02/2013] [Indexed: 12/13/2022] Open
Abstract
Mammalian mesenchymal stem cells (MSCs) have been shown to be strongly immunosuppressive in both animal disease models and human clinical trials. We have reported that the key molecule mediating immunosuppression by MSCs is species dependent: indoleamine 2,3-dioxygenase (IDO) in human and inducible nitric oxide synthase (iNOS) in mouse. In the present study, we isolated MSCs from several mammalian species, each of a different genus, and investigated the involvement of IDO and iNOS during MSC-mediated immunosuppression. The characterization of MSCs from different species was by adherence to tissue culture plastic, morphology, specific marker expression, and differentiation potential. On the basis of the inducibility of IDO and iNOS by inflammatory cytokines in MSCs, the tested mammalian species fall into two distinct groups: IDO utilizers and iNOS utilizers. MSCs from monkey, pig, and human employ IDO to suppress immune responses, whereas MSCs from mouse, rat, rabbit, and hamster utilize iNOS. Interestingly, based on the limited number of species tested, the iNOS-utilizing species all belong to the phylogenetic clade, Glires. Although the evolutionary significance of this divergence is not known, we believe that this study provides critical guidance for choosing appropriate animal models for preclinical studies of MSCs.
Collapse
|
research-article |
11 |
185 |
11
|
Hu Z, Zhang H, Yi B, Yang S, Liu J, Hu J, Wang J, Cao K, Zhang W. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Dis 2020; 11:73. [PMID: 31996668 PMCID: PMC6989512 DOI: 10.1038/s41419-020-2256-z] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/21/2022]
Abstract
Our preliminary work has revealed that vitamin D receptor (VDR) activation is protective against cisplatin induced acute kidney injury (AKI). Ferroptosis was recently reported to be involved in AKI. Here in this study, we investigated the internal relation between ferroptosis and the protective effect of VDR in cisplatin induced AKI. By using ferroptosis inhibitor ferrostatin-1 and measurement of ferroptotic cell death phenotype in both in vivo and in vitro cisplatin induced AKI model, we observed the decreased blood urea nitrogen, creatinine, and tissue injury by ferrostatin-1, hence validated the essential involvement of ferroptosis in cisplatin induced AKI. VDR agonist paricalcitol could both functionally and histologically attenuate cisplatin induced AKI by decreasing lipid peroxidation (featured phenotype of ferroptosis), biomarker 4-hydroxynonenal (4HNE), and malondialdehyde (MDA), while reversing glutathione peroxidase 4 (GPX4, key regulator of ferroptosis) downregulation. VDR knockout mouse exhibited much more ferroptotic cell death and worsen kidney injury than wild type mice. And VDR deficiency remarkably decreased the expression of GPX4 under cisplatin stress in both in vivo and in vitro, further luciferase reporter gene assay showed that GPX4 were target gene of transcription factor VDR. In addition, in vitro study showed that GPX4 inhibition by siRNA largely abolished the protective effect of paricalcitol against cisplatin induced tubular cell injury. Besides, pretreatment of paricalcitol could also alleviated Erastin (an inducer of ferroptosis) induced cell death in HK-2 cell. These data suggested that ferroptosis plays an important role in cisplatin induced AKI. VDR activation can protect against cisplatin induced renal injury by inhibiting ferroptosis partly via trans-regulation of GPX4.
Collapse
|
Journal Article |
5 |
181 |
12
|
Cao K, Moormann AM, Lyke KE, Masaberg C, Sumba OP, Doumbo OK, Koech D, Lancaster A, Nelson M, Meyer D, Single R, Hartzman RJ, Plowe CV, Kazura J, Mann DL, Sztein MB, Thomson G, Fernández-Viña MA. Differentiation between African populations is evidenced by the diversity of alleles and haplotypes of HLA class I loci. ACTA ACUST UNITED AC 2004; 63:293-325. [PMID: 15009803 DOI: 10.1111/j.0001-2815.2004.00192.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The allelic and haplotypic diversity of the HLA-A, HLA-B, and HLA-C loci was investigated in 852 subjects from five sub-Saharan populations from Kenya (Nandi and Luo), Mali (Dogon), Uganda, and Zambia. Distributions of genotypes at all loci and in all populations fit Hardy-Weinberg equilibrium expectations. There was not a single allele predominant at any of the loci in these populations, with the exception of A*3002 [allele frequency (AF) = 0.233] in Zambians and Cw*1601 (AF = 0.283) in Malians. This distribution was consistent with balancing selection for all class I loci in all populations, which was evidenced by the homozygosity F statistic that was less than that expected under neutrality. Only in the A locus in Zambians and the C locus in Malians, the AF distribution was very close to neutrality expectations. There were six instances in which there were significant deviations of allele distributions from neutrality in the direction of balancing selection. All allelic lineages from each of the class I loci were found in all the African populations. Several alleles of these loci have intermediate frequencies (AF = 0.020-0.150) and seem to appear only in the African populations. Most of these alleles are widely distributed in the African continent and their origin may predate the separation of linguistic groups. In contrast to native American and other populations, the African populations do not seem to show extensive allelic diversification within lineages, with the exception of the groups of alleles A*02, A*30, B*57, and B*58. The alleles of human leukocyte antigen (HLA)-B are in strong linkage disequilibrium (LD) with alleles of the C locus, and the sets of B/C haplotypes are found in several populations. The associations between A alleles with C-blocks are weaker, and only a few A/B/C haplotypes (A*0201-B*4501-Cw*1601; A*2301-B*1503-Cw*0202; A*7401-B* 1503-Cw*0202; A*2902-B*4201-Cw*1701; A*3001-B*4201-Cw*1701; and A*3601-B*5301-Cw*0401) are found in multiple populations with intermediate frequencies [haplotype frequency (HF) = 0.010-0.100]. The strength of the LD associations between alleles of HLA-A and HLA-B loci and those of HLA-B and HLA-C loci was on average of the same or higher magnitude as those observed in other non-African populations for the same pairs of loci. Comparison of the genetic distances measured by the distribution of alleles at the HLA class I loci in the sub-Saharan populations included in this and other studies indicate that the Luo population from western Kenya has the closest distance with virtually all sub-Saharan population so far studied for HLA-A, a finding consistent with the putative origin of modern humans in East Africa. In all African populations, the genetic distances between each other are greater than those observed between European populations. The remarkable current allelic and haplotypic diversity in the HLA system as well as their variable distribution in different sub-Saharan populations is probably the result of evolutionary forces and environments that have acted on each individual population or in their ancestors. In this regard, the genetic diversity of the HLA system in African populations poses practical challenges for the design of T-cell vaccines and for the transplantation medical community to find HLA-matched unrelated donors for patients in need of an allogeneic transplant.
Collapse
|
|
21 |
148 |
13
|
Cao K, Xu J, Zou X, Li Y, Chen C, Zheng A, Li H, Li H, Szeto IMY, Shi Y, Long J, Liu J, Feng Z. Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice. Free Radic Biol Med 2014; 67:396-407. [PMID: 24316371 DOI: 10.1016/j.freeradbiomed.2013.11.029] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 11/20/2022]
Abstract
A Mediterranean diet rich in olive oil has profound influence on health outcomes including metabolic syndrome. However, the active compound and detailed mechanisms still remain unclear. Hydroxytyrosol (HT), a major polyphenolic compound in virgin olive oil, has received increased attention for its antioxidative activity and regulation of mitochondrial function. Here, we investigated whether HT is the active compound in olive oil exerting a protective effect against metabolic syndrome. In this study, we show that HT could prevent high-fat-diet (HFD)-induced obesity, hyperglycemia, hyperlipidemia, and insulin resistance in C57BL/6J mice after 17 weeks supplementation. Within liver and skeletal muscle tissues, HT could decrease HFD-induced lipid deposits through inhibition of the SREBP-1c/FAS pathway, ameliorate HFD-induced oxidative stress by enhancing antioxidant enzyme activities, normalize expression of mitochondrial complex subunits and mitochondrial fission marker Drp1, and eventually inhibit apoptosis activation. Moreover, in muscle tissue, the levels of mitochondrial carbonyl protein were decreased and mitochondrial complex activities were significantly improved by HT supplementation. In db/db mice, HT significantly decreased fasting glucose, similar to metformin. Notably, HT decreased serum lipid, at which metformin failed. Also, HT was more effective at decreasing the oxidation levels of lipids and proteins in both liver and muscle tissue. Similar to the results in the HFD model, HT decreased muscle mitochondrial carbonyl protein levels and improved mitochondrial complex activities in db/db mice. Our study links the olive oil component HT to diabetes and metabolic disease through changes that are not limited to decreases in oxidative stress, suggesting a potential pharmaceutical or clinical use of HT in metabolic syndrome treatment.
Collapse
|
|
11 |
141 |
14
|
Cao K, Zhang FM, Tu YQ, Zhuo XT, Fan CA. Iron(III)-Catalyzed and Air-Mediated Tandem Reaction of Aldehydes, Alkynes and Amines: An Efficient Approach to Substituted Quinolines. Chemistry 2009; 15:6332-4. [DOI: 10.1002/chem.200900875] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
16 |
140 |
15
|
Gonska BD, Cao K, Schaumann A, Dorszewski A, von zur Mühlen F, Kreuzer H. Catheter ablation of ventricular tachycardia in 136 patients with coronary artery disease: results and long-term follow-up. J Am Coll Cardiol 1994; 24:1506-14. [PMID: 7930283 DOI: 10.1016/0735-1097(94)90147-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES This study attempted to determine the feasibility and long-term efficacy of catheter ablation by means of either radiofrequency or direct current energy in a selected group of patients with coronary artery disease. BACKGROUND Catheter ablation of ventricular tachycardia has proved to be highly effective in patients with idiopathic and bundle branch reentrant ventricular tachycardia. In patients with coronary artery disease and recurrent sustained ventricular tachycardia resistant to medical antiarrhythmic management, the value of catheter ablation has not yet been established. METHODS One hundred thirty-six patients with coronary artery disease and one configuration of monomorphic sustained ventricular tachycardia underwent radiofrequency (72 patients) or direct current catheter ablation (64 patients). The mapping procedure to localize an adequate site for ablation included pace mapping during sinus rhythm, endocardial activation mapping, identification of isolated mid-diastolic potentials and pacing interventions during ventricular tachycardia. RESULTS Primary success was achieved in 102 (75%) of 136 patients (74% of 72 undergoing radiofrequency and 77% of 64 with direct current ablation). Complications were noted in 12% of patients. During a mean (+/- SD) follow-up period of 24 +/- 13 months (range 3 to 68), ventricular tachycardia recurred in 16% of patients. CONCLUSIONS Catheter ablation of ventricular tachycardia in coronary artery disease is feasible in patients with one configuration of monomorphic sustained ventricular tachycardia. There is no significant difference with respect to the type of energy applied. The follow-up data show that in a selected group of patients with coronary artery disease, catheter ablation offers a therapy alternative.
Collapse
|
|
31 |
116 |
16
|
Hu Z, Zhang H, Yang SK, Wu X, He D, Cao K, Zhang W. Emerging Role of Ferroptosis in Acute Kidney Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8010614. [PMID: 31781351 PMCID: PMC6875218 DOI: 10.1155/2019/8010614] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Acute kidney injury (AKI) is a heterogeneous group of critical disease conditions with high incidence and mortality. Vasoconstriction, oxidative stress, apoptosis, and inflammation are generally thought to be the main pathogenic mechanisms of AKI. Ferroptosis is a type of iron-dependent nonapoptotic cell death characterized by membrane lipid peroxide accumulation and polyunsaturated fatty acid consumption, and it plays essential roles in many diseases, including cancers and neurologic diseases. Recent studies have revealed an emerging role of ferroptosis in the pathophysiological processes of AKI. Here, in the present review, we summarized the most recent discoveries on the role of ferroptosis in the pathogenesis of AKI as well as its therapeutic potential in AKI.
Collapse
|
Review |
6 |
116 |
17
|
Liu X, Liu J, Xiao W, Zeng Q, Bo H, Zhu Y, Gong L, He D, Xing X, Li R, Zhou M, Xiong W, Zhou Y, Zhou J, Li X, Guo F, Xu C, Chen X, Wang X, Wang F, Wang Q, Cao K. SIRT1 Regulates N 6 -Methyladenosine RNA Modification in Hepatocarcinogenesis by Inducing RANBP2-Dependent FTO SUMOylation. Hepatology 2020; 72:2029-2050. [PMID: 32154934 DOI: 10.1002/hep.31222] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/24/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is associated with high malignancy rates. Recently, a known deacetylase silent information regulator 1 (SIRT1) was discovered in HCC, and its presence is positively correlated with malignancy and metastasis. N6 -methyladenosine (m6 A) is the most prominent modification, but the exact mechanisms on how SIRT1 regulates m6 A modification to induce hepatocarcinogenesis remain unclear. APPROACH AND RESULTS Here we demonstrate that SIRT1 exerts an oncogenic role by down-regulating fat mass and obesity-associated protein (FTO), which is an m6 A demethylase. A crucial component of small ubiquitin-related modifiers (SUMOs) E3 ligase, RANBP2, is activated by SIRT1, and it is indispensable for FTO SUMOylation at Lysine (K)-216 site that promotes FTO degradation. Moreover, Guanine nucleotide-binding protein G (o) subunit alpha (GNAO1) is identified as m6 A downstream targets of FTO and tumor suppressor in HCC, and depletion of FTO by SIRT1 improves m6 A+ GNAO1 and down-regulates its mRNA expression. CONCLUSIONS We demonstrate an important mechanism whereby SIRT1 destabilizes FTO, steering the m6 A+ of downstream molecules and subsequent mRNA expression in HCC tumorigenesis. Our findings uncover a target of SIRT1 for therapeutic agents to treat HCC.
Collapse
|
|
5 |
102 |
18
|
Cao K, Feng S, Han Y, Gao L, Hue Ly T, Xu Z, Lu Y. Elastic straining of free-standing monolayer graphene. Nat Commun 2020; 11:284. [PMID: 31941941 PMCID: PMC6962388 DOI: 10.1038/s41467-019-14130-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/19/2019] [Indexed: 11/08/2022] Open
Abstract
The sp2 nature of graphene endows the hexagonal lattice with very high theoretical stiffness, strength and resilience, all well-documented. However, the ultimate stretchability of graphene has not yet been demonstrated due to the difficulties in experimental design. Here, directly performing in situ tensile tests in a scanning electron microscope after developing a protocol for sample transfer, shaping and straining, we report the elastic properties and stretchability of free-standing single-crystalline monolayer graphene grown by chemical vapor deposition. The measured Young's modulus is close to 1 TPa, aligning well with the theoretical value, while the representative engineering tensile strength reaches ~50-60 GPa with sample-wide elastic strain up to ~6%. Our findings demonstrate that single-crystalline monolayer graphene can indeed display near ideal mechanical performance, even in a large area with edge defects, as well as resilience and mechanical robustness that allows for flexible electronics and mechatronics applications.
Collapse
|
research-article |
5 |
100 |
19
|
Zou X, Yan C, Shi Y, Cao K, Xu J, Wang X, Chen C, Luo C, Li Y, Gao J, Pang W, Zhao J, Zhao F, Li H, Zheng A, Sun W, Long J, Szeto IMY, Zhao Y, Dong Z, Zhang P, Wang J, Lu W, Zhang Y, Liu J, Feng Z. Mitochondrial dysfunction in obesity-associated nonalcoholic fatty liver disease: the protective effects of pomegranate with its active component punicalagin. Antioxid Redox Signal 2014; 21:1557-70. [PMID: 24393106 PMCID: PMC4175030 DOI: 10.1089/ars.2013.5538] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Punicalagin (PU) is one of the major ellagitannins found in the pomegranate (Punica granatum), which is a popular fruit with several health benefits. So far, no studies have evaluated the effects of PU on nonalcoholic fatty liver disease (NAFLD). Our work aims at studying the effect of PU-enriched pomegranate extract (PE) on high fat diet (HFD)-induced NAFLD. RESULTS PE administration at a dosage of 150 mg/kg/day significantly inhibited HFD-induced hyperlipidemia and hepatic lipid deposition. As major contributors to NAFLD, increased expression of pro-inflammatory cytokines such as tumor necrosis factor-alpha, interleukins 1, 4, and 6 as well as augmented oxidative stress in hepatocytes followed by nuclear factor (erythroid-derived-2)-like 2 (Nrf2) activation were normalized through PE supplementation. In addition, PE treatment reduced uncoupling protein 2 (UCP2) expression, restored ATP content, suppressed mitochondrial protein oxidation, and improved mitochondrial complex activity in the liver. In contrast, mitochondrial content was not affected despite increased peroxisomal proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and elevated expression of genes related to mitochondrial beta-oxidation after PE treatment. Finally, PU was identified as the predominant active component of PE with regard to the lowering of triglyceride and cholesterol content in HepG2 cells, and both PU- and PE-protected cells from palmitate induced mitochondrial dysfunction and insulin resistance. INNOVATION Our work presents the beneficial effects of PE on obesity-associated NAFLD and multiple risk factors. PU was proposed to be the major active component. CONCLUSIONS By promoting mitochondrial function, eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of NAFLD.
Collapse
|
research-article |
11 |
95 |
20
|
Gunawardane RN, Martin OC, Cao K, Zhang L, Dej K, Iwamatsu A, Zheng Y. Characterization and reconstitution of Drosophila gamma-tubulin ring complex subunits. J Cell Biol 2000; 151:1513-24. [PMID: 11134079 PMCID: PMC2150673 DOI: 10.1083/jcb.151.7.1513] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2000] [Accepted: 10/30/2000] [Indexed: 12/05/2022] Open
Abstract
The gamma-tubulin ring complex (gammaTuRC) is important for microtubule nucleation from the centrosome. In addition to gamma-tubulin, the Drosophila gammaTuRC contains at least six subunits, three of which [Drosophila gamma ring proteins (Dgrips) 75/d75p, 84, and 91] have been characterized previously. Dgrips84 and 91 are present in both the small gamma-tubulin complex (gammaTuSC) and the gammaTuRC, while the remaining subunits are found only in the gammaTuRC. To study gammaTuRC assembly and function, we first reconstituted gammaTuSC using the baculovirus expression system. Using the reconstituted gammaTuSC, we showed for the first time that this subcomplex of the gammaTuRC has microtubule binding and capping activities. Next, we characterized two new gammaTuRC subunits, Dgrips128 and 163, and showed that they are centrosomal proteins. Sequence comparisons among all known gammaTuRC subunits revealed two novel sequence motifs, which we named grip motifs 1 and 2. We found that Dgrips128 and 163 can each interact with gammaTuSC. However, this interaction is insufficient for gammaTuRC assembly.
Collapse
|
research-article |
25 |
95 |
21
|
Cao K, Huang Y, Yang J, Wu J. Palladium catalyzed selective mono-arylation of o-carboranes via B–H activation. Chem Commun (Camb) 2015; 51:7257-60. [DOI: 10.1039/c5cc01331c] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Palladium catalyzed selective mono-arylation of o-carborane on B(8) and B(9).
Collapse
|
|
10 |
91 |
22
|
Chen F, Bai M, Cao K, Zhao Y, Cao X, Wei J, Wu N, Li J, Wang L, Fan C, Zhao Y. Programming Enzyme-Initiated Autonomous DNAzyme Nanodevices in Living Cells. ACS NANO 2017; 11:11908-11914. [PMID: 29045785 DOI: 10.1021/acsnano.7b06728] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecular nanodevices are computational assemblers that switch defined states upon external stimulation. However, interfacing artificial nanodevices with natural molecular machineries in living cells remains a great challenge. Here, we delineate a generic method for programming assembly of enzyme-initiated DNAzyme nanodevices (DzNanos). Two programs including split assembly of two partzymes and toehold exchange displacement assembly of one intact DNAzyme initiated by telomerase are computed. The intact one obtains higher assembly yield and catalytic performance ascribed to proper conformation folding and active misplaced assembly. By employing MnO2 nanosheets as both DNA carriers and source of Mn2+ as DNAzyme cofactor, we find that this DzNano is well assembled via a series of conformational states in living cells and operates autonomously with sustained cleavage activity. Other enzymes can also induce corresponding DzNano assembly with defined programming modules. These DzNanos not only can monitor enzyme catalysis in situ but also will enable the implementation of cellular stages, behaviors, and pathways for basic science, diagnostic, and therapeutic applications as genetic circuits.
Collapse
|
|
8 |
82 |
23
|
Chen X, Cao K, Wei Y, Qian Y, Liang J, Dong D, Tang J, Zhu Z, Gu Q, Yu W. Metagenomic next-generation sequencing in the diagnosis of severe pneumonias caused by Chlamydia psittaci. Infection 2020; 48:535-542. [PMID: 32314307 PMCID: PMC7223968 DOI: 10.1007/s15010-020-01429-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Chlamydia psittaci infection in humans can lead to serious clinical manifestations, including severe pneumonia, adult respiratory distress syndrome, and, rarely, death. Implementation of metagenomic next-generation sequencing (mNGS) gives a promising new tool for diagnosis. The clinical spectrum of severe psittacosis pneumonia is described to provide physicians with a better understanding and to highlight the rarity and severity of severe psittacosis pneumonia. METHODS Nine cases of severe psittacosis pneumonia were diagnosed using mNGS. Retrospective analysis of the data on disease progression, new diagnosis tool, treatments, and outcomes, and the findings were summarised. RESULTS Frequent symptoms included chills and remittent fever (100%), cough and hypodynamia (100%), and headache and myalgia (77.8%). All patients were severe psittacosis pneumonia developed respiratory failure, accompanied by sepsis in 6/9 patients. mNGS takes 48-72 h to provide the results, and help to identify diagnosis of psittacosis. Laboratory data showed normal or slightly increased leucocytes, neutrophils, and procalcitonin but high C-reactive protein levels. Computed tomography revealed air-space consolidation and ground-glass opacity, which began in the upper lobe of one lung, and spread to both lungs, along with miliary, nodular, or consolidated shadows. One patient died because of secondary infection with Klebsiella pneumoniae, while the other eight patients experienced complete recoveries. CONCLUSIONS The use of mNGS can improve accuracy and reduce the delay in diagnosis of psittacosis. Severe psittacosis pneumonia responds well to the timely use of appropriate antibiotics.
Collapse
|
Journal Article |
5 |
82 |
24
|
Li Y, Cao K, Zhu G, Fang W, Chen C, Wang X, Zhao P, Guo J, Ding T, Guan L, Zhang Q, Guo W, Fei Z, Wang L. Genomic analyses of an extensive collection of wild and cultivated accessions provide new insights into peach breeding history. Genome Biol 2019; 20:36. [PMID: 30791928 PMCID: PMC6383288 DOI: 10.1186/s13059-019-1648-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 02/05/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Human selection has a long history of transforming crop genomes. Peach (Prunus persica) has undergone more than 5000 years of domestication that led to remarkable changes in a series of agronomically important traits, but genetic bases underlying these changes and the effects of artificial selection on genomic diversity are not well understood. RESULTS Here, we report a comprehensive analysis of peach evolution based on genome sequences of 480 wild and cultivated accessions. By focusing on a set of quantitative trait loci (QTLs), we provide evidence supporting that distinct phases of domestication and improvement have led to an increase in fruit size and taste and extended its geographic distribution. Fruit size was predominantly selected during domestication, and selection for large fruits has led to the loss of genetic diversity in several fruit weight QTLs. In contrast, fruit taste-related QTLs were successively selected for by domestication and improvement, with more QTLs selected for during improvement. Genome-wide association studies of 11 agronomic traits suggest a set of candidate genes controlling these traits and potential markers for molecular breeding. Candidate loci for genes that contributed to the adaption to low-chill regions were identified. Furthermore, the genomic bases of divergent selection for fruit texture and local breeding for different flavors between Asian and European/North American cultivars were also determined. CONCLUSIONS Our results elucidate the genetic basis of peach evolution and provide new resources for future genomics-guided peach breeding.
Collapse
|
Comparative Study |
6 |
82 |
25
|
Liu J, Peng Y, Wang X, Fan Y, Qin C, Shi L, Tang Y, Cao K, Li H, Long J, Liu J. Mitochondrial Dysfunction Launches Dexamethasone-Induced Skeletal Muscle Atrophy via AMPK/FOXO3 Signaling. Mol Pharm 2015; 13:73-84. [DOI: 10.1021/acs.molpharmaceut.5b00516] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
10 |
80 |