1
|
Marzilli LG, Saad JS, Kuklenyik Z, Keating KA, Xu Y. Relationship of solution and protein-bound structures of DNA duplexes with the major intrastrand cross-link lesions formed on cisplatin binding to DNA. J Am Chem Soc 2001; 123:2764-70. [PMID: 11456962 DOI: 10.1021/ja0007915] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA bases in the three-base-pair (3bp) region of duplexes with the two major lesions of cisplatin (cis-PtCl(2)(NH(3))(2)) with DNA, namely d(XGG) and d(XAG) ( = N7-platinated base), differ in their relative positions by as much as approximately 3.5 A in structures in the literature. Such large differences impede drug design and assessments of the effects of protein binding on DNA structure. One recent and several past structures based on NMR-restrained molecular dynamics (RMD) differ significantly from the reported X-ray structure of an HMG-bound XGG 16-mer DNA duplex (Ohndorf, U.-M.; Rould, M. A.; He, Q.; Pabo, C. O.; Lippard, S. J. Nature 1999, 399, 708). This 16-mer structure has several significant novel and unique features (e.g., a bp step with large positive shift and slide). Hypothesizing that novel structural features in the XGG or XAG region of duplexes elude discovery by NMR methods (especially because of the flexible nature of the 3bp region), we studied an oligomer with only G.C bp's in the XGGY site by NMR methods for the first time. This 9-mer gave a 5'-G N1H signal with a normal shift and intensity and showed clear NOE cross-peaks to C NHb and NHe. We assigned for the first time (13)C NMR signals of a duplex with a GG lesion. These data, by adding NMR-based criteria to those inherent in NOESY and COSY data, have more specifically defined the structural features that should be present in an acceptable model. In particular, our data indicated that the sugar of the X residue has an N pucker and that the GG cross-link should have a structure similar to the original X-ray structure of cis-Pt(NH(3))(2)(d(pGpG)) (Sherman S. E.; Gibson, D.; Wang, A. H.-J.; Lippard, S. J. J. Am. Chem. Soc. 1988, 110, 7368). With these restrictions added to NOE restraints, an acceptable model was obtained only when we started our modeling with the 16-mer structural features. The new X-ray/NMR-based model accounted for the NOESY data better than NOE-based models, was very similar in structure to the 16-mer, and differed from solely NOE-based models. We conclude that all XGG and XAG (X = C or T) duplexes undoubtedly have structures similar to those of the 16-mer and our model. Thus, protein binding does not change greatly the structure of the 3bp region. The structure of this region can now be used in understanding structure-activity relationships needed in the design of new carrier ligands for improving Pt anticancer drug activity.
Collapse
|
|
24 |
102 |
2
|
Hu L, Martin HM, Arce-Bulted O, Sugihara MN, Keating KA, Strathmann TI. Oxidation of carbamazepine by Mn(VII) and Fe(VI): reaction kinetics and mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:509-15. [PMID: 19238987 DOI: 10.1021/es8023513] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Experimental studies were conducted to examine the oxidation of carbamazepine, an anticonvulsant drug widely detected in surface waters and sewage treatment effluent, by potassium salts of permanganate (Mn(VII); KMnO4) and ferrate (Fe(VI); K2FeO4). Results show that both Mn(VII) and Fe(VI) rapidly oxidize carbamazepine by electrophilic attack at an olefinic group in the central heterocyclic ring, leading to ring-opening and a series of organic oxidation products. Reaction kinetics follow a generalized second-order rate law, with apparent rate constants at pH 7.0 and 25 degrees C of 3.0 (+/-0.3) x 10(2) M(-1) s(-1) for Mn(VII) and 70(+/-3) M(-1) s(-1) for Fe(VI). Mn(VII) reaction rates exhibit no pH dependence, whereas Fe(VI) reaction rates increase dramatically with decreasing pH, due to changing acid-base speciation of Fe(VI). Further studies with Mn(VII) show that most common nontarget water constituents, including natural organic matter, have no significant effect on rates of carbamazepine oxidation; reduced metals and (bi)sulfide exert a stoichiometric Mn(VII) demand that can be incorporated into the kinetic model. The removal of carbamazepine in two utility source waters treated with KMnO4 agrees closely with predictions from the kinetic model that was parametrized using experiments conducted in deionized water at much higher reagent concentrations.
Collapse
|
|
16 |
52 |
3
|
Sudha T, Bharali DJ, Yalcin M, Darwish NH, Debreli Coskun M, Keating KA, Lin HY, Davis PJ, Mousa SA. Targeted delivery of paclitaxel and doxorubicin to cancer xenografts via the nanoparticle of nano-diamino-tetrac. Int J Nanomedicine 2017; 12:1305-1315. [PMID: 28243091 PMCID: PMC5317264 DOI: 10.2147/ijn.s123742] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The tetraiodothyroacetic acid (tetrac) component of nano-diamino-tetrac (NDAT) is chemically bonded via a linker to a poly(lactic-co-glycolic acid) nanoparticle that can encapsulate anticancer drugs. Tetrac targets the plasma membrane of cancer cells at a receptor on the extracellular domain of integrin αvβ3. In this study, we evaluate the efficiency of NDAT delivery of paclitaxel and doxorubicin to, respectively, pancreatic and breast cancer orthotopic nude mouse xenografts. Intra-tumoral drug concentrations were 5-fold (paclitaxel; P<0.001) and 2.3-fold (doxorubicin; P<0.01) higher than with conventional systemic drug administration. Tumor volume reductions reflected enhanced xenograft drug uptake. Cell viability was estimated by bioluminescent signaling in pancreatic tumors and confirmed an increased paclitaxel effect with drug delivery by NDAT. NDAT delivery of chemotherapy increases drug delivery to cancers and increases drug efficacy.
Collapse
|
Journal Article |
8 |
39 |
4
|
Sudha T, Bharali DJ, Yalcin M, Darwish NHE, Coskun MD, Keating KA, Lin HY, Davis PJ, Mousa SA. Targeted delivery of cisplatin to tumor xenografts via the nanoparticle component of nano-diamino-tetrac. Nanomedicine (Lond) 2017; 12:195-205. [DOI: 10.2217/nnm-2016-0315] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Nano-diamino-tetrac (NDAT) targets a receptor on integrin αvβ3; αvβ3 is generously expressed by cancer cells and dividing endothelial cells and to a small extent by nonmalignant cells. The tetrac (tetraiodothyroacetic acid) of NDAT is covalently bound to a poly(lactic-co-glycolic acid) nanoparticle that encapsulates anticancer drugs. We report NDAT delivery efficiency of cisplatin to agent-susceptible urinary bladder cancer xenografts. Materials & methods: Cisplatin-loaded NDAT (NDAT-cisplatin) was administered to xenograft-bearing nude mice. Tumor size response and drug content were measured. Results: Intratumoral drug concentration was up to fivefold higher (p < 0.001) in NDAT-cisplatin-exposed lesions than with conventional systemic administration. Tumor volume reduction achieved was NDAT-cisplatin > NDAT without cisplatin > cisplatin alone. Conclusion: NDAT markedly enhances cisplatin delivery to urinary bladder cancer xenografts and increases drug efficacy.
Collapse
|
|
8 |
36 |
5
|
Mousa SA, Glinsky GV, Lin HY, Ashur-Fabian O, Hercbergs A, Keating KA, Davis PJ. Contributions of Thyroid Hormone to Cancer Metastasis. Biomedicines 2018; 6:biomedicines6030089. [PMID: 30135398 PMCID: PMC6165185 DOI: 10.3390/biomedicines6030089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 12/17/2022] Open
Abstract
Acting at a cell surface receptor on the extracellular domain of integrin αvβ3, thyroid hormone analogues regulate downstream the expression of a large panel of genes relevant to cancer cell proliferation, to cancer cell survival pathways, and to tumor-linked angiogenesis. Because αvβ3 is involved in the cancer cell metastatic process, we examine here the possibility that thyroid hormone as l-thyroxine (T4) and the thyroid hormone antagonist, tetraiodothyroacetic acid (tetrac), may respectively promote and inhibit metastasis. Actions of T4 and tetrac that are relevant to cancer metastasis include the multitude of synergistic effects on molecular levels such as expression of matrix metalloproteinase genes, angiogenesis support genes, receptor tyrosine kinase (EGFR/ERBB2) genes, specific microRNAs, the epithelial–mesenchymal transition (EMT) process; and on the cellular level are exemplified by effects on macrophages. We conclude that the thyroid hormone-αvβ3 interaction is mechanistically linked to cancer metastasis and that modified tetrac molecules have antimetastatic activity with feasible therapeutic potential.
Collapse
|
Review |
7 |
35 |
6
|
Banci L, Dugad LB, La Mar GN, Keating KA, Luchinat C, Pierattelli R. 1H nuclear magnetic resonance investigation of cobalt(II) substituted carbonic anhydrase. Biophys J 1992; 63:530-43. [PMID: 1420895 PMCID: PMC1262175 DOI: 10.1016/s0006-3495(92)81607-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The structure of ClO4 and NO3 adducts of cobalt(II) substituted bovine carbonic anhydrase have been investigated through 1D NOE and 2D 1H nuclear magnetic resonance (NMR) spectroscopy. For the first time two-dimensional NMR techniques are applied to paramagnetic metalloproteins other than iron-containing proteins. Several active site signals have been assigned to specific protons on the grounds of their scalar and dipolar connectivities and T1 values. The experimental dipolar shifts for the protons belonging to noncoordinated residues have allowed the identification of a plausible orientation of the magnetic susceptibility tensor around the cobalt ion as well as of the magnitude and the anisotropy of the principal susceptibility values. In turn, a few more signals have been tentatively assigned on the grounds of their predicted dipolar shifts. The two inhibitor derivatives have a very similar orientation but a different magnitude of the chi tensor, and the protein structure around the active site is highly maintained. The results encourage a more extensive use of the two-dimensional techniques for obtaining selective structural information on the active site of metalloenzymes. With this information at hand, comparisons within homologous series of adducts with various inhibitors and/or mutants of the same enzyme of known structure should be possible using limited sets of NMR data.
Collapse
|
research-article |
33 |
31 |
7
|
Keating KA, De Ropp JS, La Mar GN, Balch AL, Shiau FY, Smith KM. Assignment by 2D NMR bond correlation spectroscopy of hyperfine-shifted and strongly relaxed protons in iron porphyrin and chlorin complexes. Inorg Chem 2002. [DOI: 10.1021/ic00017a008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
23 |
29 |
8
|
Davis PJ, Lin HY, Hercbergs A, Keating KA, Mousa SA. Coronaviruses and Integrin αvβ3: Does Thyroid Hormone Modify the Relationship? Endocr Res 2020; 45:210-215. [PMID: 32628899 DOI: 10.1080/07435800.2020.1767127] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Uptake of coronaviruses by target cells involves binding of the virus by cell ectoenzymes. For the etiologic agent of COVID-19 (SARS-CoV-2), a receptor has been identified as angiotensin-converting enzyme-2 (ACE2). Recently it has been suggested that plasma membrane integrins may be involved in the internalization and replication of clinically important coronaviruses. For example, integrin αvβ3 is involved in the cell uptake of a model porcine enteric α-coronavirus that causes human epidemics. ACE2 modulates the intracellular signaling generated by integrins. OBJECTIVE We propose that the cellular internalization of αvβ3 applies to uptake of coronaviruses bound to the integrin, and we evaluate the possibility that clinical host T4 may contribute to target cell uptake of coronavirus and to the consequence of cell uptake of the virus. DISCUSSION AND CONCLUSIONS The viral binding domain of the integrin is near the Arg-Gly-Asp (RGD) peptide-binding site and RGD molecules can affect virus binding. In this same locale on integrin αvβ3 is the receptor for thyroid hormone analogues, particularly, L-thyroxine (T4). By binding to the integrin, T4 has been shown to modulate the affinity of the integrin for other proteins, to control internalization of αvβ3 and to regulate the expression of a panel of cytokine genes, some of which are components of the 'cytokine storm' of viral infections. If T4 does influence coronavirus uptake by target cells, other thyroid hormone analogues, such as deaminated T4 and deaminated 3,5,3'-triiodo-L-thyronine (T3), are candidate agents to block the virus-relevant actions of T4 at integrin αvβ3 and possibly restrict virus uptake.
Collapse
|
Review |
5 |
28 |
9
|
Davis PJ, Tang HY, Hercbergs A, Lin HY, Keating KA, Mousa SA. Bioactivity of Thyroid Hormone Analogs at Cancer Cells. Front Endocrinol (Lausanne) 2018; 9:739. [PMID: 30564196 PMCID: PMC6288194 DOI: 10.3389/fendo.2018.00739] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022] Open
Abstract
In the context of genomic thyroid hormone actions in normal (noncancer) cells that involve primary interactions with nuclear thyroid hormone receptors (TRs), L-thyroxine (T4), and 3,3',5'-triiodo-L-thyronine (reverse T3, rT3) have little bioactivity. In terms of TRs, T4 is a prohormone from which the active nuclear ligand, 3,5,3'-triido-L-thyronine (T3), is generated by deiodination. Deaminated T4 and T3 metabolites have different genomic effects: tetraiodothyroacetic acid (tetrac) is a low grade thyromimetic derivative of T4, whereas triiodothyroacetic acid (triac), the acetic acid metabolite of T3, has substantial thyromimetic activity. In cancer cells, the cell surface receptor for thyroid hormone on integrin αvβ3 mediates non-genomic actions of thyroid hormone analogs. The integrin is expressed in large measure by cancer cells and dividing endothelial cells and has a substantially different panel of responses to thyroid hormone analogs. At αvβ3, T4 is a potent proliferative, anti-apoptotic and pro-angiogenic hormone and is the primary ligand. rT3 may also be proliferative at this site. In contrast, tetrac and triac are antagonists of T4 at αvβ3, but also have anticancer properties at this site that are independent of their effects on the binding of T4.
Collapse
|
Review |
7 |
25 |
10
|
Li W, Yalcin M, Bharali DJ, Lin Q, Godugu K, Fujioka K, Keating KA, Mousa SA. Pharmacokinetics, Biodistribution, and Anti-Angiogenesis Efficacy of Diamino Propane Tetraiodothyroacetic Acid-conjugated Biodegradable Polymeric Nanoparticle. Sci Rep 2019; 9:9006. [PMID: 31227723 PMCID: PMC6588584 DOI: 10.1038/s41598-019-44979-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
The anti-angiogenic agent, diamino propane tetraiodothyroacetic acid (DAT), is a thyro-integrin (integrin αvβ3) antagonist anticancer agent that works via genetic and nongenetic actions. Tetraiodothyroacetic acid (tetrac) and DAT as thyroid hormone derivatives influence gene expression after they transport across cellular membranes. To restrict the action of DAT to the integrin αvβ3 receptors on the cell surface, we used DAT-conjugated PLGA nanoparticles (NDAT) in an active targeting mode to bind to these receptors. Preparation and characterization of NDAT is described, and both in vitro and in vivo experiments were done to compare DAT to NDAT. Intracellular uptake and distribution of DAT and NDAT in U87 glioblastoma cells were evaluated using confocal microscopy and showed that DAT reached the nucleus, but NDAT was restricted from the nucleus. Pharmacokinetic studies using LC-MS/MS analysis in male C57BL/6 mice showed that administration of NDAT improved the area under the drug concentration curve AUC(0-48 h) by 4-fold at a dose of 3 mg/kg when compared with DAT, and Cmax of NDAT (4363 ng/mL) was 8-fold greater than that of DAT (548 ng/mL). Biodistribution studies in the mice showed that the concentrations of NDAT were higher than DAT/Cremophor EL micelles in heart, lung, liver, spleen, and kidney. In another mouse model using female NCr nude homozygous mice with U87 xenografts, tumor growth was significantly decreased at doses of 1 and 3 mg/kg of NDAT. In the chick chorioallantoic membrane (CAM) assay used to measure angiogenesis, DAT (500 ng/CAM) resulted in 48% inhibition of angiogenesis levels. In comparison, NDAT at low dose (50 ng/CAM) showed 45% inhibition of angiogenesis levels. Our investigation of NDAT bridges the study of polymeric nanoparticles and anti-angiogenic agents and offers new insight for the rational design of anti-angiogenic agents.
Collapse
|
Retracted Publication |
6 |
18 |
11
|
Keating KA, La Mar GN, Shiau FY, Smith KM. Proton NMR study of the molecular and electronic structure of paramagnetic iron chlorin complexes of myoglobin: dynamic heterogeneity of the heme pocket. J Am Chem Soc 2002. [DOI: 10.1021/ja00042a035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
23 |
14 |
12
|
Lin HY, Chin YT, Shih YJ, Chen YR, Leinung M, Keating KA, Mousa SA, Davis PJ. In tumor cells, thyroid hormone analogues non-immunologically regulate PD-L1 and PD-1 accumulation that is anti-apoptotic. Oncotarget 2018; 9:34033-34037. [PMID: 30344919 PMCID: PMC6183344 DOI: 10.18632/oncotarget.26143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 09/08/2018] [Indexed: 12/12/2022] Open
Abstract
The PD-1/PD-L1 immune checkpoint involving tumor cells and host immune defense lymphocytes is a well-studied therapeutic target in oncology. That PD-1 and PD-L1 may have additional functions within tumor cells that are independent of the checkpoint is indicated by actions of a thyroid hormone analogue, L-thyroxine (T4), on these checkpoint components. Acting at a cell surface receptor on plasma membrane integrin αvβ3, T4 stimulates intracellular accumulation of PD-L1 in cancer cells. In these thyroid hormone-treated cells, T4-induced PD-L1 is non-immunologically anti-apoptotic, blocking activation of p53. Several laboratories have also described accumulation of PD-1 in a variety of cancer cells, not just immune defense lymphocytes and macrophages. Preliminary observations indicate that T4 stimulates intracellular accumulation of PD-1 in tumor cells, suggesting that, like PD-L1, PD-1 has non-immunologic roles in the setting of cancer. Where such roles are anti-apoptotic, thyroid hormone-directed cancer cell accumulation of PD-1 and PD-L1 may limit effectiveness of immunologic therapy directed at the immune checkpoint.
Collapse
|
Journal Article |
7 |
11 |
13
|
Keating KA, McConnell O, Zhang Y, Shen L, Demaio W, Mallis L, Elmarakby S, Chandrasekaran A. NMR characterization of an S-linked glucuronide metabolite of the potent, novel, nonsteroidal progesterone agonist tanaproget. Drug Metab Dispos 2006; 34:1283-7. [PMID: 16698893 DOI: 10.1124/dmd.105.008763] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tanaproget is a first-in-class nonsteroidal progesterone receptor agonist that is being investigated for use in contraception. A major in vitro and in vivo metabolite of tanaproget formed in humans was initially characterized as a glucuronide of tanaproget. However, whether the glucuronide was linked to the nitrogen or sulfur of the benzoxazine-2-thione group in tanaproget could not be determined by liquid chromatography/mass spectrometry (LC/MS) and LC-tandem mass spectrometry analysis. To obtain additional structural details for this metabolite, additional quantities were generated from rat liver microsomal incubations and purified by high-performance liquid chromatography (HPLC) for NMR analysis. The NMR data for the metabolite confirmed that the glucuronide was covalently bound to either the sulfur or the nitrogen of the benzoxazine-2-thione moiety. The lack of key through-bond (scalar) and through-space (dipolar) one-dimensional (1D) and two-dimensional (2D) NMR couplings and correlations in the metabolite spectra (due primarily to low sample concentration) precluded an unambiguous structure elucidation. Subsequent synthesis of the S- and N-glucuronides of tanaproget from tanaproget facilitated the unambiguous regio- and stereochemical assignment of the metabolite by comparison of 1D NMR chemical shifts and scalar coupling constants, 2D NMR correlations, and HPLC and LC/MS characteristics between the synthetic compounds and the metabolite. From extensive comparison of the spectral and chromatographic data of the microsomally derived metabolite and the synthetic compounds, the metabolite has been determined to be the S-(beta)-D-glucuronide of tanaproget.
Collapse
|
|
19 |
10 |
14
|
Schur A, Keating KA, Payne DA, Valdez T, Yates KR, Myers JD. Collaborative suites for experiment-oriented scientific research. ACTA ACUST UNITED AC 1998. [DOI: 10.1145/275269.275275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
|
27 |
7 |
15
|
Mousa SA, Hercbergs A, Lin HY, Keating KA, Davis PJ. Actions of Thyroid Hormones on Thyroid Cancers. Front Endocrinol (Lausanne) 2021; 12:691736. [PMID: 34234745 PMCID: PMC8255668 DOI: 10.3389/fendo.2021.691736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/31/2021] [Indexed: 12/04/2022] Open
Abstract
L-Thyroxine (T4) is the principal ligand of the thyroid hormone analogue receptor on the extracellular domain of integrin αvβ3. The integrin is overexpressed and activated in cancer cells, rapidly dividing endothelial cells, and platelets. The biologic result is that T4 at physiological concentration and without conversion to 3,3',5-triiodo-L-thyronine (T3) may stimulate cancer cell proliferation and cancer-relevant angiogenesis and platelet coagulation. Pro-thrombotic activity of T4 on platelets is postulated to support cancer-linked blood clotting and to contribute to tumor cell metastasis. We examine some of these findings as they may relate to cancers of the thyroid. Differentiated thyroid cancer cells respond to physiological levels of T4 with increased proliferation. Thus, the possibility exists that in patients with differentiated thyroid carcinomas in whom T4 administration and consequent endogenous thyrotropin suppression have failed to arrest the disease, T4 treatment may be stimulating tumor cell proliferation. In vitro studies have shown that tetraiodothyroacetic acid (tetrac), a derivative of T4, acts via the integrin to block T4 support of thyroid cancer and other solid tumor cells. Actions of T4 and tetrac or chemically modified tetrac modulate gene expression in thyroid cancer cells. T4 induces radioresistance via induction of a conformational change in the integrin in various cancer cells, although not yet established in thyroid cancer cells. The thyroid hormone receptor on integrin αvβ3 mediates a number of actions of T4 on differentiated thyroid cancer cells that support the biology of the cancer. Additional studies are required to determine whether T4 acts on thyroid cancer cells.
Collapse
|
Review |
4 |
4 |
16
|
Keating KA, Myers JD, Pelton JG, Bair RA, Wemmer DE, Ellis PD. Development and use of a virtual NMR facility. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2000; 143:172-183. [PMID: 10698658 DOI: 10.1006/jmre.1999.1974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have developed a "virtual NMR facility" (VNMRF) to enhance access to the NMR spectrometers in Pacific Northwest National Laboratory's Environmental Molecular Sciences Laboratory (EMSL). We use the term virtual facility to describe a real NMR facility made accessible via the Internet. The VNMRF combines secure remote operation of the EMSL's NMR spectrometers over the Internet with real-time videoconferencing, remotely controlled laboratory cameras, real-time computer display sharing, a Web-based electronic laboratory notebook, and other capabilities. Remote VNMRF users can see and converse with EMSL researchers, directly and securely control the EMSL spectrometers, and collaboratively analyze results. A customized Electronic Laboratory Notebook allows interactive Web-based access to group notes, experimental parameters, proposed molecular structures, and other aspects of a research project. This paper describes our experience developing a VNMRF and details the specific capabilities available through the EMSL VNMRF. We show how the VNMRF has evolved during a test project and present an evaluation of its impact in the EMSL and its potential as a model for other scientific facilities. All Collaboratory software used in the VNMRF is freely available from www.emsl.pnl.gov:2080/docs/collab.
Collapse
|
|
25 |
4 |
17
|
Davis PJ, Lin HY, Hercbergs AA, Keating KA, Mousa SA. How thyroid hormone works depends upon cell type, receptor type, and hormone analogue: implications in cancer growth. DISCOVERY MEDICINE 2019; 27:111-117. [PMID: 30939295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The classical molecular mechanism of thyroid hormone involves the intranuclear interaction of 3,5,3'-triiodo-L-thyronine (T3) with thyroid hormone-specific nuclear proteins and consequent specific gene expression. This mechanism prevails in normal cells. What we emphasize here is that how thyroid hormone acts depends upon the types of cell or cell-like structure, e.g., platelet, under consideration, and that cancer cells, dividing endothelial cells, phagocytes, and platelets respond to the liganding of L-thyroxine (T4) by plasma membrane integrin αvβ3. In intact tumor cells, T4 at the integrin can modulate the transcription of a substantial number of specific genes relevant to cancer cell proliferation, cell metabolism, and cancer cell anti-apoptosis defense. T4 may also regulate the interactions of the integrin in the endothelial cell plasma membrane with adjacent vascular growth factor receptors, modulating angiogenesis. T4 activates platelets via αvβ3 transferred from the megakaryocyte. It is also possible that, in addition to T4, reverse T3 (rT3) may have actions in cancer cells at the thyroid hormone receptor on αvβ3.
Collapse
|
Review |
6 |
|
18
|
Finco DR, Duncan JR, Schall WD, Hooper BE, Chandler FW, Keating KA. Chronic enteric disease and hypoproteinemia in 9 dogs. J Am Vet Med Assoc 1973; 163:262-71. [PMID: 4721763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
|
52 |
|
19
|
Davis PJ, Lin HY, Hercbergs A, Keating KA, Mousa SA. Possible Contributions of Nongenomic Actions of Thyroid Hormones to the Vasculopathic Complex of COVID-19 Infection. Endocr Res 2022; 47:39-44. [PMID: 34775877 DOI: 10.1080/07435800.2021.1972307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Integrin αvβ3 is a cell membrane structural protein whose extracellular domain contains a receptor for L-thyroxine (T4). The integrin is expressed in rapidly dividing cells and its internalization is prompted by T4. The protein binds viruses and we have raised the possibility elsewhere that action of free T4 (FT4)-when he latter is increased in the nonthyroidal illness syndrome (NTIS) known to complicate COVID-19 infecction-may enhance cellular uptke of SARS-CoV-2 and its receptor. OBJECTIVE Because T4 also acts nongenomically via the integrin to promote platelet aggregation and angiogenesis, we suggest here that T4 may contribute to the coagulopathy and endothelial abnormalities that can develop in COVID-19 infections, particularly when the lung is primary affected. DISCUSSION AND CONCLUSIONS Elevated FT4 has been described in the NTIS of COVID-19 patients and may be associated with increased illness severity, but the finding of FT4 elevation is inconsistent in the NTIS literature. Circulating 3,5',3'-triiodo-L-thyronine (reverse T3, rT3) are frequently elevated in NTIS. Thought to be biologically inactive, rT3in fact stimulates cancer cell proliferation via avb3 and also may increase actin polymerization. We propose here that rT3 in the NTIS complicating systemic COVIF-19 infection may support coagulation and disordered blood vessel formation via actin polymerization.
Collapse
|
|
3 |
|
20
|
Li W, Yalcin M, Bharali DJ, Lin Q, Godugu K, Fujioka K, Keating KA, Mousa SA. Retraction Note: Pharmacokinetics, Biodistribution, and Anti-Angiogenesis Efficacy of Diamino Propane Tetraiodothyroacetic Acid-conjugated Biodegradable Polymeric Nanoparticle. Sci Rep 2023; 13:16594. [PMID: 37789122 PMCID: PMC10547813 DOI: 10.1038/s41598-023-43642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
|
Retraction of Publication |
2 |
|