1
|
Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y, Al-Gazali L, Hamamy H, Valente EM, Gorman S, Williams R, McHale DP, Wood JN, Gribble FM, Woods CG. An SCN9A channelopathy causes congenital inability to experience pain. Nature 2007; 444:894-8. [PMID: 17167479 PMCID: PMC7212082 DOI: 10.1038/nature05413] [Citation(s) in RCA: 1109] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 11/03/2006] [Indexed: 12/13/2022]
Abstract
The complete inability to sense pain in an otherwise healthy individual is a very rare phenotype. In three consanguineous families from northern Pakistan, we mapped the condition as an autosomal-recessive trait to chromosome 2q24.3. This region contains the gene SCN9A, encoding the alpha-subunit of the voltage-gated sodium channel, Na(v)1.7, which is strongly expressed in nociceptive neurons. Sequence analysis of SCN9A in affected individuals revealed three distinct homozygous nonsense mutations (S459X, I767X and W897X). We show that these mutations cause loss of function of Na(v)1.7 by co-expression of wild-type or mutant human Na(v)1.7 with sodium channel beta(1) and beta(2) subunits in HEK293 cells. In cells expressing mutant Na(v)1.7, the currents were no greater than background. Our data suggest that SCN9A is an essential and non-redundant requirement for nociception in humans. These findings should stimulate the search for novel analgesics that selectively target this sodium channel subunit.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
1109 |
2
|
Bond J, Roberts E, Springell K, Lizarraga SB, Lizarraga S, Scott S, Higgins J, Hampshire DJ, Morrison EE, Leal GF, Silva EO, Costa SMR, Baralle D, Raponi M, Karbani G, Rashid Y, Jafri H, Bennett C, Corry P, Walsh CA, Woods CG. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet 2005; 37:353-5. [PMID: 15793586 DOI: 10.1038/ng1539] [Citation(s) in RCA: 421] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 02/23/2005] [Indexed: 11/09/2022]
Abstract
Autosomal recessive primary microcephaly is a potential model in which to research genes involved in human brain growth. We show that two forms of the disorder result from homozygous mutations in the genes CDK5RAP2 and CENPJ. We found neuroepithelial expression of the genes during prenatal neurogenesis and protein localization to the spindle poles of mitotic cells, suggesting that a centrosomal mechanism controls neuron number in the developing mammalian brain.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
421 |
3
|
Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, Springell K, Mahadevan M, Crow YJ, Markham AF, Walsh CA, Woods CG. ASPM is a major determinant of cerebral cortical size. Nat Genet 2002; 32:316-20. [PMID: 12355089 DOI: 10.1038/ng995] [Citation(s) in RCA: 412] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Accepted: 08/19/2002] [Indexed: 11/09/2022]
Abstract
One of the most notable trends in mammalian evolution is the massive increase in size of the cerebral cortex, especially in primates. Humans with autosomal recessive primary microcephaly (MCPH) show a small but otherwise grossly normal cerebral cortex associated with mild to moderate mental retardation. Genes linked to this condition offer potential insights into the development and evolution of the cerebral cortex. Here we show that the most common cause of MCPH is homozygous mutation of ASPM, the human ortholog of the Drosophila melanogaster abnormal spindle gene (asp), which is essential for normal mitotic spindle function in embryonic neuroblasts. The mouse gene Aspm is expressed specifically in the primary sites of prenatal cerebral cortical neurogenesis. Notably, the predicted ASPM proteins encode systematically larger numbers of repeated 'IQ' domains between flies, mice and humans, with the predominant difference between Aspm and ASPM being a single large insertion coding for IQ domains. Our results and evolutionary considerations suggest that brain size is controlled in part through modulation of mitotic spindle activity in neuronal progenitor cells.
Collapse
|
|
23 |
412 |
4
|
Woods CG, Cox J, Springell K, Hampshire DJ, Mohamed MD, McKibbin M, Stern R, Raymond FL, Sandford R, Malik Sharif S, Karbani G, Ahmed M, Bond J, Clayton D, Inglehearn CF. Quantification of homozygosity in consanguineous individuals with autosomal recessive disease. Am J Hum Genet 2006; 78:889-896. [PMID: 16642444 PMCID: PMC1474039 DOI: 10.1086/503875] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 03/01/2006] [Indexed: 11/03/2022] Open
Abstract
Individuals born of consanguineous union have segments of their genomes that are homozygous as a result of inheriting identical ancestral genomic segments through both parents. One consequence of this is an increased incidence of recessive disease within these sibships. Theoretical calculations predict that 6% (1/16) of the genome of a child of first cousins will be homozygous and that the average homozygous segment will be 20 cM in size. We assessed whether these predictions held true in populations that have preferred consanguineous marriage for many generations. We found that in individuals with a recessive disease whose parents were first cousins, on average, 11% of their genomes were homozygous (n = 38; range 5%-20%), with each individual bearing 20 homozygous segments exceeding 3 cM (n = 38; range of number of homozygous segments 7-32), and that the size of the homozygous segment associated with recessive disease was 26 cM (n = 100; range 5-70 cM). These data imply that prolonged parental inbreeding has led to a background level of homozygosity increased approximately 5% over and above that predicted by simple models of consanguinity. This has important clinical and research implications.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
195 |
5
|
Bond J, Scott S, Hampshire DJ, Springell K, Corry P, Abramowicz MJ, Mochida GH, Hennekam RCM, Maher ER, Fryns JP, Alswaid A, Jafri H, Rashid Y, Mubaidin A, Walsh CA, Roberts E, Woods CG. Protein-truncating mutations in ASPM cause variable reduction in brain size. Am J Hum Genet 2003; 73:1170-7. [PMID: 14574646 PMCID: PMC1180496 DOI: 10.1086/379085] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 08/06/2003] [Indexed: 11/04/2022] Open
Abstract
Mutations in the ASPM gene at the MCPH5 locus are expected to be the most common cause of human autosomal recessive primary microcephaly (MCPH), a condition in which there is a failure of normal fetal brain development, resulting in congenital microcephaly and mental retardation. We have performed the first comprehensive mutation screen of the 10.4-kb ASPM gene, identifying all 19 mutations in a cohort of 23 consanguineous families. Mutations occurred throughout the ASPM gene and were all predicted to be protein truncating. Phenotypic variation in the 51 affected individuals occurred in the degree of microcephaly (5-11 SDs below normal) and of mental retardation (mild to severe) but appeared independent of mutation position.
Collapse
|
case-report |
22 |
130 |
6
|
Bakircioglu M, Carvalho OP, Khurshid M, Cox JJ, Tuysuz B, Barak T, Yilmaz S, Caglayan O, Dincer A, Nicholas AK, Quarrell O, Springell K, Karbani G, Malik S, Gannon C, Sheridan E, Crosier M, Lisgo SN, Lindsay S, Bilguvar K, Gergely F, Gunel M, Woods CG. The essential role of centrosomal NDE1 in human cerebral cortex neurogenesis. Am J Hum Genet 2011; 88:523-35. [PMID: 21529752 DOI: 10.1016/j.ajhg.2011.03.019] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/17/2011] [Accepted: 03/30/2011] [Indexed: 11/18/2022] Open
Abstract
We investigated three families whose offspring had extreme microcephaly at birth and profound mental retardation. Brain scans and postmortem data showed that affected individuals had brains less than 10% of expected size (≤10 standard deviation) and that in addition to a massive reduction in neuron production they displayed partially deficient cortical lamination (microlissencephaly). Other body systems were apparently unaffected and overall growth was normal. We found two distinct homozygous mutations of NDE1, c.83+1G>T (p.Ala29GlnfsX114) in a Turkish family and c.684_685del (p.Pro229TrpfsX85) in two families of Pakistani origin. Using patient cells, we found that c.83+1G>T led to the use of a novel splice site and to a frameshift after NDE1 exon 2. Transfection of tagged NDE1 constructs showed that the c.684_685del mutation resulted in a NDE1 that was unable to localize to the centrosome. By staining a patient-derived cell line that carried the c.83+1G>T mutation, we found that this endogeneously expressed mutated protein equally failed to localize to the centrosome. By examining human and mouse embryonic brains, we determined that NDE1 is highly expressed in neuroepithelial cells of the developing cerebral cortex, particularly at the centrosome. We show that NDE1 accumulates on the mitotic spindle of apical neural precursors in early neurogenesis. Thus, NDE1 deficiency causes both a severe failure of neurogenesis and a deficiency in cortical lamination. Our data further highlight the importance of the centrosome in multiple aspects of neurodevelopment.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
126 |
7
|
den Hollander AI, Koenekoop RK, Mohamed MD, Arts HH, Boldt K, Towns KV, Sedmak T, Beer M, Nagel-Wolfrum K, McKibbin M, Dharmaraj S, Lopez I, Ivings L, Williams GA, Springell K, Woods CG, Jafri H, Rashid Y, Strom TM, van der Zwaag B, Gosens I, Kersten FFJ, van Wijk E, Veltman JA, Zonneveld MN, van Beersum SEC, Maumenee IH, Wolfrum U, Cheetham ME, Ueffing M, Cremers FPM, Inglehearn CF, Roepman R. Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. Nat Genet 2007; 39:889-95. [PMID: 17546029 DOI: 10.1038/ng2066] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 05/10/2007] [Indexed: 01/24/2023]
Abstract
Leber congenital amaurosis (LCA) causes blindness or severe visual impairment at or within a few months of birth. Here we show, using homozygosity mapping, that the LCA5 gene on chromosome 6q14, which encodes the previously unknown ciliary protein lebercilin, is associated with this disease. We detected homozygous nonsense and frameshift mutations in LCA5 in five families affected with LCA. In a sixth family, the LCA5 transcript was completely absent. LCA5 is expressed widely throughout development, although the phenotype in affected individuals is limited to the eye. Lebercilin localizes to the connecting cilia of photoreceptors and to the microtubules, centrioles and primary cilia of cultured mammalian cells. Using tandem affinity purification, we identified 24 proteins that link lebercilin to centrosomal and ciliary functions. Members of this interactome represent candidate genes for LCA and other ciliopathies. Our findings emphasize the emerging role of disrupted ciliary processes in the molecular pathogenesis of LCA.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
126 |
8
|
Woods CG, Stricker S, Seemann P, Stern R, Cox J, Sherridan E, Roberts E, Springell K, Scott S, Karbani G, Sharif SM, Toomes C, Bond J, Kumar D, Al-Gazali L, Mundlos S. Mutations in WNT7A cause a range of limb malformations, including Fuhrmann syndrome and Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome. Am J Hum Genet 2006; 79:402-8. [PMID: 16826533 PMCID: PMC1559483 DOI: 10.1086/506332] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 05/30/2006] [Indexed: 11/03/2022] Open
Abstract
Fuhrmann syndrome and the Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome are considered to be distinct limb-malformation disorders characterized by various degrees of limb aplasia/hypoplasia and joint dysplasia in humans. In families with these syndromes, we found homozygous missense mutations in the dorsoventral-patterning gene WNT7A and confirmed their functional significance in retroviral-mediated transfection of chicken mesenchyme cell cultures and developing limbs. The results suggest that a partial loss of WNT7A function causes Fuhrmann syndrome (and a phenotype similar to mouse Wnt7a knockout), whereas the more-severe limb truncation phenotypes observed in Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome result from null mutations (and cause a phenotype similar to mouse Shh knockout). These findings illustrate the specific and conserved importance of WNT7A in multiple aspects of vertebrate limb development.
Collapse
|
Validation Study |
19 |
111 |
9
|
Roberts E, Hampshire DJ, Pattison L, Springell K, Jafri H, Corry P, Mannon J, Rashid Y, Crow Y, Bond J, Woods CG. Autosomal recessive primary microcephaly: an analysis of locus heterogeneity and phenotypic variation. J Med Genet 2002; 39:718-21. [PMID: 12362027 PMCID: PMC1734986 DOI: 10.1136/jmg.39.10.718] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND OBJECTIVES Locus heterogeneity is well established in autosomal recessive primary microcephaly (MCPH) and to date five loci have been mapped. However, the relative contributions of these loci have not been assessed and genotype-phenotype correlations have not been investigated. DESIGN A study population of 56 consanguineous families resident in or originating from northern Pakistan was ascertained and assessed by the authors. A panel of microsatellite markers spanning each of the MCPH loci was designed, against which the families were genotyped. RESULTS The head circumference of the 131 affected subjects ranged from 4 to 14 SD below the mean, but there was little intrafamilial variation among affecteds (+/- 1 SD). MCPH5 was the most prevalent, with 24/56 families consistent with linkage; 2/56 families were compatible with linkage to MCPH1, 10/56 to MCPH2, 2/56 to MCPH3, none to MCPH4, and 18/56 did not segregate with any of the loci. CONCLUSIONS MCPH5 is the most common locus in this population. On clinical grounds alone, the phenotype of families linked to each MCPH locus could not be distinguished. We have also shown that further MCPH loci await discovery with a number of families as yet unlinked.
Collapse
|
research-article |
23 |
94 |
10
|
Nicholas AK, Swanson EA, Cox JJ, Karbani G, Malik S, Springell K, Hampshire D, Ahmed M, Bond J, Di Benedetto D, Fichera M, Romano C, Dobyns WB, Woods CG. The molecular landscape of ASPM mutations in primary microcephaly. J Med Genet 2009; 46:249-53. [PMID: 19028728 PMCID: PMC2658750 DOI: 10.1136/jmg.2008.062380] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 10/08/2008] [Accepted: 10/16/2008] [Indexed: 11/06/2022]
Abstract
BACKGROUND Autosomal recessive primary microcephaly (MCPH) is a model disease to study human neurogenesis. In affected individuals the brain grows at a reduced rate during fetal life resulting in a small but structurally normal brain and mental retardation. The condition is genetically heterogeneous with mutations in ASPM being most commonly reported. METHODS AND RESULTS We have examined this further by studying three cohorts of microcephalic children to extend both the phenotype and the mutation spectrum. Firstly, in 99 consecutively ascertained consanguineous families with a strict diagnosis of MCPH, 41 (41%) were homozygous at the MCPH5 locus and all but two families had mutations. Thus, 39% of consanguineous MCPH families had homozygous ASPM mutations. Secondly, in 27 non-consanguineous, predominantly Caucasian families with a strict diagnosis of MCPH, 11 (40%) had ASPM mutations. Thirdly, in 45 families with a less restricted phenotype including microcephaly and mental retardation, but regardless of other neurological features, only 3 (7%) had an ASPM mutation. This report contains 27 novel mutations and almost doubles the number of MCPH associated ASPM mutations known to 57. All but one of the mutations lead to the use of a premature termination codon, 23 were nonsense mutations, 28 deletions or insertions, 5 splicing, and 1 was a translocation. Seventeen of the 57 mutations were recurrent. There were no definitive missense mutations found nor was there any mutation/phenotype correlation. ASPM mutations were found in all ethnic groups studied. CONCLUSION This study confirms that mutations in ASPM are the most common cause of MCPH, that ASPM mutations are restricted to individuals with an MCPH phenotype, and that ASPM testing in primary microcephaly is clinically useful.
Collapse
|
research-article |
16 |
78 |
11
|
Parry DA, Toomes C, Bida L, Danciger M, Towns KV, McKibbin M, Jacobson SG, Logan CV, Ali M, Bond J, Chance R, Swendeman S, Daniele LL, Springell K, Adams M, Johnson CA, Booth AP, Jafri H, Rashid Y, Banin E, Strom TM, Farber DB, Sharon D, Blobel CP, Pugh EN, Pierce EA, Inglehearn CF. Loss of the metalloprotease ADAM9 leads to cone-rod dystrophy in humans and retinal degeneration in mice. Am J Hum Genet 2009; 84:683-91. [PMID: 19409519 PMCID: PMC2681008 DOI: 10.1016/j.ajhg.2009.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/06/2009] [Accepted: 04/09/2009] [Indexed: 01/28/2023] Open
Abstract
Cone-rod dystrophy (CRD) is an inherited progressive retinal dystrophy affecting the function of cone and rod photoreceptors. By autozygosity mapping, we identified null mutations in the ADAM metallopeptidase domain 9 (ADAM9) gene in four consanguineous families with recessively inherited early-onset CRD. We also found reduced photoreceptor responses in Adam9 knockout mice, previously reported to be asymptomatic. In 12-month-old knockout mice, photoreceptors appear normal, but the apical processes of the retinal pigment epithelium (RPE) cells are disorganized and contact between photoreceptor outer segments (POSs) and the RPE apical surface is compromised. In 20-month-old mice, there is clear evidence of progressive retinal degeneration with disorganized POS and thinning of the outer nuclear layer (ONL) in addition to the anomaly at the POS-RPE junction. RPE basal deposits and macrophages were also apparent in older mice. These findings therefore not only identify ADAM9 as a CRD gene but also identify a form of pathology wherein retinal disease first manifests at the POS-RPE junction.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
49 |
12
|
McKibbin M, Ali M, Mohamed MD, Booth AP, Bishop F, Pal B, Springell K, Raashid Y, Jafri H, Inglehearn CF. Genotype-phenotype correlation for leber congenital amaurosis in Northern Pakistan. ACTA ACUST UNITED AC 2010; 128:107-13. [PMID: 20065226 DOI: 10.1001/archophthalmol.2010.309] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES To report the genetic basis of Leber congenital amaurosis (LCA) in northern Pakistan and to describe the phenotype. METHODS DNA from 14 families was analyzed using single-nucleotide polymorphism and microsatellite genotyping and direct sequencing to determine the genes and mutations involved. The history and examination findings from 64 affected individuals were analyzed to show genotype-phenotype correlation and phenotypic progression. RESULTS Homozygous mutations were found in RPGRIP1 (4 families), AIPL1 and LCA5 (3 families each), and RPE65, CRB1, and TULP1 (1 family each). Six of the mutations are novel. An additional family demonstrated linkage to the LCA9 locus. Visual acuity, severe keratoconus, cataract, and macular atrophy were the most helpful features in predicting the genotype. Many of the phenotypic variables became more prevalent with increasing age. CONCLUSIONS Leber congenital amaurosis in northern Pakistan is genetically heterogeneous. Mutations in RPGRIP1, AIPL1, and LCA5 accounted for disease in 10 of the 14 families. This study illustrates the differences in phenotype, for both the anterior and posterior segments, seen between patients with identical or different mutations in the LCA genes and also suggests that at least some of the phenotypic variation is age dependent. CLINICAL RELEVANCE The LCA phenotype, especially one including different generations in the same family, may be used to refine a molecular diagnostic strategy.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
47 |
13
|
Hampshire DJ, Ayub M, Springell K, Roberts E, Jafri H, Rashid Y, Bond J, Riley JH, Woods CG. MORM syndrome (mental retardation, truncal obesity, retinal dystrophy and micropenis), a new autosomal recessive disorder, links to 9q34. Eur J Hum Genet 2006; 14:543-8. [PMID: 16493448 DOI: 10.1038/sj.ejhg.5201577] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A consanguineous pedigree is described where 14 individuals are affected with a novel autosomal recessive disorder, which causes static moderate mental retardation, truncal obesity, a congenital nonprogressive retinal dystrophy and micropenis in males. We have tentatively named this condition MORM syndrome. It shows similarities to Bardet-Biedl syndrome and Cohen syndrome, but can be distinguished by clinical features; the age of onset and nonprogressive nature of the visual impairment, the lack of characteristic facies, skin or gingival infection, microcephaly, 'mottled retina', polydactyly and small penis without testicular anomalies. Furthermore, linkage to the known Bardet-Biedl (BBS1-8) and Cohen syndrome loci was excluded. Autozygosity mapping identified a single homozygous subtelomeric region shared by all affecteds on chromosome 9q34.3, with a maximum LOD score of 5.64. We believe this to be the first example of the identification of a subtelomeric recessive locus by autozygosity mapping.
Collapse
|
|
19 |
44 |
14
|
Towns KV, Kipioti A, Long V, McKibbin M, Maubaret C, Vaclavik V, Ehsani P, Springell K, Kamal M, Ramesar RS, Mackey DA, Moore AT, Mukhopadhyay R, Webster AR, Black GC, O'Sullivan J, Bhattacharya SS, Pierce EA, Beggs JD, Inglehearn CF. Prognosis for splicing factor PRPF8 retinitis pigmentosa, novel mutations and correlation between human and yeast phenotypes. Hum Mutat 2010; 31:E1361-76. [DOI: 10.1002/humu.21236] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
15 |
27 |
15
|
Cossée M, Demeer B, Blanchet P, Echenne B, Singh D, Hagens O, Antin M, Finck S, Vallee L, Dollfus H, Hegde S, Springell K, Thelma BK, Woods G, Kalscheuer V, Mandel JL. Exonic microdeletions in the X-linked PQBP1 gene in mentally retarded patients: a pathogenic mutation and in-frame deletions of uncertain effect. Eur J Hum Genet 2006; 14:418-25. [PMID: 16493439 DOI: 10.1038/sj.ejhg.5201593] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations in PQBP1 were recently identified in families with syndromic and non-syndromic X-linked mental retardation (XLMR). Clinical features frequently associated with MR were microcephaly and/or short stature. The predominant mutations detected so far affect a stretch of six AG dinucleotides in the polar-amino-acid-rich domain (PRD), causing frameshifts in the fourth coding exon. We searched for PQBP1 exon 4 frameshifts in 57 mentally retarded males in whom initial referral description indicated at least one of the following criteria: microcephaly, short stature, spastic paraplegia or family history compatible with XLMR, and in 772 mentally retarded males not selected for specific clinical features or family history. We identified a novel frameshift mutation (23 bp deletion) in two half-brothers with specific clinical features, and performed prenatal diagnosis in this family. We also found two different 21 bp in-frame deletions (c.334-354del(21 bp) and c.393-413del(21 bp)) in four unrelated probands from various ethnic origins, each deleting one of five copies of an imperfect seven amino-acid repeat. Although such deletions have not been detected in 1180 X chromosomes from European controls, the c. 334-354del(21 bp) was subsequently found in two of 477 Xs from Indian controls. We conclude that pathogenic frameshift mutations in PQBP1 are rare in mentally retarded patients lacking specific associated signs and that the 21 bp in-frame deletions may be non-pathogenic, or alternatively could act subtly on PQBP1 function. This touches upon a common dilemma in XLMR, that is, how to distinguish between mutations and variants that may be non-pathogenic or represent risk factors for cognitive impairment.
Collapse
|
|
19 |
19 |
16
|
Chandler KE, Del Rio A, Rakshi K, Springell K, Williams DK, Stoodley N, Woods CG, Pilz DT. Leucodysplasia, microcephaly, cerebral malformation (LMC): a novel recessive disorder linked to 2p16. ACTA ACUST UNITED AC 2005; 129:272-7. [PMID: 16272165 DOI: 10.1093/brain/awh663] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We report three related and one unrelated child with an apparently novel neurodevelopmental disorder. The clinical course was very similar in all the four patients: congenital microcephaly with severe failure of post-natal brain growth, neonatal onset of intractable seizures associated with lack of developmental progression and death within the first 3 years of life. The appearance on cerebral neuroimaging was almost identical, with simplified gyration associated with a non-thickened cortex, severe hypoplasia of the corpus callosum, a small flattened brain stem, and specific cystic lesions in the white matter around the temporal and occipital horns. To our knowledge these patients represent a previously unreported, autosomal recessive syndrome. Homozygosity mapping in the consanguineous family has identified a candidate region on the chromosome 2p16.
Collapse
|
Journal Article |
20 |
8 |
17
|
Ghazawy S, Springell K, Gauba V, McKibbin MA, Inglehearn CF. Dominant retinitis pigmentosa phenotype associated with a new mutation in the splicing factor PRPF31. Br J Ophthalmol 2007; 91:1411-3. [PMID: 17895420 PMCID: PMC2000988 DOI: 10.1136/bjo.2006.105163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
Research Support, Non-U.S. Gov't |
18 |
6 |
18
|
Woods CG, Cox J, Springell K, Hampshire DJ, Mohamed MD, McKibbin M, Stern R, Raymond FL, Sandford R, Malik Sharif S, Karbani G, Ahmed M, Bond J, Clayton D, Inglehearn CF. Quantification of homozygosity in consanguineous individuals with autosomal recessive disease. Am J Hum Genet 2006. [PMID: 16642444 DOI: 10.1086/503875.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Individuals born of consanguineous union have segments of their genomes that are homozygous as a result of inheriting identical ancestral genomic segments through both parents. One consequence of this is an increased incidence of recessive disease within these sibships. Theoretical calculations predict that 6% (1/16) of the genome of a child of first cousins will be homozygous and that the average homozygous segment will be 20 cM in size. We assessed whether these predictions held true in populations that have preferred consanguineous marriage for many generations. We found that in individuals with a recessive disease whose parents were first cousins, on average, 11% of their genomes were homozygous (n = 38; range 5%-20%), with each individual bearing 20 homozygous segments exceeding 3 cM (n = 38; range of number of homozygous segments 7-32), and that the size of the homozygous segment associated with recessive disease was 26 cM (n = 100; range 5-70 cM). These data imply that prolonged parental inbreeding has led to a background level of homozygosity increased approximately 5% over and above that predicted by simple models of consanguinity. This has important clinical and research implications.
Collapse
|
|
19 |
1 |