1
|
Barbaux S, Niaudet P, Gubler MC, Grünfeld JP, Jaubert F, Kuttenn F, Fékété CN, Souleyreau-Therville N, Thibaud E, Fellous M, McElreavey K. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 1997; 17:467-70. [PMID: 9398852 DOI: 10.1038/ng1297-467] [Citation(s) in RCA: 448] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Frasier syndrome (FS) is a rare disease defined by male pseudo-hermaphroditism and progressive glomerulopathy. Patients present with normal female external genitalia, streak gonads and XY karyotype and frequently develop gonadoblastoma. Glomerular symptoms consist of childhood proteinuria and nephrotic syndrome, characterized by unspecific focal and segmental glomerular sclerosis, progressing to end-stage renal failure in adolescence or early adulthood. No case of Wilms' tumour has been reported, even in patients with extended follow-up. In contrast with FS patients, most individuals with Denys-Drash syndrome (DDS; refs 6,7) have ambiguous genitalia or a female phenotype, an XY karyotype and dysgenetic gonads. Renal symptoms are characterized by diffuse mesangial sclerosis, usually before the age of one year, and patients frequently develop Wilms' tumour. Mutations of the Wilms'-tumour gene, WT1, cause different pathologies of the urogenital system, including DDS. WT1 is composed of ten exons and encodes a protein with four zinc-finger motifs and transcriptional and tumour-suppressor activities. Alternative splicing generates four isoforms: the fifth exon may or may not be present, and an alternative splice site in intron 9 allows the addition of three amino acids (KTS) between the third and fourth zinc fingers of WT1 (ref. 17). Here we demonstrate that FS is caused by mutations in the donor splice site in intron 9 of WT1, with the predicted loss of the +KTS isoform. Examination of WT1 transcripts indeed showed a diminution of the +KTS/-KTS isoform ratio in patients with FS.
Collapse
|
Case Reports |
28 |
448 |
2
|
Quintana-Murci L, Semino O, Bandelt HJ, Passarino G, McElreavey K, Santachiara-Benerecetti AS. Genetic evidence of an early exit of Homo sapiens sapiens from Africa through eastern Africa. Nat Genet 1999; 23:437-41. [PMID: 10581031 DOI: 10.1038/70550] [Citation(s) in RCA: 377] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The out-of-Africa scenario has hitherto provided little evidence for the precise route by which modern humans left Africa. Two major routes of dispersal have been hypothesized: one through North Africa into the Levant, documented by fossil remains, and one through Ethiopia along South Asia, for which little, if any, evidence exists. Mitochondrial DNA (mtDNA) can be used to trace maternal ancestry. The geographic distribution and variation of mtDNAs can be highly informative in defining potential range expansions and migration routes in the distant past. The mitochondrial haplogroup M, first regarded as an ancient marker of East-Asian origin, has been found at high frequency in India and Ethiopia, raising the question of its origin. (A haplogroup is a group of haplotypes that share some sequence variations.) Its variation and geographical distribution suggest that Asian haplogroup M separated from eastern-African haplogroup M more than 50,000 years ago. Two other variants (489C and 10873C) also support a single origin of haplogroup M in Africa. These findings, together with the virtual absence of haplogroup M in the Levant and its high frequency in the South-Arabian peninsula, render M the first genetic indicator for the hypothesized exit route from Africa through eastern Africa/western India. This was possibly the only successful early dispersal event of modern humans out of Africa.
Collapse
|
|
26 |
377 |
3
|
McElreavey K, Vilain E, Abbas N, Herskowitz I, Fellous M. A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development. Proc Natl Acad Sci U S A 1993; 90:3368-72. [PMID: 8475082 PMCID: PMC46301 DOI: 10.1073/pnas.90.8.3368] [Citation(s) in RCA: 238] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The mammalian Y chromosome carries the SRY gene, which determines testis formation. Here we review data on individuals who are XX but exhibit male characteristics: some have SRY; others do not. We have analyzed three families containing more than one such individual and show that these individuals lack SRY. Pedigree analysis leads to the hypothesis that they carry recessive mutations (in a gene termed Z) that allow expression of male characteristics. We propose that wild-type Z product is a negative regulator of male sex determination and is functional in wild-type females. In males, SRY product represses or otherwise negatively regulates Z and thereby allows male sex determination. This hypothesis can also explain other types of sex reversal in mammals, in particular, XY females containing SRY. Some of these individuals may have mutations at the Z locus rendering them insensitive to SRY. Recessive mutations (such as the polled mutation of goats) leading to sex reversal are known in a variety of animals and might be used to map and ultimately clone the human Z gene.
Collapse
|
research-article |
32 |
238 |
4
|
Hanley NA, Hagan DM, Clement-Jones M, Ball SG, Strachan T, Salas-Cortés L, McElreavey K, Lindsay S, Robson S, Bullen P, Ostrer H, Wilson DI. SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev 2000; 91:403-7. [PMID: 10704874 DOI: 10.1016/s0925-4773(99)00307-x] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
SRY, SOX9, and DAX1 are key genes in human sex determination, by virtue of their associated male-to-female sex reversal phenotypes when mutated (SRY, SOX9) or over-expressed (DAX1). During human sex determination, SRY is expressed in 46,XY gonads coincident with sex cord formation, but also persists as nuclear protein within Sertoli cells at 18 weeks gestation. High-level SOX9 expression in the sex cords of the testis parallels that seen during mouse development, however in humans, SOX9 transcripts also are detected in the developing ovary. Low-level DAX1 expression predates peak SRY expression by at least 10 days, and persists in Sertoli cells throughout the entire sex determination period. In Dosage Sensitive Sex reversal, the anti-testis properties of DAX1 over-expression could act prior to the peak effects of SRY and continue during the period of SOX9 expression. These findings highlight expression differences for the SRY, SOX9, and DAX1 genes during sex determination in humans and mice. These results provide a direct framework for future investigation into the mechanisms underlying normal and abnormal human sex determination.
Collapse
|
|
25 |
177 |
5
|
Krausz C, Quintana-Murci L, McElreavey K. Prognostic value of Y deletion analysis: what is the clinical prognostic value of Y chromosome microdeletion analysis? Hum Reprod 2000; 15:1431-4. [PMID: 10875846 DOI: 10.1093/humrep/15.7.1431] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In many centres, Y chromosome deletion analysis is still not performed routinely and if so, the results are used for genetic counselling but are not considered as having a useful prognostic value. The type of deletion (AZFa, b or c) has been proposed as a potential prognostic factor for sperm retrieval in men undergoing TESE. AZFc deletions and partial AZFb deletions are associated with sperm retrieval in approximately 50% of cases while in the case of a patient with complete AZFb deletion the probability of finding mature spermatozoa is virtually nil. Therefore the extent and position of a Y microdeletion is important (complete or partial). The prognostic value of Y chromosome deletion analysis in cases of oligozoospermia is important when one considers the progressive decrease of sperm number over time in men with AZFc deletions. Cryo-conservation of spermatozoa in these cases could avoid invasive techniques, such as TESE/ICSI, in the future. Male offspring that are conceived by ICSI or IVF techniques from father with oligozoospermia or azoospermia would also benefit from knowledge of their Y status, since the identification of the genetic defect will render future medical or surgical therapies unnecessary. Y microdeletion screening is therefore important, not only to define the aetiology of spermatogenic failure, but also because it gives precious information for a more appropriate clinical management of both the infertile male and his future male child.
Collapse
|
Review |
25 |
159 |
6
|
Hubiche T, Ged C, Benard A, Léauté-Labrèze C, McElreavey K, de Verneuil H, Taïeb A, Boralevi F. Analysis of SPINK 5, KLK 7 and FLG Genotypes in a French Atopic Dermatitis Cohort. Acta Derm Venereol 2007; 87:499-505. [DOI: 10.2340/00015555-0329] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
|
18 |
106 |
7
|
Machev N, Saut N, Longepied G, Terriou P, Navarro A, Levy N, Guichaoua M, Metzler-Guillemain C, Collignon P, Frances AM, Belougne J, Clemente E, Chiaroni J, Chevillard C, Durand C, Ducourneau A, Pech N, McElreavey K, Mattei MG, Mitchell MJ. Sequence family variant loss from the AZFc interval of the human Y chromosome, but not gene copy loss, is strongly associated with male infertility. J Med Genet 2005; 41:814-25. [PMID: 15520406 PMCID: PMC1735624 DOI: 10.1136/jmg.2004.022111] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Complete deletion of the complete AZFc interval of the Y chromosome is the most common known genetic cause of human male infertility. Two partial AZFc deletions (gr/gr and b1/b3) that remove some copies of all AZFc genes have recently been identified in infertile and fertile populations, and an association study indicates that the resulting gene dose reduction represents a risk factor for spermatogenic failure. METHODS To determine the incidence of various partial AZFc deletions and their effect on fertility, we combined quantitative and qualitative analyses of the AZFc interval at the DAZ and CDY1 loci in 300 infertile men and 399 control men. RESULTS We detected 34 partial AZFc deletions (32 gr/gr deletions), arising from at least 19 independent deletion events, and found gr/gr deletion in 6% of infertile and 3.5% of control men (p>0.05). Our data provide evidence for two large AZFc inversion polymorphisms, and for relative hot and cold spots of unequal crossing over within the blocks of homology that mediate gr/gr deletion. Using SFVs (sequence family variants), we discriminate DAZ1/2, DAZ3/4, CDY1a (proximal), and CDY1b (distal) and define four types of DAZ-CDY1 gr/gr deletion. CONCLUSIONS The only deletion type to show an association with infertility was DAZ3/4-CDY1a (p = 0.042), suggesting that most gr/gr deletions are neutral variants. We see a stronger association, however, between loss of the CDY1a SFV and infertility (p = 0.002). Thus, loss of this SFV through deletion or gene conversion could be a major risk factor for male infertility.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
103 |
8
|
Montjean D, Zini A, Ravel C, Belloc S, Dalleac A, Copin H, Boyer P, McElreavey K, Benkhalifa M. Sperm global DNA methylation level: association with semen parameters and genome integrity. Andrology 2015; 3:235-40. [PMID: 25755112 DOI: 10.1111/andr.12001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 12/26/2022]
Abstract
Sperm DNA methylation abnormalities have been detected in oligozoospermic men. However, the association between sperm DNA methylation defects, sperm parameters and sperm DNA, and chromatin integrity remains poorly understood. This study was designed to clarify this issue. We recruited a cohort of 92 men (62 normozoospermic and 30 oligoasthenozoospermic) presenting for infertility evaluation during a 1-year period. Sperm global DNA methylation was evaluated by an ELISA-like method, DNA fragmentation was evaluated by flow cytometry-based terminal transferase dUTP nick end-labeling (TUNEL) assay (reported as DNA fragmentation index or DFI), and sperm denaturation was evaluated by aniline blue staining (reported as sperm denaturation index or SDI, a marker of chromatin compaction). We found a significant positive association between sperm global DNA methylation level and conventional sperm parameters (sperm concentration and motility), supported by the results of methylation analysis on H19-DMR. We also identified significant inverse relationships between sperm global DNA methylation, and, both DFI and SDI. However, sperm global DNA methylation level was not related to sperm vitality or morphology. Our findings suggest that global sperm DNA methylation levels are related to conventional sperm parameters, as well as, sperm chromatin and DNA integrity.
Collapse
|
Journal Article |
10 |
99 |
9
|
Quintana-Murci L, Krausz C, Zerjal T, Sayar SH, Hammer MF, Mehdi SQ, Ayub Q, Qamar R, Mohyuddin A, Radhakrishna U, Jobling MA, Tyler-Smith C, McElreavey K. Y-chromosome lineages trace diffusion of people and languages in southwestern Asia. Am J Hum Genet 2001; 68:537-42. [PMID: 11133362 PMCID: PMC1235289 DOI: 10.1086/318200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2000] [Accepted: 12/04/2000] [Indexed: 11/03/2022] Open
Abstract
The origins and dispersal of farming and pastoral nomadism in southwestern Asia are complex, and there is controversy about whether they were associated with cultural transmission or demic diffusion. In addition, the spread of these technological innovations has been associated with the dispersal of Dravidian and Indo-Iranian languages in southwestern Asia. Here we present genetic evidence for the occurrence of two major population movements, supporting a model of demic diffusion of early farmers from southwestern Iran-and of pastoral nomads from western and central Asia-into India, associated with Dravidian and Indo-European-language dispersals, respectively.
Collapse
|
case-report |
24 |
86 |
10
|
Audí L, Ahmed SF, Krone N, Cools M, McElreavey K, Holterhus PM, Greenfield A, Bashamboo A, Hiort O, Wudy SA, McGowan R. GENETICS IN ENDOCRINOLOGY: Approaches to molecular genetic diagnosis in the management of differences/disorders of sex development (DSD): position paper of EU COST Action BM 1303 ‘DSDnet’. Eur J Endocrinol 2018; 179:R197-R206. [PMID: 30299888 PMCID: PMC6182188 DOI: 10.1530/eje-18-0256] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The differential diagnosis of differences or disorders of sex development (DSD) belongs to the most complex fields in medicine. It requires a multidisciplinary team conducting a synoptic and complementary approach consisting of thorough clinical, hormonal and genetic workups. This position paper of EU COST (European Cooperation in Science and Technology) Action BM1303 ‘DSDnet’ was written by leading experts in the field and focuses on current best practice in genetic diagnosis in DSD patients. Ascertainment of the karyotpye defines one of the three major diagnostic DSD subclasses and is therefore the mandatory initial step. Subsequently, further analyses comprise molecular studies of monogenic DSD causes or analysis of copy number variations (CNV) or both. Panels of candidate genes provide rapid and reliable results. Whole exome and genome sequencing (WES and WGS) represent valuable methodological developments that are currently in the transition from basic science to clinical routine service in the field of DSD. However, in addition to covering known DSD candidate genes, WES and WGS help to identify novel genetic causes for DSD. Diagnostic interpretation must be performed with utmost caution and needs careful scientific validation in each DSD case.
Collapse
|
Review |
7 |
84 |
11
|
McElreavey K, Rappaport R, Vilain E, Abbas N, Richaud F, Lortat-Jacob S, Berger R, Le Coniat M, Boucekkine C, Kucheria K. A minority of 46,XX true hermaphrodites are positive for the Y-DNA sequence including SRY. Hum Genet 1992; 90:121-5. [PMID: 1427767 DOI: 10.1007/bf00210754] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A total of 30 cases of 46,XX true hermaphroditism was analysed for Y-DNA sequences including the recently cloned gene for male testis-determination SRY. In 3 cases, a portion of the Y chromosome including SRY was present and, in 2 cases, was localised, to Xp22 by in situ hybridisation. Since previous studies have shown that the majority of XX males are generated by an X-Y chromosomal interchange, the Xp22 position of the Yp material suggests that certain cases of hermaphroditism can arise by the same meiotic event. The phenotype in the 3 SRY-positive cases may be caused by X-inactivation resulting in somatic mosaicism of testis-determining factor expression giving rise to both testicular and ovarian tissues. Autosomal or X-linked mutation(s) elsewhere in the sex-determining pathway may explain the phenotype observed in the remaining 27 SRY-negative cases.
Collapse
|
|
33 |
81 |
12
|
Siffroi JP, Le Bourhis C, Krausz C, Barbaux S, Quintana-Murci L, Kanafani S, Rouba H, Bujan L, Bourrouillou G, Seifer I, Boucher D, Fellous M, McElreavey K, Dadoune JP. Sex chromosome mosaicism in males carrying Y chromosome long arm deletions. Hum Reprod 2000; 15:2559-62. [PMID: 11098026 DOI: 10.1093/humrep/15.12.2559] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microdeletions of the long arm of the Y chromosome (Yq) are a common cause of male infertility. Since large structural rearrangements of the Y chromosome are commonly associated with a 45,XO/46,XY chromosomal mosaicism, we studied whether submicroscopic Yq deletions could also be associated with the development of 45,XO cell lines. We studied blood samples from 14 infertile men carrying a Yq microdeletion as revealed by polymerase chain reaction (PCR). Patients were divided into two groups: group 1 (n = 6), in which karyotype analysis demonstrated a 45,X/46,XY mosaicism, and group 2 (n = 8) with apparently a normal 46,XY karyotype. 45,XO cells were identified by fluorescence in-situ hybridization (FISH) using X and Y centromeric probes. Lymphocytes from 11 fertile men were studied as controls. In addition, sperm cells were studied in three oligozoospermic patients in group 2. Our results showed that large and submicroscopic Yq deletions were associated with significantly increased percentages of 45,XO cells in lymphocytes and of sperm cells nullisomic for gonosomes, especially for the Y chromosome. Moreover, two isodicentric Y chromosomes, classified as normal by cytogenetic methods, were detected. Therefore, Yq microdeletions may be associated with Y chromosomal instability leading to the formation of 45,XO cell lines.
Collapse
|
|
25 |
80 |
13
|
Veitia R, Nunes M, Brauner R, Doco-Fenzy M, Joanny-Flinois O, Jaubert F, Lortat-Jacob S, Fellous M, McElreavey K. Deletions of distal 9p associated with 46,XY male to female sex reversal: definition of the breakpoints at 9p23.3-p24.1. Genomics 1997; 41:271-4. [PMID: 9143505 DOI: 10.1006/geno.1997.4648] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Monosomy of distal 9p is associated in rare cases with abnormalities of testicular determination, which can lead to male to female sex reversal in a 46,XY genetic background. We present two 46,XY individuals partially monosomic for 9p who were raised as females. Definition of the breakpoints using somatic cell hybrids containing only the rearranged chromosome 9 indicated that in the first patient the breakpoint was located between markers D9S256 and D9S144 and in the second patient, the breakpoint was distal to the marker D9S144. In both cases this corresponds to the cytogenetic position 9p23.3-p24.1. Analysis of highly polymorphic microsatellite markers demonstrated a paternal origin of the rearranged chromosome 9 in both patients. These studies define the minimum region associated with male to female sex reversal as 9p24.1-pter.
Collapse
|
Case Reports |
28 |
79 |
14
|
Murphy MW, Lee JK, Rojo S, Gearhart MD, Kurahashi K, Banerjee S, Loeuille GA, Bashamboo A, McElreavey K, Zarkower D, Aihara H, Bardwell VJ. An ancient protein-DNA interaction underlying metazoan sex determination. Nat Struct Mol Biol 2015; 22:442-51. [PMID: 26005864 DOI: 10.1038/nsmb.3032] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/21/2015] [Indexed: 01/08/2023]
Abstract
DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. Here we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
77 |
15
|
Abstract
Although SRY was first identified 10 years ago, we still know remarkably little about its mode of action or downstream target genes. Recently, potential protein partners have been identified and there has been considerable activity to understand the roles of WT1, SF-1, DAX-1 and SOX9 in gonadogenesis. The emerging picture is one of complex interactions, involving both positive and negative regulatory signals that, depending on the cellular and promoter context, drive the expression of male-specific genes. Despite recent advances, however, we are still unable to explain the genetic cause of most cases of 46,XY gonadal dysgenesis or even a single case of Y-chromosome-negative 46,XX maleness.
Collapse
|
Review |
26 |
72 |
16
|
Veitia R, Ion A, Barbaux S, Jobling MA, Souleyreau N, Ennis K, Ostrer H, Tosi M, Meo T, Chibani J, Fellous M, McElreavey K. Mutations and sequence variants in the testis-determining region of the Y chromosome in individuals with a 46,XY female phenotype. Hum Genet 1997; 99:648-52. [PMID: 9150734 DOI: 10.1007/s004390050422] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The testis-determining gene SRY (sex determining region, Y) is located on the short arm of the Y chromosome and consists of a single exon, the central third of which is predicted to encode a conserved motif with DNA binding/bending properties. We describe the screening of 26 patients who presented with 46,XY partial or complete gonadal dysgenesis for mutations in both the SRY open reading frame (ORF) and in 3.8 kb of Y-specific flanking sequences. DNA samples were screened by using the fluorescence-assisted mismatch analysis (FAMA) method. In two patients, de novo mutations causing complete gonadal dysgenesis were detected in the SRY ORF. One was a nonsense mutation 5' to the HMG box, whereas the other was a missense substitution located at the C terminus of the conserved motif and identical to one previously detected in an unrelated patient. In addition, two Y-specific polymorphisms were found 5' to the SRY gene, and a sequence variant was identified 3' to the SRY polyadenylation site. No duplications of the DSS region in 20 of these patients were detected.
Collapse
|
|
28 |
71 |
17
|
Bashamboo A, Brauner R, Bignon-Topalovic J, Lortat-Jacob S, Karageorgou V, Lourenco D, Guffanti A, McElreavey K. Mutations in the FOG2/ZFPM2 gene are associated with anomalies of human testis determination. Hum Mol Genet 2014; 23:3657-65. [DOI: 10.1093/hmg/ddu074] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
|
11 |
70 |
18
|
Seboun E, Barbaux S, Bourgeron T, Nishi S, Agulnik A, Egashira M, Nikkawa N, Bishop C, Fellous M, McElreavey K, Kasahara M, Algonik A. Gene sequence, localization, and evolutionary conservation of DAZLA, a candidate male sterility gene. Genomics 1997; 41:227-35. [PMID: 9143498 DOI: 10.1006/geno.1997.4635] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have isolated the human homologue of the mouse germ cell-specific transcript Tpx2, which we had previously mapped to mouse chromosome 17. Sequence analysis shows that the human gene is part of the DAZ (Deleted in Azoospermia) family, represents the human homologue of the mouse Dazla and Drosophila boule genes, and is termed DAZLA. Like Dazla and boule, DAZLA is single copy and maps to 3p25. This defines a new region of synteny between mouse chromosome 17 and human chromosome 3. Unlike DAZ, which has multiple DAZ repeats, DAZLA encodes a putative RNA-binding protein with a single RNA-binding motif and a single DAZ repeat. DAZLA is more closely related to Dazla in the mouse than to the Y-linked homologue DAZ (88% identity overall with mouse Dazla compared to 76% identity with the human DAZ protein sequence). Southern blot analysis showed that DAZLA is autosomal in all mammals tested and that DAZ has been recently translocated to the Y chromosome, sometime after the divergence of Old World and New World primates. To investigate the evolutionary relatedness of DAZLA and DAZ further, their partial genomic structures were obtained and compared. This revealed that the genomic organization of both genes in the 5' region is highly conserved. DAZLA is a new member of the DAZ family of genes, which is associated with spermatogenesis and male sterility. Familial cases of male infertility in humans show an autosomal recessive mode of inheritance. It is possible that some of these families may carry mutations in the DAZLA gene.
Collapse
|
|
28 |
69 |
19
|
Krausz C, Bussani-Mastellone C, Granchi S, McElreavey K, Scarselli G, Forti G. Screening for microdeletions of Y chromosome genes in patients undergoing intracytoplasmic sperm injection. Hum Reprod 1999; 14:1717-21. [PMID: 10402374 DOI: 10.1093/humrep/14.7.1717] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The potential of assisted reproduction techniques to transmit genetic defects causing male infertility raises questions concerning the need for a systematic genetic screen and counselling. Deletions of the long arm of the Y chromosome are frequently associated with a failure of spermatogenesis. The search for Y specific sequences and for the gene families RNA binding motif (RBM) and deleted in azoospermia (DAZ) have been introduced in many laboratories. The incidence of Y microdeletions varies widely between studies, from 1-55%. These differences are mainly related to study design. The highest incidence of microdeletions has been reported in well selected idiopathic azoospermic patients. Since microdeletions have been reported also in non-idiopathic patients, it is important to define what is the deletion frequency in unselected patients. We report Y chromosome microdeletion screening in 134 unselected patients undergoing intracytoplasmic sperm injection (ICSI). In the first part of the study we tested six Y chromosome markers. We found three patients with microdeletions (2.2%). Subdivision of the study population revealed a deletion incidence of 4.7% in azoospermic/cryptozoospermic patients; an incidence of 7% in idiopathic patients and an incidence of 16% in idiopathic azoospermic/cryptozoospermic patients. The second part of the study consisted of a screen for the presence of the Y chromosome genes, DBY, CDY, XKRY, eIF-1A, DAZ and BPY2. No additional gene-specific deletions were found. Further data on gene specific screening are needed especially for selected idiopathic patients.
Collapse
|
|
26 |
68 |
20
|
Ottolenghi C, Veitia R, Quintana-Murci L, Torchard D, Scapoli L, Souleyreau-Therville N, Beckmann J, Fellous M, McElreavey K. The region on 9p associated with 46,XY sex reversal contains several transcripts expressed in the urogenital system and a novel doublesex-related domain. Genomics 2000; 64:170-8. [PMID: 10729223 DOI: 10.1006/geno.2000.6121] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deletions of 9p have been associated with 46,XY gonadal dysgenesis, and the smallest region of overlap has been mapped to the tip of chromosome 9. Two candidate genes (DMRT1 and 2) have been found in the region. Despite intensive mutation searches, no mutations have been detected in these genes. To gain insights into the genomics of the region and to isolate other candidate genes for the phenotype, we have constructed a P1 artificial chromosome (PAC)/bacterial artificial chromosome (BAC) contig spanning over 500 kb and covering the consensus critical region. We have analyzed the expression pattern of several ESTs mapped or sublocalized within the framework of the contig. In addition, a sample shotgun sequencing of a PAC containing the mentioned DM genes led to the detection of novel transcripts displaying an expression pattern specific to testis and kidney, consistent with a role in the development of the urogenital system. One of them, expressed in adult testis and human embryos aged 4-5 weeks, encodes a potential polypeptide and is located immediately downstream of a sequence capable of encoding a novel DM domain. The region was partially screened for mutations in sex-reversed patients by Southern blot, sequencing, and FISH. No mutations were found. Our results suggest that the critical region on 9p involved in male-to-female sex reversal displays greater gene density and genomic complexity than previously anticipated. Future investigations will include functional and mutational studies of the novel transcripts mapped or sublocalized within the critical region by this study as well as cloning efforts to isolate additional candidate genes.
Collapse
|
|
25 |
68 |
21
|
Boucekkine C, Toublanc JE, Abbas N, Chaabouni S, Ouahid S, Semrouni M, Jaubert F, Toublanc M, McElreavey K, Vilain E. Clinical and anatomical spectrum in XX sex reversed patients. Relationship to the presence of Y specific DNA-sequences. Clin Endocrinol (Oxf) 1994; 40:733-42. [PMID: 8033363 DOI: 10.1111/j.1365-2265.1994.tb02506.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Testicular differentiation can occur in the absence of the Y chromosome giving XX sex-reversed males. Although Y chromosomal sequences can be detected in the majority of male subjects with a 46,XX karyotype, several studies have shown that approximately 10% of patients lack Y material including the SRY gene. The aim of this study was to see if the classification of XX sex-reversed individuals into three groups, Y-DNA-positive phenotypically normal XX males, Y-DNA-negative XX males with genital ambiguities and Y-DNA-negative true hermaphrodites can be applied to our cases. DESIGN Endocrinological and genetic studies were conducted in 20 XX sex-reversed patients. PATIENTS Twenty patients with various phenotypes were studied. They were between 20 days and 35 years old. Ten presented ambiguous external genitalia (Prader's stages II to IV). After laparotomy or gonadal biopsy, the diagnosis was 46,XX true hermaphroditism in five, and XX male in 15. MEASUREMENTS Blood samples were obtained from all patients for hormonal and molecular studies. Basal levels of testosterone, oestradiol and pituitary gonadotrophins were measured by RIA. In addition, two stimulation tests were performed: gonadotrophin stimulation with GnRH and testicular stimulation with hCG. Several Y-specific DNA sequences of the short arm of the Y chromosome were analysed by Southern blot and polymerase chain reaction methods. RESULTS In this study, three categories of XX sex-reversed individuals were observed: phenotypically normal males with or without gynaecomastia, males with genital ambiguities, and true hermaphrodites. Endocrinological data were similar in XX males and in true hermaphrodites. Testosterone levels exhibited normal (n = 9) or decreased (n = 11) values. The hCG response was low. FSH and LH were elevated in 13 patients. Molecular analysis in ten patients showed varying amounts of Y material including the Y boundary and SRY. Ten patients with various phenotypes lacked Y chromosomal DNA. There was no relation between Leydig cell function (as indicated by testosterone levels before or after hCG stimulation) and the presence of Y chromosome material. CONCLUSION Although the presence of Y-specific DNA generally results in a more masculinized phenotype, exceptions do occur. In the Y-DNA-negative group, complete or incomplete masculinization in the absence of SRY suggests a mutation of one or more downstream non-Y, testis-determining genes.
Collapse
|
|
31 |
67 |
22
|
Krausz C, Quintana-Murci L, Rajpert-De Meyts E, Jørgensen N, Jobling MA, Rosser ZH, Skakkebaek NE, McElreavey K. Identification of a Y chromosome haplogroup associated with reduced sperm counts. Hum Mol Genet 2001; 10:1873-7. [PMID: 11555623 DOI: 10.1093/hmg/10.18.1873] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In man, infertility is associated with microdeletions of specific regions of the long arm of the Y chromosome. This indicates that factors encoded by the Y chromosome are necessary for spermatogenesis. However, the majority of men with either idiopathic azoospermia or oligozoospermia have grossly intact Y chromosomes and the underlying causes of their infertility are unknown. We hypothesized that some of these individuals may carry other rearrangements or sequence variants on the non-recombining region of the Y chromosome that may be associated with reduced spermatogenesis. To test this hypothesis, we typed the Y chromosome in a group of Danish men with known sperm counts and compared the haplotype distribution with that of a group of unselected Danish males. We found that one class of Y chromosome, referred to as haplogroup 26+, was significantly overrepresented (27.9%; P < 0.001) in the group of men with either idiopathic oligozoospermia (defined as <20 x 10(6 )sperm/ml) or azoospermia compared to the control Danish male population (4.6%). This study defines, for the first time, a class of Y chromosome that is at risk for infertility in a European population. This observation suggests that selection may be indeed active on the Y chromosome, at least in the Danish population, raising the possibility that it could alter the pattern of Y chromosome haplotype distribution in the general population.
Collapse
|
|
24 |
66 |
23
|
McElreavey K, Krausz C. Sex Chromosome Genetics '99. Male infertility and the Y chromosome. Am J Hum Genet 1999; 64:928-33. [PMID: 10090876 PMCID: PMC1377815 DOI: 10.1086/302351] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
research-article |
26 |
62 |
24
|
Ahmed SF, Bashamboo A, Lucas-Herald A, McElreavey K. Understanding the genetic aetiology in patients with XY DSD. Br Med Bull 2013; 106:67-89. [PMID: 23529942 DOI: 10.1093/bmb/ldt008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Disorders of sex development (DSD) consist of a wide range of disorders and are commoner in those with an XY karyotype. In over half of these cases who have a 46,XY karyotype and who are raised as boys, the underlying aetiology remains unclear. AREAS OF AGREEMENT Identification of the underlying genetic abnormality may predict long-term outcome. However, genetic abnormalities that are associated with XY DSD manifest themselves with a wide range of phenotype. To understand the aetiology as well as the phenotypic variation, there is a need to harness the advanced genetic technology that is now available. AREAS OF CONTROVERSY The point at which genetic analysis should be undertaken in the course of investigations is unclear. In addition, there is little agreement on the most effective approach for genetic analysis that will be of clinical benefit to the patient. AREAS TIMELY FOR DEVELOPING RESEARCH There is a need to understand and improve the clinical utility of genetic analysis in the clinical setting of the patient with a suspected DSD. This will be even more important when parallel gene sequencing identifies variations in multiple genes.
Collapse
|
Review |
12 |
59 |
25
|
McElreavey K, Vilain E, Barbaux S, Fuqua JS, Fechner PY, Souleyreau N, Doco-Fenzy M, Gabriel R, Quereux C, Fellous M, Berkovitz GD. Loss of sequences 3' to the testis-determining gene, SRY, including the Y pseudoautosomal boundary associated with partial testicular determination. Proc Natl Acad Sci U S A 1996; 93:8590-4. [PMID: 8710915 PMCID: PMC38717 DOI: 10.1073/pnas.93.16.8590] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The condition termed 46,XY complete gonadal dysgenesis is characterized by a completely female phenotype and streak gonads. In contrast, subjects with 46,XY partial gonadal dysgenesis and those with embryonic testicular regression sequence usually present ambiguous genitalia and a mix of Müllerian and Wolffian structures. In 46,XY partial gonadal dysgenesis gonadal histology shows evidence of incomplete testis determination. In 46,XY embryonic testicular regression sequence there is lack of gonadal tissue on both sides. Various lines of evidence suggest that embryonic testicular regression sequence is a variant form of 46,XY gonadal dysgenesis. The sex-determining region Y chromosome gene (SRY) encodes sequences for the testis-determining factor. To date germ-line mutations in SRY have been reported in approximately 20% of subjects with 46,XY complete gonadal dysgenesis. However, no germ-line mutations of SRY have been reported in subjects with the partial forms. We studied 20 subjects who presented either 46,XY partial gonadal dysgenesis or 46,XY embryonic testicular regression sequence. We examined the SRY gene and the minimum region of Y-specific DNA known to confer a male phenotype. The SRY-open reading frame (ORF) was normal in all subjects. However a de novo interstitial deletion 3' to the SRY-ORF was found in one subject. Although it is possible that the deletion was unrelated to the subject's phenotype, we propose that the deletion was responsible for the abnormal gonadal development by diminishing expression of SRY. We suggest that the deletion resulted either in the loss of sequences necessary for normal SRY expression or in a position effect that altered SRY expression. This case provides further evidence that deletions of the Y chromosome outside the SRY-ORF can result in either complete or incomplete sex reversal.
Collapse
|
research-article |
29 |
55 |