1
|
Mun AY, Akiyama K, Wang Z, Zhang J, Kitagawa W, Kohno T, Tagashira R, Ishibashi K, Matsunaga N, Zou T, Ono M, Kuboki T. Macrophages modulate mesenchymal stem cell function via tumor necrosis factor alpha in tooth extraction model. JBMR Plus 2024; 8:ziae085. [PMID: 39086598 PMCID: PMC11289833 DOI: 10.1093/jbmrpl/ziae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Mesenchymal stem cells (MSCs) and macrophages collaboratively contribute to bone regeneration after injury. However, detailed mechanisms underlying the interaction between MSCs and inflammatory macrophages (M1) remain unclear. A macrophage-depleted tooth extraction model was generated in 5-wk-old female C57BL/6J mice using clodronate liposome (12.5 mg/kg/mouse, intraperitoneally) or saline injection (control) before maxillary first molar extraction. Mice were sacrificed on days 1, 3, 5, 7, and 10 after tooth extraction (n = 4). Regenerated bone volume evaluation of tooth extraction socket (TES) and histochemical analysis of CD80+M1, CD206+M2 (anti-inflammatory macrophages), PDGFRα+MSC, and TNF-α+ cells were performed. In vitro, isolated MSCs with or without TNF-α stimulation (10 ng/mL, 24 h, n = 3) were bulk RNA-sequenced (RNA-Seq) to identify TNF-α stimulation-specific MSC transcriptomes. Day 7 micro-CT and HE staining revealed significantly lower mean bone volume (clodronate vs control: 0.01 mm3 vs 0.02 mm3, p<.0001) and mean percentage of regenerated bone area per total TES in clodronate group (41.97% vs 54.03%, p<.0001). Clodronate group showed significant reduction in mean number of CD80+, TNF-α+, PDGFRα+, and CD80+TNF-α+ cells on day 5 (306.5 vs 558.8, p<.0001; 280.5 vs 543.8, p<.0001; 365.0 vs 633.0, p<.0001, 29.0 vs 42.5, p<.0001), while these cells recovered significantly on day 7 (493.3 vs 396.0, p=.0004; 479.3 vs 384.5, p=.0008; 593.0 vs 473.0, p=.0010, 41.0 vs 32.5, p=.0003). RNA-Seq analysis showed that 15 genes (|log2FC| > 5.0, log2TPM > 5) after TNF-α stimulation were candidates for regulating MSC's immunomodulatory capacity. In vivo, Clec4e and Gbp6 are involved in inflammation and bone formation. Clec4e, Gbp6, and Cxcl10 knockdown increased osteogenic differentiation of MSCs in vitro. Temporal reduction followed by apparent recovery of TNF-α-producing M1 macrophages and MSCs after temporal macrophage depletion suggests that TNF-α activated MSCs during TES healing. In vitro mimicking the effect of TNF-α on MSCs indicated that there are 15 candidate MSC genes for regulation of immunomodulatory capacity.
Collapse
|
2
|
Okano M, Ikekita A, Sato M, Inoue T, Kageyama S, Akiyama K, Aoi A, Miyamoto A, Momobayashi A, Ota M, Ishige M, Sakurai H, Shiomura S, Takemine M, Watanabe Y, Hikota T. Doping control analyses during the Tokyo 2020 Olympic and Paralympic Games. Drug Test Anal 2022; 14:1836-1852. [PMID: 36208085 DOI: 10.1002/dta.3381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/01/2022] [Indexed: 11/11/2022]
Abstract
The doping control analyses at the XXXII Olympic Games (July 23-August 8, 2021) and the XVI Paralympic Games (August 24-September 5, 2021) held in Tokyo, Japan, after a year of delay due to the COVID-19 pandemic are summarized in this paper. A new satellite facility at the existing World Anti-Doping Agency (WADA)-accredited Tokyo laboratory was established and fully operated by 278 staff, including 33 Tokyo laboratory staff, 49 international experts, and 196 Japanese temporary staff. The numbers of urine samples were 5,081 (Olympics) and 1,519 (Paralympics), and the numbers of blood samples were 1,103 (Olympics) and 500 (Paralympics). The laboratory could prepare for analysis in advance using a paperless chain-of-custody system, allowing for faster turnaround time reporting. For the first time, a new polymerase chain reaction method for detecting erythropoietin (EPO) gene doping was used. The laboratory also analyzed blood samples for detecting steroid esters following the spotting of collected venous EDTA blood onto dried blood spot cards. Moreover, full-scan data acquisition using high-resolution mass spectrometers was performed for all urine samples, allowing for detecting traces of doping substances, which are not currently analyzed in the subsequent data processing. The presence of some prohibited substances was confirmed, resulting in 8 atypical findings (ATFs) and 11 adverse analytical findings (AAFs), including homologous blood transfusion (2 cases) and recombinant EPO in the blood (1 case), at the Olympics, whereas 2 ATFs and 10 AAFs were reported at the Paralympics.
Collapse
|
3
|
Akiyama K, Aung KT, Talamini L, Huck O, Kuboki T, Muller S. Therapeutic effects of peptide P140 in a mouse periodontitis model. Cell Mol Life Sci 2022; 79:518. [DOI: 10.1007/s00018-022-04537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/25/2022]
|
4
|
Baba F, Shibamoto Y, Iwana M, Saito K, Nagayoshi J, Ono Y, Akiyama K, Fujioka R, Horita R, Shimizu A, Inada A, Hayakawa T. Changes of Bone Strength Evaluated by CT-based Finite Element Methods in Radiotherapy for Bone Metastases of the Spine in Comparison With Bone Density. Int J Radiat Oncol Biol Phys 2021. [DOI: 10.1016/j.ijrobp.2021.07.1341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Shimomura K, Minatogawa H, Mashiko T, Arioka H, Iihara H, Sugawara M, Hida N, Akiyama K, Nawata S, Tsuboya A, Mishima K, Izawa N, Miyaji T, Honda K, Inada Y, Ohno Y, Katada C, Morita H, Yamaguchi T, Nakajima T. LBA63 Placebo-controlled, double-blinded phase Ⅲ study comparing dexamethasone on day 1 with dexamethasone on days 1 to 4, with combined neurokinin-1 receptor antagonist, palonosetron, and olanzapine in patients receiving cisplatin-containing highly emetogenic chemotherapy: SPARED trial. Ann Oncol 2021. [DOI: 10.1016/j.annonc.2021.08.2144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Pham HT, Ono M, Hara ES, Nguyen HTT, Dang AT, Do HT, Komori T, Tosa I, Hazehara-Kunitomo Y, Yoshioka Y, Oida Y, Akiyama K, Kuboki T. Tryptophan and Kynurenine Enhances the Stemness and Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stromal Cells In Vitro and In Vivo. MATERIALS 2021; 14:ma14010208. [PMID: 33406724 PMCID: PMC7796421 DOI: 10.3390/ma14010208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 01/06/2023]
Abstract
Aging tissues present a progressive decline in homeostasis and regenerative capacities, which has been associated with degenerative changes in tissue-specific stem cells and stem cell niches. We hypothesized that amino acids could regulate the stem cell phenotype and differentiation ability of human bone marrow-derived mesenchymal stromal cells (hBMSCs). Thus, we performed a screening of 22 standard amino acids and found that D-tryptophan (10 μM) increased the number of cells positive for the early stem cell marker SSEA-4, and the gene expression levels of OCT-4, NANOG, and SOX-2 in hBMSCs. Comparison between D- and L-tryptophan isomers showed that the latter presents a stronger effect in inducing the mRNA levels of Oct-4 and Nanog, and in increasing the osteogenic differentiation of hBMSCs. On the other hand, L-tryptophan suppressed adipogenesis. The migration and colony-forming ability of hBMSCs were also enhanced by L-tryptophan treatment. In vivo experiments delivering L-tryptophan (50 mg/kg/day) by intraperitoneal injections for three weeks confirmed that L-tryptophan significantly increased the percentage of cells positive for SSEA-4, mRNA levels of Nanog and Oct-4, and the migration and colony-forming ability of mouse BMSCs. L-kynurenine, a major metabolite of L-tryptophan, also induced similar effects of L-tryptophan in enhancing stemness and osteogenic differentiation of BMSCs in vitro and in vivo, possibly indicating the involvement of the kynurenine pathway as the downstream signaling of L-tryptophan. Finally, since BMSCs migrate to the wound healing site to promote bone healing, surgical defects of 1 mm in diameter were created in mouse femur to evaluate bone formation after two weeks of L-tryptophan or L-kynurenine injection. Both L-tryptophan and L-kynurenine accelerated bone healing compared to the PBS-injected control group. In summary, L-tryptophan enhanced the stemness and osteoblastic differentiation of BMSCs and may be used as an essential factor to maintain the stem cell properties and accelerate bone healing and/or prevent bone loss.
Collapse
|
7
|
Baba F, Shibamoto Y, Iwana M, Saito K, Nagayoshi J, Ono Y, Akiyama K, Fujioka R, Ueno T, Horita R, Inada A, Hayakawa T. Changes of Bone Strength Evaluated by CT-based Finite Element Methods in Radiotherapy for Bone Metastases of the Proximal Femur. Int J Radiat Oncol Biol Phys 2020. [DOI: 10.1016/j.ijrobp.2020.07.1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Aung KT, Akiyama K, Kunitomo M, Mun AY, Tosa I, Nguyen HTT, Zhang J, Kohno T, Ono M, Hara ES, Kuboki T. Aging-Affected MSC Functions and Severity of Periodontal Tissue Destruction in a Ligature-Induced Mouse Periodontitis Model. Int J Mol Sci 2020; 21:ijms21218103. [PMID: 33143068 PMCID: PMC7663404 DOI: 10.3390/ijms21218103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are known to play important roles in the repair of lost or damaged tissues and immunotolerance. On the other hand, aging is known to impair MSC function. However, little is currently known about how aged MSCs affect the host response to the local inflammatory condition and tissue deterioration in periodontitis, which is a progressive destructive disease of the periodontal tissue potentially leading to multiple tooth loss. In this study, we examined the relationship between aging-induced impairment of MSC function and the severity of periodontal tissue destruction associated with the decrease in host immunomodulatory response using a ligature-induced periodontitis model in young and aged mice. The results of micro computerized tomography (micro-CT) and histological analysis revealed a more severe bone loss associated with increased osteoclast activity in aged (50-week-old) mice compared to young (5-week-old) mice. Immunostaining analysis revealed that, in aged mice, the accumulation of inflammatory T and B cells was higher, whereas the percentage of platelet-derived growth factor receptor α (PDGFRα)+ MSCs, which are known to modulate the apoptosis of T cells, was significantly lower than in young mice. In vitro analysis of MSC function showed that the expression of surface antigen markers for MSCs (Sca-1, CD90, CD146), colony formation, migration, and osteogenic differentiation of aged MSCs were significantly declined compared to those of young MSCs. Moreover, a significantly higher proportion of aged MSCs were positive for the senescence-associated β galactosidase activity. Importantly, aged MSCs presented a decreased expression of FAS-L, which was associated with a lower immunomodulatory property of aged MSCs to induce T cell apoptosis in co-cultures compared with young MSCs. In summary, this is the first study showing that aging-induced impairment of MSC function, including immunomodulatory response, is potentially correlated with progressive periodontal tissue deterioration.
Collapse
|
9
|
Stöhr E, Ji R, Akiyama K, Castagna F, Pinsino A, Cockcroft J, Uriel N, Yuzefpolskaya M, Garan R, Topkara V, Takayama H, Takeda K, Naka Y, Joshua W, McDonnell B, Colombo P. HM3 Patients Do Not Have an Increased Pulsatility in Large, Muscular or Microcirculatory Arteries. J Heart Lung Transplant 2020. [DOI: 10.1016/j.healun.2020.01.1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
10
|
Ji R, Stohr E, Akiyama K, Amlani A, Mondellini G, Castagna F, Pinsino A, Cockcroft J, Yuzefpolskaya M, Topkara V, Takayama H, Takeda K, Naka Y, Uriel N, Colombo P, McDonnell B, Willey J. Assessment of Cerebrovascular Reserve in the Heart Failure Patients Supported with the HeartMate3. J Heart Lung Transplant 2020. [DOI: 10.1016/j.healun.2020.01.945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
11
|
Tsuchiya T, Kume T, Akiyama K, Yoshitsugu K, Fukaya M, Enami T, Tatara R, Shino M, Ikeda T. The prophylactic effect of 0.1% fluorometholone eye drops on eye disorders caused by high-dose cytarabine. Ann Oncol 2019. [DOI: 10.1093/annonc/mdz434.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Ryumon S, Okui T, Kunisada Y, Kishimoto K, Shimo T, Hasegawa K, Ibaragi S, Akiyama K, Thu Ha NT, Monsur Hassan NM, Sasaki A. Ammonium tetrathiomolybdate enhances the antitumor effect of cisplatin via the suppression of ATPase copper transporting beta in head and neck squamous cell carcinoma. Oncol Rep 2019; 42:2611-2621. [PMID: 31638244 PMCID: PMC6826331 DOI: 10.3892/or.2019.7367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
Platinum‑based antitumor agents have been widely used to treat head and neck squamous cell carcinoma (HNSCC) and numerous other malignancies. Cisplatin is the most frequently used platinum‑based antitumor agent, however drug resistance and numerous undesirable side effects limit its clinical efficacy for cancer patients. Cancer cells discharge cisplatin into the extracellular space via copper transporters such as ATPase copper transporting beta (ATP7B) in order to escape from cisplatin‑induced cell death. In the present study, it was demonstrated for the first time that the copper chelator ammonium tetrathiomolybdate (TM) has several promising effects on cisplatin and HNSCC. First, TM suppressed the ATP7B expression in HNSCC cell lines in vitro, thereby enhancing the accumulation and apoptotic effect of cisplatin in the cancer cells. Next, it was revealed that TM enhanced the antitumor effect of cisplatin in HNSCC cell tumor progression in a mouse model of bone invasion, which is important since HNSCC cells frequently invade to facial bone. Finally, it was demonstrated that TM was able to overcome the cisplatin resistance of a human cancer cell line, A431, via ATP7B depression in vitro.
Collapse
|
13
|
Baba F, Shibamoto Y, Iwana M, Nomura K, Nagayoshi J, Ono Y, Akiyama K, Yamamoto T, Saito K, Fujioka R, Ueno T. Evaluation of Changes in Respiratory Patterns by Repeating under Different Respiratory Conditions. Int J Radiat Oncol Biol Phys 2019. [DOI: 10.1016/j.ijrobp.2019.06.857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Akiyama K, Colombo P, Stöhr E, Ji R, Jimenez O, Wu I, Shames S, Itatani K, Miyazaki S, Furusawa T, Nishino T, McDonnell B, Garan A, Naka Y, Takeda K, Takayama H, Yuzefpolskaya M. Blood Flow Kinetic Energy of Right Ventricular Outflow Tract: A Marker for Right Ventricular Global Systolic Function. J Heart Lung Transplant 2019. [DOI: 10.1016/j.healun.2019.01.1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Akiyama K, Ji R, Stöhr E, Jimenez O, Wu I, Itatani K, Miyazaki S, Furusawa T, Nishino T, McDonnell B, Garan A, Yuzefpolskaya M, Colombo P, Naka Y, Takeda K, Takayama H. Assessment of Wall Shear Stress on the Aortic Valve in Patients with Left Ventricular Assist Device Using Vector Flow Mapping. J Heart Lung Transplant 2019. [DOI: 10.1016/j.healun.2019.01.1152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
16
|
Akiyama K, Ji R, Castagna F, Pinsino A, Cockcroft J, Yuzefpolskaya M, Garan A, Topkara V, Ross K, Takayama H, Takeda K, Naka Y, McDonnell B, Colombo P, Willey J, Stöhr E. Wall Shear Stress in the Middle Cerebral Artery of HM II Patients - A Prospective, Mechanistic Study Using Vector Flow Mapping. J Heart Lung Transplant 2019. [DOI: 10.1016/j.healun.2019.01.1080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Akiyama K, Stöhr E, Ji R, Jimenez O, Wu I, Itatani K, Miyazaki S, Furusawa T, Nishino T, McDonnell B, Garan A, Yuzefpolskaya M, Colombo P, Naka Y, Takayama H, Takeda K. Novel Approach to Assess Intraventricular Pressure Difference in Patients with Left Ventricular Assist Device during Ramp Study. J Heart Lung Transplant 2019. [DOI: 10.1016/j.healun.2019.01.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
18
|
Ji R, Akiyama K, Castagna F, Pinsino A, Cockcroft J, Yuzefpolskaya M, Garan A, Topkara V, Pineda M, Takayama H, Takeda K, Naka Y, Colombo P, McDonnell B, Stöhr E, Willey J. Metabolic Vasoreactivity in the Middle Cerebral Artery of Heart Failure Patients with and without Continuous-Flow Left Ventricular Support. J Heart Lung Transplant 2019. [DOI: 10.1016/j.healun.2019.01.576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
19
|
Hazehara-Kunitomo Y, Hara ES, Ono M, Aung KT, Komi K, Pham HT, Akiyama K, Okada M, Oohashi T, Matsumoto T, Kuboki T. Acidic Pre-Conditioning Enhances the Stem Cell Phenotype of Human Bone Marrow Stem/Progenitor Cells. Int J Mol Sci 2019; 20:ijms20051097. [PMID: 30836626 PMCID: PMC6429188 DOI: 10.3390/ijms20051097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/18/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
A deeper understanding of the detailed mechanism of in vivo tissue healing is necessary for the development of novel regenerative therapies. Among several external factors, environmental pH is one of the crucial parameters that greatly affects enzyme activity and cellular biochemical reactions involving tissue repair and homeostasis. In this study, in order to analyze the microenvironmental conditions during bone healing, we first measured the pH in vivo at the bone healing site using a high-resolution fiber optic pH microsensor directly in femur defects and tooth extraction sockets. The pH was shown to decrease from physiological 7.4 to 6.8 during the initial two days of healing (inflammatory phase). In the same initial stages of the inflammatory phase of the bone healing process, mesenchymal stem cells (MSCs) are known to migrate to the healing site to contribute to tissue repair. Therefore, we investigated the effect of a short-term acidic (pH 6.8) pre-treatment on the stemness of bone marrow-derived MSCs (BMSCs). Interestingly, the results showed that pre-treatment of BMSCs with acidic pH enhances the expression of stem cell markers (OCT-4, NANOG, SSEA-4), as well as cell viability and proliferation. On the other hand, acidic pH decreased BMSC migration ability. These results indicate that acidic pH during the initial stages of bone healing is important to enhance the stem cell properties of BMSCs. These findings may enable the development of novel methods for optimization of stem cell function towards tissue engineering or regenerative medicine.
Collapse
|
20
|
Nguyen HT, Ono M, Oida Y, Hara ES, Komori T, Akiyama K, Nguyen HTT, Aung KT, Pham HT, Tosa I, Takarada T, Matsuo K, Mizoguchi T, Oohashi T, Kuboki T. Bone Marrow Cells Inhibit BMP-2-Induced Osteoblast Activity in the Marrow Environment. J Bone Miner Res 2019; 34:327-332. [PMID: 30352125 DOI: 10.1002/jbmr.3598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 01/04/2023]
Abstract
Bone morphogenetic protein 2 (BMP-2) is widely known as a potent growth factor that promotes bone formation. However, an increasing number of studies have demonstrated side effects of BMP-2 therapy. A deeper understanding of the effect of BMP-2 on cells other than those involved directly in bone remodeling is of fundamental importance to promote a more effective delivery of BMP-2 to patients. In this study, we aimed to investigate the effect of BMP-2 in the marrow environment. First, BMP-2 adsorbed onto titanium implants was delivered at the tooth extraction socket (marrow-absent site) or in the mandible marrow of beagle dogs. BMP-2 could induce marked bone formation around the implant at the tooth extraction socket. Surprisingly, however, no bone formation was observed in the BMP-2-coated titanium implants inserted in the mandible marrow. In C57BL/6 mice, BMP-2 adsorbed in freeze-dried collagen pellets could induce bone formation in marrow-absent calvarial bone. However, similar to the canine model, BMP-2 could not induce bone formation in the femur marrow. Analysis of osteoblast differentiation using Col1a1(2.3)-GFP transgenic mice revealed a scarce number of osteoblasts in BMP-2-treated femurs, whereas in the control group, osteoblasts were abundant. Ablation of femur marrow recovered the BMP-2 ability to induce bone formation. In vitro experiments analyzing luciferase activity of C2C12 cells with the BMP-responsive element and alkaline phosphatase activity of MC3T3-E1 osteoblasts further revealed that bone marrow cells inhibit the BMP-2 effect on osteoblasts by direct cell-cell contact. Collectively, these results showed that the effect of BMP-2 in inducing bone formation is remarkably repressed by marrow cells via direct cell-cell contact with osteoblasts; this opens new perspectives on the clarification of the side-effects associated with BMP-2 application. © 2018 American Society for Bone and Mineral Research.
Collapse
|
21
|
Akiyama K, Higashiguti T. “Waves” mandate: Social enterprise for preventing sarcopenia and malnutrition in elderly people in Japan. Clin Nutr 2018. [DOI: 10.1016/j.clnu.2018.06.1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Fukuhara D, Irie K, Uchida Y, Kataoka K, Akiyama K, Ekuni D, Tomofuji T, Morita M. Impact of commensal flora on periodontal immune response to lipopolysaccharide. J Periodontol 2018; 89:1213-1220. [DOI: 10.1002/jper.17-0567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 02/02/2023]
|
23
|
Shida T, Akiyama K, Oh S, Sawai A, Isobe T, Okamoto Y, Ishige K, Mizokami Y, Yamagata K, Onizawa K, Tanaka H, Iijima H, Shoda J. Skeletal muscle mass to visceral fat area ratio is an important determinant affecting hepatic conditions of non-alcoholic fatty liver disease. J Gastroenterol 2018; 53:535-547. [PMID: 28791501 DOI: 10.1007/s00535-017-1377-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/26/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Not only obesity but also sarcopenia is associated with NAFLD. The influence of altered body composition on the pathophysiology of NAFLD has not been fully elucidated. The aim of this study is to determine whether skeletal muscle mass to visceral fat area ratio (SV ratio) affects NAFLD pathophysiology. METHODS A total of 472 subjects were enrolled. The association between SV ratio and NAFLD pathophysiological factors was assessed in a cross-sectional nature by stratification analysis. RESULTS When the SV ratio was stratified by quartiles (Q 1-Q 4), the SV ratio showed a negative relationship with the degree of body mass index, HOMA-IR, and liver stiffness (Q 1, 8.9 ± 7.5 kPa, mean ± standard deviation; Q 2, 7.5 ± 6.2; Q 3, 5.8 ± 3.7; Q 4, 5.0 ± 1.9) and steatosis (Q 1, 282 ± 57 dB/m; Q 2, 278 ± 58; Q 3, 253 ± 57; Q 4, 200 ± 42) measured by transient elastography. Levels of leptin and biochemical markers of liver cell damage, liver fibrosis, inflammation and oxidative stress, and hepatocyte apoptosis were significantly higher in subjects in Q 1 than in those in Q 2, Q 3, or Q 4. Moreover, fat contents in femoral muscles were significantly higher in subjects in Q 1 and the change was associated with weakened muscle strength. In logistic regression analysis, NAFLD subjects with the decreased SV ratio were likely to have an increased risk of moderate-to-severe steatosis and that of advanced fibrosis. CONCLUSIONS Decreased muscle mass coupled with increased visceral fat mass is closely associated with an increased risk for exacerbating NAFLD pathophysiology.
Collapse
|
24
|
Ikeda M, Takahashi A, Kamatani Y, Okahisa Y, Kunugi H, Mori N, Sasaki T, Ohmori T, Okamoto Y, Kawasaki H, Shimodera S, Kato T, Yoneda H, Yoshimura R, Iyo M, Matsuda K, Akiyama M, Ashikawa K, Kashiwase K, Tokunaga K, Kondo K, Saito T, Shimasaki A, Kawase K, Kitajima T, Matsuo K, Itokawa M, Someya T, Inada T, Hashimoto R, Inoue T, Akiyama K, Tanii H, Arai H, Kanba S, Ozaki N, Kusumi I, Yoshikawa T, Kubo M, Iwata N. A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Mol Psychiatry 2018; 23:639-647. [PMID: 28115744 PMCID: PMC5822448 DOI: 10.1038/mp.2016.259] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/29/2016] [Accepted: 12/13/2016] [Indexed: 11/09/2022]
Abstract
Genome-wide association studies (GWASs) have identified several susceptibility loci for bipolar disorder (BD) and shown that the genetic architecture of BD can be explained by polygenicity, with numerous variants contributing to BD. In the present GWAS (Phase I/II), which included 2964 BD and 61 887 control subjects from the Japanese population, we detected a novel susceptibility locus at 11q12.2 (rs28456, P=6.4 × 10-9), a region known to contain regulatory genes for plasma lipid levels (FADS1/2/3). A subsequent meta-analysis of Phase I/II and the Psychiatric GWAS Consortium for BD (PGC-BD) identified another novel BD gene, NFIX (Pbest=5.8 × 10-10), and supported three regions previously implicated in BD susceptibility: MAD1L1 (Pbest=1.9 × 10-9), TRANK1 (Pbest=2.1 × 10-9) and ODZ4 (Pbest=3.3 × 10-9). Polygenicity of BD within Japanese and trans-European-Japanese populations was assessed with risk profile score analysis. We detected higher scores in BD cases both within (Phase I/II) and across populations (Phase I/II and PGC-BD). These were defined by (1) Phase II as discovery and Phase I as target, or vice versa (for 'within Japanese comparisons', Pbest~10-29, R2~2%), and (2) European PGC-BD as discovery and Japanese BD (Phase I/II) as target (for 'trans-European-Japanese comparison,' Pbest~10-13, R2~0.27%). This 'trans population' effect was supported by estimation of the genetic correlation using the effect size based on each population (liability estimates~0.7). These results indicate that (1) two novel and three previously implicated loci are significantly associated with BD and that (2) BD 'risk' effect are shared between Japanese and European populations.
Collapse
|
25
|
Akiyama K, Warabi E, Okada K, Yanagawa T, Ishii T, Kose K, Tokushige K, Ishige K, Mizokami Y, Yamagata K, Onizawa K, Ariizumi SI, Yamamoto M, Shoda J. Deletion of both p62 and Nrf2 spontaneously results in the development of nonalcoholic steatohepatitis. Exp Anim 2017; 67:201-218. [PMID: 29276215 PMCID: PMC5955752 DOI: 10.1538/expanim.17-0112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease
worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both
p62/Sqstm1 and Nrf2 genes spontaneously led to the
development of NASH in mice fed a normal chow and was associated with liver tumorigenesis.
The pathogenetic mechanism (s) underlying the NASH development was investigated in
p62:Nrf2 double-knockout (DKO) mice. DKO mice showed massive
hepatomegaly and steatohepatitis with fat accumulation and had hyperphagia-induced obesity
coupled with insulin resistance and adipokine imbalance. They also showed dysbiosis
associated with an increased proportion of gram-negative bacteria species and an increased
lipopolysaccharide (LPS) level in feces. Intestinal permeability was elevated in
association with both epithelial damage and decreased expression levels of tight junction
protein zona occludens-1, and thereby LPS levels were increased in serum. For Kupffer
cells, the foreign body phagocytic capacity was decreased in magnetic resonance imaging,
and the proportion of M1 cells was increased in DKO mice. In vitro
experiments showed that the inflammatory response was accelerated in the
p62:Nrf2 double-deficient Kupffer cells when
challenged with a low dose of LPS. Diet restriction improved the hepatic conditions of
NASH in association with improved dysbiosis and decreased LPS levels. The results suggest
that in DKO mice, activation of innate immunity by excessive LPS flux from the intestines,
occurring both within and outside the liver, is central to the development of hepatic
damage in the form of NASH.
Collapse
|