1
|
das Neves W, Alves CRR, Dos Santos G, Alves MJNN, Deik A, Pierce K, Dennis C, Buckley L, Clish CB, Swoboda KJ, Brum PC, de Castro Junior G. Physical performance and plasma metabolic profile as potential prognostic factors in metastatic lung cancer patients. Eur J Clin Invest 2024; 54:e14288. [PMID: 39058257 DOI: 10.1111/eci.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Low physical performance is associated with higher mortality rate in multiple pathological conditions. Here, we aimed to determine whether body composition and physical performance could be prognostic factors in non-small cell lung cancer (NSCLC) patients. Moreover, we performed an exploratory approach to determine whether plasma samples from NSCLC patients could directly affect metabolic and structural phenotypes in primary muscle cells. METHODS This prospective cohort study included 55 metastatic NSCLC patients and seven age-matched control subjects. Assessments included physical performance, body composition, quality of life and overall survival rate. Plasma samples from a sub cohort of 18 patients were collected for exploratory studies in cell culture and metabolomic analysis. RESULTS We observed a higher survival rate in NSCLC patients with high performance in the timed up-and-go (+320%; p = .007), sit-to-stand (+256%; p = .01) and six-minute walking (+323%; p = .002) tests when compared to NSCLC patients with low physical performance. There was no significant association for similar analysis with body composition measurements (p > .05). Primary human myotubes incubated with plasma from NSCLC patients with low physical performance had impaired oxygen consumption rate (-54.2%; p < .0001) and cell proliferation (-44.9%; p = .007). An unbiased metabolomic analysis revealed a list of specific metabolites differentially expressed in the plasma of NSCLC patients with low physical performance. CONCLUSION These novel findings indicate that physical performance is a prognostic factor for overall survival in NSCLC patients and provide novel insights into circulating factors that could impair skeletal muscle metabolism.
Collapse
|
2
|
Zhu M, Frank MW, Radka CD, Jeanfavre S, Xu J, Tse MW, Pacheco JA, Kim JS, Pierce K, Deik A, Hussain FA, Elsherbini J, Hussain S, Xulu N, Khan N, Pillay V, Mitchell CM, Dong KL, Ndung'u T, Clish CB, Rock CO, Blainey PC, Bloom SM, Kwon DS. Vaginal Lactobacillus fatty acid response mechanisms reveal a metabolite-targeted strategy for bacterial vaginosis treatment. Cell 2024; 187:5413-5430.e29. [PMID: 39163861 PMCID: PMC11429459 DOI: 10.1016/j.cell.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024]
Abstract
Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related lactobacilli, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the vaginal microbiota and enhances bacterial fitness by biochemically sequestering OA in a derivative form only ohyA-harboring organisms can exploit. OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro BV model, suggesting a metabolite-based treatment approach.
Collapse
|
3
|
Furuichi M, Kawaguchi T, Pust MM, Yasuma-Mitobe K, Plichta DR, Hasegawa N, Ohya T, Bhattarai SK, Sasajima S, Aoto Y, Tuganbaev T, Yaginuma M, Ueda M, Okahashi N, Amafuji K, Kiridoshi Y, Sugita K, Stražar M, Avila-Pacheco J, Pierce K, Clish CB, Skelly AN, Hattori M, Nakamoto N, Caballero S, Norman JM, Olle B, Tanoue T, Suda W, Arita M, Bucci V, Atarashi K, Xavier RJ, Honda K. Commensal consortia decolonize Enterobacteriaceae via ecological control. Nature 2024; 633:878-886. [PMID: 39294375 PMCID: PMC11424487 DOI: 10.1038/s41586-024-07960-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/19/2024] [Indexed: 09/20/2024]
Abstract
Persistent colonization and outgrowth of potentially pathogenic organisms in the intestine can result from long-term antibiotic use or inflammatory conditions, and may perpetuate dysregulated immunity and tissue damage1,2. Gram-negative Enterobacteriaceae gut pathobionts are particularly recalcitrant to conventional antibiotic treatment3,4, although an emerging body of evidence suggests that manipulation of the commensal microbiota may be a practical alternative therapeutic strategy5-7. Here we isolated and down-selected commensal bacterial consortia from stool samples from healthy humans that could strongly and specifically suppress intestinal Enterobacteriaceae. One of the elaborated consortia, comprising 18 commensal strains, effectively controlled ecological niches by regulating gluconate availability, thereby re-establishing colonization resistance and alleviating Klebsiella- and Escherichia-driven intestinal inflammation in mice. Harnessing these activities in the form of live bacterial therapies may represent a promising solution to combat the growing threat of proinflammatory, antimicrobial-resistant Enterobacteriaceae infection.
Collapse
|
4
|
Wang C, Wagner A, Fessler J, DeTomaso D, Zaghouani S, Zhou Y, Pierce K, Sobel RA, Clish C, Yosef N, Kuchroo VK. The glycolytic reaction PGAM unexpectedly restrains Th17 pathogenicity and Th17-dependent autoimmunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.18.607992. [PMID: 39229227 PMCID: PMC11370342 DOI: 10.1101/2024.08.18.607992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Glucose metabolism is a critical regulator of T cell function, largely thought to support their activation and effector differentiation. Here, we investigate the relevance of individual glycolytic reactions in determining the pathogenicity of T helper 17 (Th17) cells using single-cell RNA-seq and Compass, an algorithm we previously developed for estimating metabolic flux from single-cell transcriptomes. Surprisingly, Compass predicted that the metabolic shunt between 3-phosphoglycerate (3PG) and 2-phosphoglycerate (2PG) is inversely correlated with pathogenicity in these cells, whereas both its upstream and downstream reactions were positively correlated. Perturbation of phosphoglycerate mutase (PGAM), an enzyme required for 3PG to 2PG conversion, resulted in an increase in protein expression of IL2, IL17, and TNFa, as well as induction of a pathogenic gene expression program. Consistent with PGAM playing a pro-regulatory role, inhibiting PGAM in Th17 cells resulted in exacerbated autoimmune responses in the adoptive transfer model of experimental autoimmune encephalomyelitis (EAE). Finally, we further investigated the effects of modulating glucose concentration on Th17 cells in culture. Th17 cells differentiated under high- and low-glucose conditions substantially differed in their metabolic and effector transcriptomic programs, both central to Th17 function. Importantly, the PGAM-dependent gene module marks the least pathogenic state of Th17 cells irrespective of glucose concentration. Overall, our study identifies PGAM, contrary to other glycolytic enzymes, as a negative regulator of Th17 pathogenicity.
Collapse
|
5
|
Sodders MJ, Avila-Pacheco J, Okorie EC, Shen M, Kumari N, Marathi A, Lakhani M, Bullock K, Pierce K, Dennis C, Jeanfavre S, Sarkar S, Scherzer CR, Clish C, Olsen AL. Genetic screening and metabolomics identify glial adenosine metabolism as a therapeutic target in Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594309. [PMID: 38798570 PMCID: PMC11118494 DOI: 10.1101/2024.05.15.594309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and lacks disease-modifying therapies. We developed a Drosophila model for identifying novel glial-based therapeutic targets for PD. Human alpha-synuclein is expressed in neurons and individual genes are independently knocked down in glia. We performed a forward genetic screen, knocking down the entire Drosophila kinome in glia in alpha-synuclein expressing flies. Among the top hits were five genes (Ak1, Ak6, Adk1, Adk2, and awd) involved in adenosine metabolism. Knockdown of each gene improved locomotor dysfunction, rescued neurodegeneration, and increased brain adenosine levels. We determined that the mechanism of neuroprotection involves adenosine itself, as opposed to a downstream metabolite. We dove deeper into the mechanism for one gene, Ak1, finding rescue of dopaminergic neuron loss, alpha-synuclein aggregation, and bioenergetic dysfunction after glial Ak1 knockdown. We performed metabolomics in Drosophila and in human PD patients, allowing us to comprehensively characterize changes in purine metabolism and identify potential biomarkers of dysfunctional adenosine metabolism in people. These experiments support glial adenosine as a novel therapeutic target in PD.
Collapse
|
6
|
Schirmer M, Stražar M, Avila-Pacheco J, Rojas-Tapias DF, Brown EM, Temple E, Deik A, Bullock K, Jeanfavre S, Pierce K, Jin S, Invernizzi R, Pust MM, Costliow Z, Mack DR, Griffiths AM, Walters T, Boyle BM, Kugathasan S, Vlamakis H, Hyams J, Denson L, Clish CB, Xavier RJ. Linking microbial genes to plasma and stool metabolites uncovers host-microbial interactions underlying ulcerative colitis disease course. Cell Host Microbe 2024; 32:209-226.e7. [PMID: 38215740 PMCID: PMC10923022 DOI: 10.1016/j.chom.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024]
Abstract
Understanding the role of the microbiome in inflammatory diseases requires the identification of microbial effector molecules. We established an approach to link disease-associated microbes to microbial metabolites by integrating paired metagenomics, stool and plasma metabolomics, and culturomics. We identified host-microbial interactions correlated with disease activity, inflammation, and the clinical course of ulcerative colitis (UC) in the Predicting Response to Standardized Colitis Therapy (PROTECT) pediatric inception cohort. In severe disease, metabolite changes included increased dipeptides and tauro-conjugated bile acids (BAs) and decreased amino-acid-conjugated BAs in stool, whereas in plasma polyamines (N-acetylputrescine and N1-acetylspermidine) increased. Using patient samples and Veillonella parvula as a model, we uncovered nitrate- and lactate-dependent metabolic pathways, experimentally linking V. parvula expansion to immunomodulatory tryptophan metabolite production. Additionally, V. parvula metabolizes immunosuppressive thiopurine drugs through xdhA xanthine dehydrogenase, potentially impairing the therapeutic response. Our findings demonstrate that the microbiome contributes to disease-associated metabolite changes, underscoring the importance of these interactions in disease pathology and treatment.
Collapse
|
7
|
Zhu M, Frank MW, Radka CD, Jeanfavre S, Tse MW, Pacheco JA, Pierce K, Deik A, Xu J, Hussain S, Hussain FA, Xulu N, Khan N, Pillay V, Dong KL, Ndung’u T, Clish CB, Rock CO, Blainey PC, Bloom SM, Kwon DS. Vaginal Lactobacillus fatty acid response mechanisms reveal a novel strategy for bacterial vaginosis treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573720. [PMID: 38234804 PMCID: PMC10793477 DOI: 10.1101/2023.12.30.573720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related species, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the human vaginal microbiota and sequesters OA in a derivative form that only ohyA-harboring organisms can exploit. Finally, OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro model of BV, suggesting a novel approach for treatment.
Collapse
|
8
|
Passias PG, Naessig S, Williamson TK, Tretiakov PS, Imbo B, Joujon-Roche R, Ahmad S, Passfall L, Owusu-Sarpong S, Krol O, Ahmad W, Pierce K, O'Connell B, Schoenfeld AJ, Vira S, Diebo BG, Lafage R, Lafage V, Cheongeun O, Gerling M, Dinizo M, Protopsaltis T, Campello M, Weiser S. The psychological burden of disease among patients undergoing cervical spine surgery: Are we underestimating our patients' inherent disability? Neurochirurgie 2023; 69:101395. [PMID: 36502878 DOI: 10.1016/j.neuchi.2022.101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Studies have utilized psychological questionnaires to identify the psychological distress among certain surgical populations. RESEARCH QUESTION Is there an additional psychological burden among patients undergoing surgical treatment for their symptomatic degenerative cervical disease? MATERIALS AND METHODS Patients>18 years of age with symptomatic, degenerative cervical spine disease were included and prospectively enrolled. Correlations and multivariable logistic regression analysis assessed the relationship between these mental health components (PCS, FABQ) and the severity of disability described by the NDI, EQ-5D, and mJOA score. Patient distress scores were compared to previously published benchmarks for other diagnoses. RESULTS 47 patients were enrolled (age: 56.0 years,BMI: 29.7kg/m2). Increasing neck disability and decreasing EQ-5D were correlated with greater PCS and FABQ(all P<0.001). Patients with severe psychological distress at baseline were more likely to report severe neck disability, while physician-reported mJOA had weaker associations. Compared to historical controls of lumbar patients, patients in our study had greater levels of psychological distress, as measured by FABQ (40.0 vs. 17.6; P<0.001) and PCS (27.4 vs. 19.3;P<0.001). DISCUSSION AND CONCLUSION Degenerative cervical spine patients seeking surgery were found to have a significant level of psychological distress, with a large portion reporting severe fear avoidance beliefs and catastrophizing pain at baseline. Strong correlation was seen between patient-reported functional metrics, but less so with physician-reported signs and symptoms. Additionally, this population demonstrated higher psychological burden in certain respects than previously identified benchmarks of patients with other disorders. Preoperative treatment to help mitigate this distress, impact postoperative outcomes, and should be further investigated. LEVEL OF EVIDENCE Level III.
Collapse
|
9
|
Chou C, Mohanty S, Kang HA, Kong L, Avila‐Pacheco J, Joshi SR, Ueda I, Devine L, Raddassi K, Pierce K, Jeanfavre S, Bullock K, Meng H, Clish C, Santori FR, Shaw AC, Xavier RJ. Metabolomic and transcriptomic signatures of influenza vaccine response in healthy young and older adults. Aging Cell 2022; 21:e13682. [PMID: 35996998 PMCID: PMC9470889 DOI: 10.1111/acel.13682] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 01/25/2023] Open
Abstract
Seasonal influenza causes mild to severe respiratory infections and significant morbidity, especially in older adults. Transcriptomic analysis in populations across multiple flu seasons has provided insights into the molecular determinants of vaccine response. Still, the metabolic changes that underlie the immune response to influenza vaccination remain poorly characterized. We performed untargeted metabolomics to analyze plasma metabolites in a cohort of younger and older subjects before and after influenza vaccination to identify vaccine-induced molecular signatures. Metabolomic and transcriptomic data were combined to define networks of gene and metabolic signatures indicative of high and low antibody response in these individuals. We observed age-related differences in metabolic baselines and signatures of antibody response to influenza vaccination and the abundance of α-linolenic and linoleic acids, sterol esters, fatty-acylcarnitines, and triacylglycerol metabolism. We identified a metabolomic signature associated with age-dependent vaccine response, finding increased tryptophan and decreased polyunsaturated fatty acids (PUFAs) in young high responders (HRs), while fatty acid synthesis and cholesteryl esters accumulated in older HRs. Integrated metabolomic and transcriptomic analysis shows that depletion of PUFAs, which are building blocks for prostaglandins and other lipid immunomodulators, in young HR subjects at Day 28 is related to a robust immune response to influenza vaccination. Increased glycerophospholipid levels were associated with an inflammatory response in older HRs to flu vaccination. This multi-omics approach uncovered age-related molecular markers associated with influenza vaccine response and provides insight into vaccine-induced metabolic responses that may help guide development of more effective influenza vaccines.
Collapse
|
10
|
Bethlehem RAI, Seidlitz J, White SR, Vogel JW, Anderson KM, Adamson C, Adler S, Alexopoulos GS, Anagnostou E, Areces-Gonzalez A, Astle DE, Auyeung B, Ayub M, Bae J, Ball G, Baron-Cohen S, Beare R, Bedford SA, Benegal V, Beyer F, Blangero J, Blesa Cábez M, Boardman JP, Borzage M, Bosch-Bayard JF, Bourke N, Calhoun VD, Chakravarty MM, Chen C, Chertavian C, Chetelat G, Chong YS, Cole JH, Corvin A, Costantino M, Courchesne E, Crivello F, Cropley VL, Crosbie J, Crossley N, Delarue M, Delorme R, Desrivieres S, Devenyi GA, Di Biase MA, Dolan R, Donald KA, Donohoe G, Dunlop K, Edwards AD, Elison JT, Ellis CT, Elman JA, Eyler L, Fair DA, Feczko E, Fletcher PC, Fonagy P, Franz CE, Galan-Garcia L, Gholipour A, Giedd J, Gilmore JH, Glahn DC, Goodyer IM, Grant PE, Groenewold NA, Gunning FM, Gur RE, Gur RC, Hammill CF, Hansson O, Hedden T, Heinz A, Henson RN, Heuer K, Hoare J, Holla B, Holmes AJ, Holt R, Huang H, Im K, Ipser J, Jack CR, Jackowski AP, Jia T, Johnson KA, Jones PB, Jones DT, Kahn RS, Karlsson H, Karlsson L, Kawashima R, Kelley EA, Kern S, Kim KW, Kitzbichler MG, Kremen WS, Lalonde F, Landeau B, Lee S, Lerch J, Lewis JD, Li J, Liao W, Liston C, Lombardo MV, Lv J, Lynch C, Mallard TT, Marcelis M, Markello RD, Mathias SR, Mazoyer B, McGuire P, Meaney MJ, Mechelli A, Medic N, Misic B, Morgan SE, Mothersill D, Nigg J, Ong MQW, Ortinau C, Ossenkoppele R, Ouyang M, Palaniyappan L, Paly L, Pan PM, Pantelis C, Park MM, Paus T, Pausova Z, Paz-Linares D, Pichet Binette A, Pierce K, Qian X, Qiu J, Qiu A, Raznahan A, Rittman T, Rodrigue A, Rollins CK, Romero-Garcia R, Ronan L, Rosenberg MD, Rowitch DH, Salum GA, Satterthwaite TD, Schaare HL, Schachar RJ, Schultz AP, Schumann G, Schöll M, Sharp D, Shinohara RT, Skoog I, Smyser CD, Sperling RA, Stein DJ, Stolicyn A, Suckling J, Sullivan G, Taki Y, Thyreau B, Toro R, Traut N, Tsvetanov KA, Turk-Browne NB, Tuulari JJ, Tzourio C, Vachon-Presseau É, Valdes-Sosa MJ, Valdes-Sosa PA, Valk SL, van Amelsvoort T, Vandekar SN, Vasung L, Victoria LW, Villeneuve S, Villringer A, Vértes PE, Wagstyl K, Wang YS, Warfield SK, Warrier V, Westman E, Westwater ML, Whalley HC, Witte AV, Yang N, Yeo B, Yun H, Zalesky A, Zar HJ, Zettergren A, Zhou JH, Ziauddeen H, Zugman A, Zuo XN, Bullmore ET, Alexander-Bloch AF. Brain charts for the human lifespan. Nature 2022; 604:525-533. [PMID: 35388223 PMCID: PMC9021021 DOI: 10.1038/s41586-022-04554-y] [Citation(s) in RCA: 631] [Impact Index Per Article: 210.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/16/2022] [Indexed: 02/02/2023]
Abstract
Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight1. Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data ( http://www.brainchart.io/ ). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories2 of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones3, showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.
Collapse
|
11
|
Bulló M, Papandreou C, García-Gavilán J, Ruiz-Canela M, Li J, Guasch-Ferré M, Toledo E, Clish C, Corella D, Estruch R, Ros E, Fitó M, Lee CH, Pierce K, Razquin C, Arós F, Serra-Majem L, Liang L, Martínez-González MA, Hu FB, Salas-Salvadó J. Tricarboxylic acid cycle related-metabolites and risk of atrial fibrillation and heart failure. Metabolism 2021; 125:154915. [PMID: 34678258 PMCID: PMC9206868 DOI: 10.1016/j.metabol.2021.154915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Tricarboxylic acid (TCA) cycle deregulation may predispose to cardiovascular diseases, but the role of TCA cycle-related metabolites in the development of atrial fibrillation (AF) and heart failure (HF) remains unexplored. This study sought to investigate the association of TCA cycle-related metabolites with risk of AF and HF. METHODS We used two nested case-control studies within the PREDIMED study. During a mean follow-up for about 10 years, 512 AF and 334 HF incident cases matched by age (±5 years), sex and recruitment center to 616 controls and 433 controls, respectively, were included in this study. Baseline plasma levels of citrate, aconitate, isocitrate, succinate, malate and d/l-2-hydroxyglutarate were measured with liquid chromatography-tandem mass spectrometry. Multivariable conditional logistic regression models were fitted to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for metabolites and the risk of AF or HF. Potential confounders included smoking, family history of premature coronary heart disease, physical activity, alcohol intake, body mass index, intervention groups, dyslipidemia, hypertension, type 2 diabetes and medication use. RESULTS Comparing extreme quartiles of metabolites, elevated levels of succinate, malate, citrate and d/l-2-hydroxyglutarate were associated with a higher risk of AF [ORQ4 vs. Q1 (95% CI): 1.80 (1.21-2.67), 2.13 (1.45-3.13), 1.87 (1.25-2.81) and 1.95 (1.31-2.90), respectively]. One SD increase in aconitate was directly associated with AF risk [OR (95% CI): 1.16 (1.01-1.34)]. The corresponding ORs (95% CI) for HF comparing extreme quartiles of malate, aconitate, isocitrate and d/l-2-hydroxyglutarate were 2.15 (1.29-3.56), 2.16 (1.25-3.72), 2.63 (1.56-4.44) and 1.82 (1.10-3.04), respectively. These associations were confirmed in an internal validation, except for aconitate and AF. CONCLUSION These findings underscore the potential role of the TCA cycle in the pathogenesis of cardiac outcomes.
Collapse
|
12
|
Sharma R, Reinstadler B, Engelstad K, Skinner OS, Stackowitz E, Haller RG, Clish CB, Pierce K, Walker MA, Fryer R, Oglesbee D, Mao X, Shungu DC, Khatri A, Hirano M, De Vivo DC, Mootha VK. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. J Clin Invest 2021; 131:136055. [PMID: 33463549 DOI: 10.1172/jci136055] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial disorders represent a large collection of rare syndromes that are difficult to manage both because we do not fully understand biochemical pathogenesis and because we currently lack facile markers of severity. The m.3243A>G variant is the most common heteroplasmic mitochondrial DNA mutation and underlies a spectrum of diseases, notably mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes (MELAS). To identify robust circulating markers of m.3243A>G disease, we first performed discovery proteomics, targeted metabolomics, and untargeted metabolomics on plasma from a deeply phenotyped cohort (102 patients, 32 controls). In a validation phase, we measured concentrations of prioritized metabolites in an independent cohort using distinct methods. We validated 20 analytes (1 protein, 19 metabolites) that distinguish patients with MELAS from controls. The collection includes classic (lactate, alanine) and more recently identified (GDF-15, α-hydroxybutyrate) mitochondrial markers. By mining untargeted mass-spectra we uncovered 3 less well-studied metabolite families: N-lactoyl-amino acids, β-hydroxy acylcarnitines, and β-hydroxy fatty acids. Many of these 20 analytes correlate strongly with established measures of severity, including Karnofsky status, and mechanistically, nearly all markers are attributable to an elevated NADH/NAD+ ratio, or NADH-reductive stress. Our work defines a panel of organelle function tests related to NADH-reductive stress that should enable classification and monitoring of mitochondrial disease.
Collapse
|
13
|
Wagner A, Wang C, Fessler J, DeTomaso D, Avila-Pacheco J, Kaminski J, Zaghouani S, Christian E, Thakore P, Schellhaass B, Akama-Garren E, Pierce K, Singh V, Ron-Harel N, Douglas VP, Bod L, Schnell A, Puleston D, Sobel RA, Haigis M, Pearce EL, Soleimani M, Clish C, Regev A, Kuchroo VK, Yosef N. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 2021; 184:4168-4185.e21. [PMID: 34216539 PMCID: PMC8621950 DOI: 10.1016/j.cell.2021.05.045] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/15/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Metabolism is a major regulator of immune cell function, but it remains difficult to study the metabolic status of individual cells. Here, we present Compass, an algorithm to characterize cellular metabolic states based on single-cell RNA sequencing and flux balance analysis. We applied Compass to associate metabolic states with T helper 17 (Th17) functional variability (pathogenic potential) and recovered a metabolic switch between glycolysis and fatty acid oxidation, akin to known Th17/regulatory T cell (Treg) differences, which we validated by metabolic assays. Compass also predicted that Th17 pathogenicity was associated with arginine and downstream polyamine metabolism. Indeed, polyamine-related enzyme expression was enhanced in pathogenic Th17 and suppressed in Treg cells. Chemical and genetic perturbation of polyamine metabolism inhibited Th17 cytokines, promoted Foxp3 expression, and remodeled the transcriptome and epigenome of Th17 cells toward a Treg-like state. In vivo perturbations of the polyamine pathway altered the phenotype of encephalitogenic T cells and attenuated tissue inflammation in CNS autoimmunity.
Collapse
|
14
|
Steinberg G, Saltstein D, Shore N, Cesari R, Vermette J, Pierce K, Blake-Haskins J, Hariharan S, Bedke J, Powles T. 795TiP Phase III study of the programmed cell death protein 1 inhibitor PF-06801591 plus bacillus Calmette-Guérin for non-muscle invasive bladder cancer. Ann Oncol 2020. [DOI: 10.1016/j.annonc.2020.08.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
15
|
Wagner A, Wang C, DeTomaso D, Pacheco JA, Zaghouani S, Fessler J, Akama-Garren E, Pierce K, Ron-Harel N, Haigis M, Sobel RA, Clish C, Regev A, Kuchroo VK, Yosef N. In Silico Modeling of Metabolic State in Single Th17 Cells Reveals Novel Regulators of Inflammation and Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2020. [DOI: 10.4049/jimmunol.204.supp.150.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Cellular metabolism is a major regulator of immune response, but it is difficult to study the metabolic status of an individual immune cell using current technologies. Here, we present Compass, an algorithm to characterize the metabolic landscape of single cells in silico based on single-cell RNA-Seq and flux balance analysis. We used Compass to study the landscape of metabolic heterogeneity in Th17 cells and search for novel metabolic regulators of their inflammatory function. In central carbon metabolism, Compass predicted a metabolic switch between glycolysis and fatty acid oxidation that mirrors the Th17 vs. Treg phenotype, which we validated through transcriptomic, metabolic and functional assays. The TCA cycle was predicted to break at two points, both of which have been independently identified by other groups in M1 macrophage polarization. Surprisingly, and contrary to common immunometabolic understanding, Compass predicted that glycolysis too was divided into functional modules, and that one of them supported an anti-inflammatory phenotype. We validate the paradoxical prediction and demonstrate that inhibition of this module promotes a pro-inflammatory transcriptional program in Th17 cells, resulting in neuroinflammation in an adoptive transfer model of autoimmune disease. In conclusion, Compass is a widely applicable algorithm to characterize metabolic states at single cell resolution. It allows associating cellular metabolic states with effector functions and detection of metabolic targets that regulate effector phenotypes. We expect it to become a widely used tool with the increasing availability of single-cell RNA-Seq data, spurred by efforts such as the human cell atlas.
Collapse
|
16
|
Guasch-Ferré M, Santos JL, Martínez-González MA, Clish CB, Razquin C, Wang D, Liang L, Li J, Dennis C, Corella D, Muñoz-Bravo C, Romaguera D, Estruch R, Santos-Lozano JM, Castañer O, Alonso-Gómez A, Serra-Majem L, Ros E, Canudas S, Asensio EM, Fitó M, Pierce K, Martínez JA, Salas-Salvadó J, Toledo E, Hu FB, Ruiz-Canela M. Glycolysis/gluconeogenesis- and tricarboxylic acid cycle-related metabolites, Mediterranean diet, and type 2 diabetes. Am J Clin Nutr 2020; 111:835-844. [PMID: 32060497 PMCID: PMC7138680 DOI: 10.1093/ajcn/nqaa016] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Glycolysis/gluconeogenesis and tricarboxylic acid (TCA) cycle metabolites have been associated with type 2 diabetes (T2D). However, the associations of these metabolites with T2D incidence and the potential effect of dietary interventions remain unclear. OBJECTIVES We aimed to evaluate the association of baseline and 1-y changes in glycolysis/gluconeogenesis and TCA cycle metabolites with insulin resistance and T2D incidence, and the potential modifying effect of Mediterranean diet (MedDiet) interventions. METHODS We included 251 incident T2D cases and 638 noncases in a nested case-cohort study within the PREDIMED Study during median follow-up of 3.8 y. Participants were allocated to MedDiet + extra-virgin olive oil, MedDiet + nuts, or control diet. Plasma metabolites were measured using a targeted approach by LC-tandem MS. We tested the associations of baseline and 1-y changes in glycolysis/gluconeogenesis and TCA cycle metabolites with subsequent T2D risk using weighted Cox regression models and adjusting for potential confounders. We designed a weighted score combining all these metabolites and applying the leave-one-out cross-validation approach. RESULTS Baseline circulating concentrations of hexose monophosphate, pyruvate, lactate, alanine, glycerol-3 phosphate, and isocitrate were significantly associated with higher T2D risk (17-44% higher risk for each 1-SD increment). The weighted score including all metabolites was associated with a 30% (95% CI: 1.12, 1.51) higher relative risk of T2D for each 1-SD increment. Baseline lactate and alanine were associated with baseline and 1-y changes of homeostasis model assessment of insulin resistance. One-year increases in most metabolites and in the weighted score were associated with higher relative risk of T2D after 1 y of follow-up. Lower risks were observed in the MedDiet groups than in the control group although no significant interactions were found after adjusting for multiple comparisons. CONCLUSIONS We identified a panel of glycolysis/gluconeogenesis-related metabolites that was significantly associated with T2D risk in a Mediterranean population at high cardiovascular disease risk. A MedDiet could counteract the detrimental effects of these metabolites.This trial was registered at controlled-trials.com as ISRCTN35739639.
Collapse
|
17
|
Stefater MA, Pacheco JA, Bullock K, Pierce K, Deik A, Liu E, Clish C, Stylopoulos N. Portal Venous Metabolite Profiling After RYGB in Male Rats Highlights Changes in Gut-Liver Axis. J Endocr Soc 2020; 4:bvaa003. [PMID: 32099946 PMCID: PMC7033034 DOI: 10.1210/jendso/bvaa003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
After Roux-en-Y gastric bypass (RYGB) surgery, the intestine undergoes structural and metabolic reprogramming and appears to enhance use of energetic fuels including glucose and amino acids (AAs), changes that may be related to the surgery’s remarkable metabolic effects. Consistently, RYGB alters serum levels of AAs and other metabolites, perhaps reflecting mechanisms for metabolic improvement. To home in on the intestinal contribution, we performed metabolomic profiling in portal venous (PV) blood from lean, Long Evans rats after RYGB vs sham surgery. We found that one-carbon metabolism (OCM), nitrogen metabolism, and arginine and proline metabolism were significantly enriched in PV blood. Nitrogen, OCM, and sphingolipid metabolism as well as ubiquinone biosynthesis were also overrepresented among metabolites uniquely affected in PV vs peripheral blood in RYGB-operated but not sham-operated animals. Peripheral blood demonstrated changes in AA metabolism, OCM, sphingolipid metabolism, and glycerophospholipid metabolism. Despite enrichment for many of the same pathways, the overall metabolite fingerprint of the 2 compartments did not correlate, highlighting a unique role for PV metabolomic profiling as a window into gut metabolism. AA metabolism and OCM were enriched in peripheral blood both from humans and lean rats after RYGB, demonstrating that these conserved pathways might represent mechanisms for clinical improvement elicited by the surgery in patients. Together, our data provide novel insight into RYGB’s effects on the gut-liver axis and highlight a role for OCM as a key metabolic pathway affected by RYGB.
Collapse
|
18
|
Li H, Ning S, Ghandi M, Kryukov GV, Gopal S, Deik A, Souza A, Pierce K, Keskula P, Hernandez D, Ann J, Shkoza D, Apfel V, Zou Y, Vazquez F, Barretina J, Pagliarini RA, Galli GG, Root DE, Hahn WC, Tsherniak A, Giannakis M, Schreiber SL, Clish CB, Garraway LA, Sellers WR. The landscape of cancer cell line metabolism. Nat Med 2019; 25:850-860. [PMID: 31068703 PMCID: PMC6629041 DOI: 10.1038/s41591-019-0404-8] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/20/2019] [Indexed: 02/08/2023]
Abstract
Despite considerable efforts to identify cancer metabolic alterations that might unveil druggable vulnerabilities, systematic characterizations of metabolism as it relates to functional genomic features and associated dependencies remain uncommon. To further understand the metabolic diversity of cancer, we profiled 225 metabolites in 928 cell lines from more than 20 cancer types in the Cancer Cell Line Encyclopedia (CCLE) using liquid chromatography-mass spectrometry (LC-MS). This resource enables unbiased association analysis linking the cancer metabolome to genetic alterations, epigenetic features and gene dependencies. Additionally, by screening barcoded cell lines, we demonstrated that aberrant ASNS hypermethylation sensitizes subsets of gastric and hepatic cancers to asparaginase therapy. Finally, our analysis revealed distinct synthesis and secretion patterns of kynurenine, an immune-suppressive metabolite, in model cancer cell lines. Together, these findings and related methodology provide comprehensive resources that will help clarify the landscape of cancer metabolism.
Collapse
|
19
|
Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, Vatanen T, Hall AB, Mallick H, McIver LJ, Sauk JS, Wilson RG, Stevens BW, Scott JM, Pierce K, Deik AA, Bullock K, Imhann F, Porter JA, Zhernakova A, Fu J, Weersma RK, Wijmenga C, Clish CB, Vlamakis H, Huttenhower C, Xavier RJ. Author Correction: Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol 2019; 4:898. [PMID: 30971771 DOI: 10.1038/s41564-019-0442-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the Supplementary Tables 2, 4 and 6 originally published with this Article, the authors mistakenly included sample identifiers in the form of UMCGs rather than UMCG IBDs in the validation cohort; this has now been amended.
Collapse
|
20
|
Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, Vatanen T, Hall AB, Mallick H, McIver LJ, Sauk JS, Wilson RG, Stevens BW, Scott JM, Pierce K, Deik AA, Bullock K, Imhann F, Porter JA, Zhernakova A, Fu J, Weersma RK, Wijmenga C, Clish CB, Vlamakis H, Huttenhower C, Xavier RJ. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol 2019; 4:293-305. [PMID: 30531976 PMCID: PMC6342642 DOI: 10.1038/s41564-018-0306-4] [Citation(s) in RCA: 1074] [Impact Index Per Article: 179.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
The inflammatory bowel diseases (IBDs), which include Crohn's disease (CD) and ulcerative colitis (UC), are multifactorial chronic conditions of the gastrointestinal tract. While IBD has been associated with dramatic changes in the gut microbiota, changes in the gut metabolome-the molecular interface between host and microbiota-are less well understood. To address this gap, we performed untargeted metabolomic and shotgun metagenomic profiling of cross-sectional stool samples from discovery (n = 155) and validation (n = 65) cohorts of CD, UC and non-IBD control patients. Metabolomic and metagenomic profiles were broadly correlated with faecal calprotectin levels (a measure of gut inflammation). Across >8,000 measured metabolite features, we identified chemicals and chemical classes that were differentially abundant in IBD, including enrichments for sphingolipids and bile acids, and depletions for triacylglycerols and tetrapyrroles. While > 50% of differentially abundant metabolite features were uncharacterized, many could be assigned putative roles through metabolomic 'guilt by association' (covariation with known metabolites). Differentially abundant species and functions from the metagenomic profiles reflected adaptation to oxidative stress in the IBD gut, and were individually consistent with previous findings. Integrating these data, however, we identified 122 robust associations between differentially abundant species and well-characterized differentially abundant metabolites, indicating possible mechanistic relationships that are perturbed in IBD. Finally, we found that metabolome- and metagenome-based classifiers of IBD status were highly accurate and, like the vast majority of individual trends, generalized well to the independent validation cohort. Our findings thus provide an improved understanding of perturbations of the microbiome-metabolome interface in IBD, including identification of many potential diagnostic and therapeutic targets.
Collapse
|
21
|
Kirwan S, Boland T, Kelly A, Serra E, Rajauria G, Pierce K. PSXI-35 Effects of chitosan source, molecular weight and supplementation level on in vitro (RUSITEC) ammonia and methane production. J Anim Sci 2018. [DOI: 10.1093/jas/sky404.929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Board PG, Pierce K, Coggan M. Expression of Functional Coagulation Factor XIII in Escherichia coli. Thromb Haemost 2018. [DOI: 10.1055/s-0038-1645201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
SummaryCoagulation factor XIII is a zymogen that can be activated by thrombin cleavage to a transglutaminase that catalyses the formation of covalent crosslinks between fibrin chains in the final stages of the blood clotting cascade. Although circulating factor-XIII is composed of A and B subunits the catalytic activity is a property of the A subunits. In this study we have constructed a plasmid (pKKF13A) that contains a cDNA encoding the A subunit positioned downstream of a tac promoter. Escherichia coli containing this plasmid produce A subunit protein when grown in the presence of IPTG. The cloned A subunit has been partially purified and characterized. Comparison with A subunits purified from plasma showed that the cloned A subunits were of the same size, assembled as dimers, and had the same native electrophoretic mobility. The cloned A subunits expressed transglutaminase activity with putrescine, dansylcadaverine and casein as substrates, and were able to crosslink fibrin in clots formed from A subunit deficient plasma. These studies have demonstrated that functional recombinant factor XIII A subunit can be produced in E. coli and suggest that recombinant factor XIII can potentially provide a safe and inexhaustible supply for therapeutic use.
Collapse
|
23
|
Sawas T, Ravi K, Geno DM, Enders F, Pierce K, Wigle D, Katzka DA. The course of achalasia one to four decades after initial treatment. Aliment Pharmacol Ther 2017; 45:553-560. [PMID: 27925255 DOI: 10.1111/apt.13888] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/16/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Most follow-up studies of achalasia are limited to <5 years. AIM To study the long-term efficacy of pneumatic dilation (PD) and myotomy in achalasia at least 10 years after treatment. METHODS We performed a retrospective cohort study of achalasia patients with >10 years follow-up after initial myotomy or pneumatic dilation. Symptom recurrence which required repeat dilation or surgery was compared between pneumatic dilation and myotomy. RESULTS One hundred and fifty patients (112 myotomy, 38 pneumatic dilation) of similar characteristics were studied. The mean duration of follow-up after initial treatment was 17.5 ± 7.2 years (10-40 years). Symptoms recurrence rate was 60.7% (100% pneumatic dilation patients vs. 47.3% myotomy), hazard ratio 0.24 demonstrating a lower need for repeat dilation or surgery with myotomy than pneumatic dilation (P = 0.008). All pneumatic dilation patients underwent myotomy in 4 ± 4 (0-16 years). Forty of 53 myotomy patients had symptom recurrence prompting further treatment: 16 pneumatic dilation, 11 myotomy and 13 both. The mean time to repeat procedure was 6.9 years (0-40). The myotomy group required fewer dilations and/or surgeries than the pneumatic dilation group (1.6 vs. 3.6, P < 0.001). 13 patients (10.1%) progressed to end-stage achalasia (five myotomy, eight pneumatic dilation) over 40 years. At last follow-up, 57/62 (92%) patients had absent or mild dysphagia, 53/62 (85%) patients had regurgitation less than once per week and 37 (60.7%) had heartburn episodes <1/week similar for pneumatic dilation and myotomy (P = 0.27). CONCLUSION Although the majority of patients treated for achalasia do well after decades of treatment, most patients may need a series of endoscopic and/or surgical procedures to maintain effective symptom control.
Collapse
|
24
|
Epperla N, Pasquini M, Pierce K, Drobyski WR, Rizzo JD, Horowitz MM, Saber W, Zellner K, Ramirez S, Bartz K, Raj RV, Hari PN, Hamadani M. Salvage haploidentical hematopoietic cell transplantation for graft rejection following a prior haploidentical allograft. Bone Marrow Transplant 2016; 52:147-150. [DOI: 10.1038/bmt.2016.200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Pasupuleti D, Pierce K, Eiceman G. Gas chromatography with tandem differential mobility spectrometry of fatty acid alkyl esters and the selective detection of methyl linolenate in biodiesels by dual-stage ion filtering. J Chromatogr A 2015; 1421:162-70. [DOI: 10.1016/j.chroma.2015.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
|