1
|
Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010; 464:1293-300. [PMID: 20432533 PMCID: PMC4959889 DOI: 10.1038/nature08933] [Citation(s) in RCA: 806] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes is an autoimmune disorder afflicting millions of people worldwide. Once diagnosed, patients require lifelong insulin treatment and can experience numerous disease-associated complications. The last decade has seen tremendous advances in elucidating the causes and treatment of the disease based on extensive research both in rodent models of spontaneous diabetes and in humans. Integrating these advances has led to the recognition that the balance between regulatory and effector T cells determines disease risk, timing of disease activation, and disease tempo. Here we describe current progress, the challenges ahead and the new interventions that are being tested to address the unmet need for preventative or curative therapies.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
806 |
2
|
Ramasamy R, Vannucci SJ, Yan SSD, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 2005; 15:16R-28R. [PMID: 15764591 DOI: 10.1093/glycob/cwi053] [Citation(s) in RCA: 590] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The products of nonenzymatic glycation and oxidation of proteins and lipids, the advanced glycation end products (AGEs), accumulate in a wide variety of environments. AGEs may be generated rapidly or over long times stimulated by a range of distinct triggering mechanisms, thereby accounting for their roles in multiple settings and disease states. A critical property of AGEs is their ability to activate receptor for advanced glycation end products (RAGE), a signal transduction receptor of the immunoglobulin superfamily. It is our hypothesis that due to such interaction, AGEs impart a potent impact in tissues, stimulating processes linked to inflammation and its consequences. We hypothesize that AGEs cause perturbation in a diverse group of diseases, such as diabetes, inflammation, neurodegeneration, and aging. Thus, we propose that targeting this pathway may represent a logical step in the prevention/treatment of the sequelae of these disorders.
Collapse
|
Review |
20 |
590 |
3
|
Haller MJ, Schatz DA, Skyler JS, Krischer JP, Bundy BN, Miller JL, Atkinson MA, Becker DJ, Baidal D, DiMeglio LA, Gitelman SE, Goland R, Gottlieb PA, Herold KC, Marks JB, Moran A, Rodriguez H, Russell W, Wilson DM, Greenbaum CJ, Greenbaum C, Atkinson M, Baidal D, Battaglia M, Becker D, Bingley P, Bosi E, Buckner J, Clements M, Colman P, DiMeglio L, Evans-Molina C, Gitelman S, Goland R, Gottlieb P, Herold K, Knip M, Krischer J, Lernmark A, Moore W, Moran A, Muir A, Palmer J, Peakman M, Philipson L, Raskin P, Redondo M, Rodriguez H, Russell W, Spain L, Schatz D, Sosenko J, Wherrett D, Wilson D, Winter W, Ziegler A, Anderson M, Antinozzi P, Benoist C, Blum J, Bourcier K, Chase P, Clare-Salzler M, Clynes R, Cowie C, Eisenbarth G, Fathman C, Grave G, Harrison L, Hering B, Insel R, Jordan S, Kaufman F, Kay T, Kenyon N, Klines R, Lachin J, Leschek E, Mahon J, Marks J, Monzavi R, Nanto-Salonen K, Nepom G, Orban T, Parkman R, Pescovitz M, Peyman J, Pugliese A, Ridge J, Roep B, Roncarolo M, Savage P, Simell O, Sherwin R, Siegelman M, Skyler J, Steck A, Thomas J, Trucco M, Wagner J, et alHaller MJ, Schatz DA, Skyler JS, Krischer JP, Bundy BN, Miller JL, Atkinson MA, Becker DJ, Baidal D, DiMeglio LA, Gitelman SE, Goland R, Gottlieb PA, Herold KC, Marks JB, Moran A, Rodriguez H, Russell W, Wilson DM, Greenbaum CJ, Greenbaum C, Atkinson M, Baidal D, Battaglia M, Becker D, Bingley P, Bosi E, Buckner J, Clements M, Colman P, DiMeglio L, Evans-Molina C, Gitelman S, Goland R, Gottlieb P, Herold K, Knip M, Krischer J, Lernmark A, Moore W, Moran A, Muir A, Palmer J, Peakman M, Philipson L, Raskin P, Redondo M, Rodriguez H, Russell W, Spain L, Schatz D, Sosenko J, Wherrett D, Wilson D, Winter W, Ziegler A, Anderson M, Antinozzi P, Benoist C, Blum J, Bourcier K, Chase P, Clare-Salzler M, Clynes R, Cowie C, Eisenbarth G, Fathman C, Grave G, Harrison L, Hering B, Insel R, Jordan S, Kaufman F, Kay T, Kenyon N, Klines R, Lachin J, Leschek E, Mahon J, Marks J, Monzavi R, Nanto-Salonen K, Nepom G, Orban T, Parkman R, Pescovitz M, Peyman J, Pugliese A, Ridge J, Roep B, Roncarolo M, Savage P, Simell O, Sherwin R, Siegelman M, Skyler J, Steck A, Thomas J, Trucco M, Wagner J, Bourcier K, Greenbaum CJ, Krischer JP, Leschek E, Rafkin L, Spain L, Cowie C, Foulkes M, Insel R, Krause-Steinrauf H, Lachin JM, Malozowski S, Peyman J, Ridge J, Savage P, Skyler JS, Zafonte SJ, Greenbaum CJ, Rafkin L, Sosenko JM, Skyler JS, Kenyon NS, Santiago I, Krischer JP, Bundy B, Abbondondolo M, Adams T, Amado D, Asif I, Boonstra M, Boulware D, Bundy B, Burroughs C, Cuthbertson D, Eberhard C, Fiske S, Ford J, Garmeson J, Guillette H, Geyer S, Hays B, Henderson C, Henry M, Heyman K, Hsiao B, Karges C, Kinderman A, Lane L, Leinbach A, Liu S, Lloyd J, Malloy J, Maddox K, Martin J, Miller J, Moore M, Muller S, Nguyen T, O’Donnell R, Parker M, Pereyra M, Reed N, Roberts A, Sadler K, Stavros T, Tamura R, Wood K, Xu P, Young K, Alies P, Badias F, Baker A, Bassi M, Beam C, Boulware D, Bounmananh L, Bream S, Deemer M, Freeman D, Gough J, Ginem J, Granger M, Holloway M, Kieffer M, Lane P, Law P, Linton C, Nallamshetty L, Oduah V, Parrimon Y, Paulus K, Pilger J, Ramiro J, Luvon AQ, Ritzie A, Sharma A, Shor X, Song A, Terry J, Weinberger M, Wootten J, Fradkin E, Leschek L, Spain C, Cowie S, Malozowski P, Savage G, Beck E, Blumberg R, Gubitosi-Klug L, Laffel R, Veatch D, Wallace J, Braun D, Brillon A, Lernmark B, Lo H, Mitchell A, Naji J, Nerup T, Orchard M, Steffes A, Tsiatis B, Zinman B, Loechelt L, Baden M, Green A, Weinberg S, Marcovina JP, Palmer A, Weinberg L, Yu W, Winter GS, Eisenbarth A, Shultz E, Batts K, Fitzpatrick M, Ramey R, Guerra C, Webb M, Romasco C, Greenbaum S, Lord D, VanBuecken W, Hao M, McCulloch D, Hefty K, Varner R, Goland E, Greenberg S, Pollack B, Nelson L, Looper L, DiMeglio M, Spall C, Evans-Molina M, Mantravadi J, Sanchez M, Mullen V, Patrick S, Woerner DM, Wilson T, Aye T, Esrey K, Barahona B, Baker H, Bitar C, Ghodrat M, Hamilton SE, Gitelman CT, Ferrara S, Sanda R, Wesch C, Torok P, Gottlieb J, Lykens C, Brill A, Michels A, Schauwecker MJ, Haller DA, Schatz MA, Atkinson LM, Jacobsen M, Cintron TM, Brusko CH, Wasserfall CE, Mathews JS, Skyler JM, Marks D, Baidal C, Blaschke D, Matheson A, Moran B, Nathan A, Street J, Leschyshyn B, Pappenfus B, Nelson N, Flaherty D, Becker K, Delallo D, Groscost K, Riley H, Rodriguez D, Henson E, Eyth W, Russell A, Brown F, Brendall K, Herold, Feldman L. Low-Dose Anti-Thymocyte Globulin (ATG) Preserves β-Cell Function and Improves HbA 1c in New-Onset Type 1 Diabetes. Diabetes Care 2018; 41:1917-1925. [PMID: 30012675 PMCID: PMC6105329 DOI: 10.2337/dc18-0494] [Show More Authors] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/12/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE A pilot study suggested that combination therapy with low-dose anti-thymocyte globulin (ATG) and pegylated granulocyte colony-stimulating factor (GCSF) preserves C-peptide in established type 1 diabetes (T1D) (duration 4 months to 2 years). We hypothesized that 1) low-dose ATG/GCSF or 2) low-dose ATG alone would slow the decline of β-cell function in patients with new-onset T1D (duration <100 days). RESEARCH DESIGN AND METHODS A three-arm, randomized, double-masked, placebo-controlled trial was performed by the Type 1 Diabetes TrialNet Study Group in 89 subjects: 29 subjects randomized to ATG (2.5 mg/kg intravenously) followed by pegylated GCSF (6 mg subcutaneously every 2 weeks for 6 doses), 29 to ATG alone (2.5 mg/kg), and 31 to placebo. The primary end point was mean area under the curve (AUC) C-peptide during a 2-h mixed-meal tolerance test 1 year after initiation of therapy. Significance was defined as one-sided P value < 0.025. RESULTS The 1-year mean AUC C-peptide was significantly higher in subjects treated with ATG (0.646 nmol/L) versus placebo (0.406 nmol/L) (P = 0.0003) but not in those treated with ATG/GCSF (0.528 nmol/L) versus placebo (P = 0.031). HbA1c was significantly reduced at 1 year in subjects treated with ATG and ATG/GCSF, P = 0.002 and 0.011, respectively. CONCLUSIONS Low-dose ATG slowed decline of C-peptide and reduced HbA1c in new-onset T1D. Addition of GCSF did not enhance C-peptide preservation afforded by low-dose ATG. Future studies should be considered to determine whether low-dose ATG alone or in combination with other agents may prevent or delay the onset of the disease.
Collapse
|
Multicenter Study |
7 |
118 |
4
|
Jaspan J, Maselli R, Herold K, Bartkus C. Treatment of severely painful diabetic neuropathy with an aldose reductase inhibitor: relief of pain and improved somatic and autonomic nerve function. Lancet 1983; 2:758-62. [PMID: 6137601 DOI: 10.1016/s0140-6736(83)92296-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
11 patients with severely painful diabetic neuropathy previously unresponsive to numerous drugs were treated with an aldose reductase inhibitor ('Sorbinil'--Pfizer CP 45, 634); 8 also received a placebo. Response was assessed according to a 0-20 graphic rating scale for pain and by tests for motor and sensory nerve conduction velocities (NCV) and cardiac autonomic nerve function. 8 patients had moderate to marked relief of symptoms, generally beginning on the 3rd or 4th day of medication, 2 had equivocal responses, and 1 had no change. Each of 4 patients with diabetic amyotrophy reported striking improvement in pain and mild to moderate improvement in proximal leg muscle strength; 2 of these noticed improved sensory perception in their feet. Objective evidence of improved muscle strength was obtained in each of these 4 patients and of improved sensation in 3. On stopping medication, pain worsened in 7 of 8 responders, although generally with some delay, suggesting a carry over effect. During the course of treatment autonomic nerve function improved significantly in 6 of 7 patients tested and across the group, and NCV improved in 4 of 7 tested. Both of these variables deteriorated after withdrawal of the drug. A correlation between NCV response and clinical response was apparent. Very little toxicity was observed. These observations suggest that aldose reductase inhibitors may be important in the treatment of symptomatic somatic and autonomic neuropathies complicating diabetes.
Collapse
|
Clinical Trial |
42 |
112 |
5
|
Redondo MJ, Geyer S, Steck AK, Sharp S, Wentworth JM, Weedon MN, Antinozzi P, Sosenko J, Atkinson M, Pugliese A, Oram RA, Antinozzi P, Atkinson M, Battaglia M, Becker D, Bingley P, Bosi E, Buckner J, Colman P, Gottlieb P, Herold K, Insel R, Kay T, Knip M, Marks J, Moran A, Palmer J, Peakman M, Philipson L, Pugliese A, Raskin P, Rodriguez H, Roep B, Russell W, Schatz D, Wherrett D, Wilson D, Winter W, Ziegler A, Benoist C, Blum J, Chase P, Clare-Salzler M, Clynes R, Eisenbarth G, Fathman C, Grave G, Hering B, Kaufman F, Leschek E, Mahon J, Nanto-Salonen K, Nepom G, Orban T, Parkman R, Pescovitz M, Peyman J, Roncarolo M, Simell O, Sherwin R, Siegelman M, Steck A, Thomas J, Trucco M, Wagner J, Greenbaum ,CJ, Bourcier K, Insel R, Krischer JP, Leschek E, Rafkin L, Spain L, Cowie C, Foulkes M, Krause-Steinrauf H, Lachin JM, Malozowski S, Peyman J, Ridge J, Savage P, Skyler JS, Zafonte SJ, Kenyon NS, Santiago I, Sosenko JM, Bundy B, Abbondondolo M, Adams T, Amado D, Asif I, Boonstra M, Bundy B, Burroughs C, Cuthbertson D, Deemer M, Eberhard C, Fiske S, Ford J, Garmeson J, Guillette H, et alRedondo MJ, Geyer S, Steck AK, Sharp S, Wentworth JM, Weedon MN, Antinozzi P, Sosenko J, Atkinson M, Pugliese A, Oram RA, Antinozzi P, Atkinson M, Battaglia M, Becker D, Bingley P, Bosi E, Buckner J, Colman P, Gottlieb P, Herold K, Insel R, Kay T, Knip M, Marks J, Moran A, Palmer J, Peakman M, Philipson L, Pugliese A, Raskin P, Rodriguez H, Roep B, Russell W, Schatz D, Wherrett D, Wilson D, Winter W, Ziegler A, Benoist C, Blum J, Chase P, Clare-Salzler M, Clynes R, Eisenbarth G, Fathman C, Grave G, Hering B, Kaufman F, Leschek E, Mahon J, Nanto-Salonen K, Nepom G, Orban T, Parkman R, Pescovitz M, Peyman J, Roncarolo M, Simell O, Sherwin R, Siegelman M, Steck A, Thomas J, Trucco M, Wagner J, Greenbaum ,CJ, Bourcier K, Insel R, Krischer JP, Leschek E, Rafkin L, Spain L, Cowie C, Foulkes M, Krause-Steinrauf H, Lachin JM, Malozowski S, Peyman J, Ridge J, Savage P, Skyler JS, Zafonte SJ, Kenyon NS, Santiago I, Sosenko JM, Bundy B, Abbondondolo M, Adams T, Amado D, Asif I, Boonstra M, Bundy B, Burroughs C, Cuthbertson D, Deemer M, Eberhard C, Fiske S, Ford J, Garmeson J, Guillette H, Browning G, Coughenour T, Sulk M, Tsalikan E, Tansey M, Cabbage J, Dixit N, Pasha S, King M, Adcock K, Geyer S, Atterberry H, Fox L, Englert K, Mauras N, Permuy J, Sikes K, Berhe T, Guendling B, McLennan L, Paganessi L, Hays B, Murphy C, Draznin M, Kamboj M, Sheppard S, Lewis V, Coates L, Moore W, Babar G, Bedard J, Brenson-Hughes D, Henderson C, Cernich J, Clements M, Duprau R, Goodman S, Hester L, Huerta-Saenz L, Karmazin A, Letjen T, Raman S, Morin D, Henry M, Bestermann W, Morawski E, White J, Brockmyer A, Bays R, Campbell S, Stapleton A, Stone N, Donoho A, Everett H, Heyman K, Hensley H, Johnson M, Marshall C, Skirvin N, Taylor P, Williams R, Ray L, Wolverton C, Nickels D, Dothard C, Hsiao B, Speiser P, Pellizzari M, Bokor L, Izuora K, Abdelnour S, Cummings P, Paynor S, Leahy M, Riedl M, Shockley S, Karges C, Saad R, Briones T, Casella S, Herz C, Walsh K, Greening J, Hay F, Hunt S, Sikotra N, Simons L, Keaton N, Karounos D, Oremus R, Dye L, Myers L, Ballard D, Miers W, Sparks R, Thraikill K, Edwards K, Fowlkes J, Kinderman A, Kemp S, Morales A, Holland L, Johnson L, Paul P, Ghatak A, Phelen K, Leyland H, Henderson T, Brenner D, Law P, Oppenheimer E, Mamkin I, Moniz C, Clarson C, Lovell M, Peters A, Ruelas V, Borut D, Burt D, Jordan M, Leinbach A, Castilla S, Flores P, Ruiz M, Hanson L, Green-Blair J, Sheridan R, Wintergerst K, Pierce G, Omoruyi A, Foster M, Linton C, Kingery S, Lunsford A, Cervantes I, Parker T, Price P, Urben J, Doughty I, Haydock H, Parker V, Bergman P, Liu S, Duncum S, Rodda C, Thomas A, Ferry R, McCommon D, Cockroft J, Perelman A, Calendo R, Barrera C, Arce-Nunez E, Lloyd J, Martinez Y, De la Portilla M, Cardenas I, Garrido L, Villar M, Lorini R, Calandra E, D’Annuzio G, Perri K, Minuto N, Malloy J, Rebora C, Callegari R, Ali O, Kramer J, Auble B, Cabrera S, Donohoue P, Fiallo-Scharer R, Hessner M, Wolfgram P, Maddox K, Kansra A, Bettin N, McCuller R, Miller A, Accacha S, Corrigan J, Fiore E, Levine R, Mahoney T, Polychronakos C, Martin J, Gagne V, Starkman H, Fox M, Chin D, Melchionne F, Silverman L, Marshall I, Cerracchio L, Cruz J, Viswanathan A, Miller J, Wilson J, Chalew S, Valley S, Layburn S, Lala A, Clesi P, Genet M, Uwaifo G, Charron A, Allerton T, Milliot E, Cefalu W, Melendez-Ramirez L, Richards R, Alleyn C, Gustafson E, Lizanna M, Wahlen J, Aleiwe S, Hansen M, Wahlen H, Moore M, Levy C, Bonaccorso A, Rapaport R, Tomer Y, Chia D, Goldis M, Iazzetti L, Klein M, Levister C, Waldman L, Muller S, Wallach E, Regelmann M, Antal Z, Aranda M, Reynholds C, Leech N, Wake D, Owens C, Burns M, Wotherspoon J, Nguyen T, Murray A, Short K, Curry G, Kelsey S, Lawson J, Porter J, Stevens S, Thomson E, Winship S, Wynn L, O’Donnell R, Wiltshire E, Krebs J, Cresswell P, Faherty H, Ross C, Vinik A, Barlow P, Bourcier M, Nevoret M, Couper J, Oduah V, Beresford S, Thalagne N, Roper H, Gibbons J, Hill J, Balleaut S, Brennan C, Ellis-Gage J, Fear L, Gray T, Pilger J, Jones L, McNerney C, Pointer L, Price N, Few K, Tomlinson D, Denvir L, Drew J, Randell T, Mansell P, Roberts A, Bell S, Butler S, Hooton Y, Navarra H, Roper A, Babington G, Crate L, Cripps H, Ledlie A, Moulds C, Sadler K, Norton R, Petrova B, Silkstone O, Smith C, Ghai K, Murray M, Viswanathan V, Henegan M, Kawadry O, Olson J, Stavros T, Patterson L, Ahmad T, Flores B, Domek D, Domek S, Copeland K, George M, Less J, Davis T, Short M, Tamura R, Dwarakanathan A, O’Donnell P, Boerner B, Larson L, Phillips M, Rendell M, Larson K, Smith C, Zebrowski K, Kuechenmeister L, Wood K, Thevarayapillai M, Daniels M, Speer H, Forghani N, Quintana R, Reh C, Bhangoo A, Desrosiers P, Ireland L, Misla T, Xu P, Torres C, Wells S, Villar J, Yu M, Berry D, Cook D, Soder J, Powell A, Ng M, Morrison M, Young K, Haslam Z, Lawson M, Bradley B, Courtney J, Richardson C, Watson C, Keely E, DeCurtis D, Vaccarcello-Cruz M, Torres Z, Alies P, Sandberg K, Hsiang H, Joy B, McCormick D, Powell A, Jones H, Bell J, Hargadon S, Hudson S, Kummer M, Badias F, Sauder S, Sutton E, Gensel K, Aguirre-Castaneda R, Benavides Lopez V, Hemp D, Allen S, Stear J, Davis E, Jones T, Baker A, Roberts A, Dart J, Paramalingam N, Levitt Katz L, Chaudhary N, Murphy K, Willi S, Schwartzman B, Kapadia C, Larson D, Bassi M, McClellan D, Shaibai G, Kelley L, Villa G, Kelley C, Diamond R, Kabbani M, Dajani T, Hoekstra F, Magorno M, Beam C, Holst J, Chauhan V, Wilson N, Bononi P, Sperl M, Millward A, Eaton M, Dean L, Olshan J, Renna H, Boulware D, Milliard C, Snyder D, Beaman S, Burch K, Chester J, Ahmann A, Wollam B, DeFrang D, Fitch R, Jahnke K, Bounmananh L, Hanavan K, Klopfenstein B, Nicol L, Bergstrom R, Noland T, Brodksy J, Bacon L, Quintos J, Topor L, Bialo S, Bream S, Bancroft B, Soto A, Lagarde W, Lockemer H, Vanderploeg T, Ibrahim M, Huie M, Sanchez V, Edelen R, Marchiando R, Freeman D, Palmer J, Repas T, Wasson M, Auker P, Culbertson J, Kieffer T, Voorhees D, Borgwardt T, DeRaad L, Eckert K, Gough J, Isaacson E, Kuhn H, Carroll A, Schubert M, Francis G, Hagan S, Le T, Penn M, Wickham E, Leyva C, Ginem J, Rivera K, Padilla J, Rodriguez I, Jospe N, Czyzyk J, Johnson B, Nadgir U, Marlen N, Prakasam G, Rieger C, Granger M, Glaser N, Heiser E, Harris B, Foster C, Slater H, Wheeler K, Donaldson D, Murray M, Hale D, Tragus R, Holloway M, Word D, Lynch J, Pankratz L, Rogers W, Newfield R, Holland S, Hashiguchi M, Gottschalk M, Philis-Tsimikas A, Rosal R, Kieffer M, Franklin S, Guardado S, Bohannon N, Garcia M, Aguinaldo T, Phan J, Barraza V, Cohen D, Pinsker J, Khan U, Lane P, Wiley J, Jovanovic L, Misra P, Wright M, Cohen D, Huang K, Skiles M, Maxcy S, Pihoker C, Cochrane K, Nallamshetty L, Fosse J, Kearns S, Klingsheim M, Wright N, Viles L, Smith H, Heller S, Cunningham M, Daniels A, Zeiden L, Parrimon Y, Field J, Walker R, Griffin K, Bartholow L, Erickson C, Howard J, Krabbenhoft B, Sandman C, Vanveldhuizen A, Wurlger J, Paulus K, Zimmerman A, Hanisch K, Davis-Keppen L, Cotterill A, Kirby J, Harris M, Schmidt A, Kishiyama C, Flores C, Milton J, Ramiro J, Martin W, Whysham C, Yerka A, Freels T, Hassing J, Webster J, Green R, Carter P, Galloway J, Hoelzer D, Ritzie AQL, Roberts S, Said S, Sullivan P, Allen H, Reiter E, Feinberg E, Johnson C, Newhook L, Hagerty D, White N, Sharma A, Levandoski L, Kyllo J, Johnson M, Benoit C, Iyer P, Diamond F, Hosono H, Jackman S, Barette L, Jones P, Shor A, Sills I, Bzdick S, Bulger J, Weinstock R, Douek I, Andrews R, Modgill G, Gyorffy G, Robin L, Vaidya N, Song X, Crouch S, O’Brien K, Thompson C, Thorne N, Blumer J, Kalic J, Klepek L, Paulett J, Rosolowski B, Horner J, Terry A, Watkins M, Casey J, Carpenter K, Burns C, Horton J, Pritchard C, Soetaert D, Wynne A, Kaiserman K, Halvorson M, Weinberger J, Chin C, Molina O, Patel C, Senguttuvan R, Wheeler M, Furet O, Steuhm C, Jelley D, Goudeau S, Chalmers L, Wootten M, Greer D, Panagiotopoulos C, Metzger D, Nguyen D, Horowitz M, Christiansen M, Glades E, Morimoto C, Macarewich M, Norman R, Harding P, Patin K, Vargas C, Barbanica A, Yu A, Vaidyanathan P, Osborne W, Mehra R, Kaster S, Neace S, Horner J, McDonough S, Reeves G, Cordrey C, Marrs L, Miller T, Dowshen S, Doyle D, Walker S, Catte D, Dean H, Drury-Brown M, McGee PF, Hackman B, Lee M, Malkani S, Cullen K, Johnson K, Hampton P, McCarrell M, Curtis C, Paul E, Zambrano Y, Hess KO, Phoebus D, Quinlan S, Raiden E, Batts E, Buddy C, Kirpatrick K, Ramey M, Shultz A, Webb C, Romesco M, Fradkin J, Blumberg E, Beck G, Brillon D, Gubitosi-Klug R, Laffel L, Veatch R, Wallace D, Braun J, Lernmark A, Lo B, Mitchell H, Naji A, Nerup J, Orchard T, Steffes M, Tsiatis A, Zinman B, Loechelt B, Baden L, Green M, Weinberg A, Marcovina S, Palmer JP, Weinberg A, Yu L, Babu S, Winter W, Eisenbarth GS, Bingley P, Clynes R, DiMeglio L, Eisenbarth G, Hays B, Marks J, Matheson D, Rodriguez H, Wilson D, Redondo MJ, Gomez D, Zheng X, Pena S, Pietropaolo M, Batts E, Brown T, Buckner J, Dove A, Hammond M, Hefty D, Klein J, Kuhns K, Letlau M, Lord S, McCulloch-Olson M, Miller L, Nepom G, Odegard J, Ramey M, Sachter E, St. Marie M, Stickney K, VanBuecken D, Vellek B, Webber C, Allen L, Bollyk J, Hilderman N, Ismail H, Lamola S, Sanda S, Vendettuoli H, Tridgell D, Monzavi R, Bock M, Fisher L, Halvorson M, Jeandron D, Kim M, Wood J, Geffner M, Kaufman F, Parkman R, Salazar C, Goland R, Clynes R, Cook S, Freeby M, Gallagher MP, Gandica R, Greenberg E, Kurland A, Pollak S, Wolk A, Chan M, Koplimae L, Levine E, Smith K, Trast J, DiMeglio L, Blum J, Evans-Molina C, Hufferd R, Jagielo B, Kruse C, Patrick V, Rigby M, Spall M, Swinney K, Terrell J, Christner L, Ford L, Lynch S, Menendez M, Merrill P, Pescovitz M, Rodriguez H, Alleyn C, Baidal D, Fay S, Gaglia J, Resnick B, Szubowicz S, Weir G, Benjamin R, Conboy D, deManbey A, Jackson R, Jalahej H, Orban T, Ricker A, Wolfsdorf J, Zhang HH, Wilson D, Aye T, Baker B, Barahona K, Buckingham B, Esrey K, Esrey T, Fathman G, Snyder R, Aneja B, Chatav M, Espinoza O, Frank E, Liu J, Perry J, Pyle R, Rigby A, Riley K, Soto A, Gitelman S, Adi S, Anderson M, Berhel A, Breen K, Fraser K, Gerard-Gonzalez A, Jossan P, Lustig R, Moassesfar S, Mugg A, Ng D, Prahalod P, Rangel-Lugo M, Sanda S, Tarkoff J, Torok C, Wesch R, Aslan I, Buchanan J, Cordier J, Hamilton C, Hawkins L, Ho T, Jain A, Ko K, Lee T, Phelps S, Rosenthal S, Sahakitrungruang T, Stehl L, Taylor L, Wertz M, Wong J, Philipson L, Briars R, Devine N, Littlejohn E, Grant T, Gottlieb P, Klingensmith G, Steck A, Alkanani A, Bautista K, Bedoy R, Blau A, Burke B, Cory L, Dang M, Fitzgerald-Miller L, Fouts A, Gage V, Garg S, Gesauldo P, Gutin R, Hayes C, Hoffman M, Ketchum K, Logsden-Sackett N, Maahs D, Messer L, Meyers L, Michels A, Peacock S, Rewers M, Rodriguez P, Sepulbeda F, Sippl R, Steck A, Taki I, Tran BK, Tran T, Wadwa RP, Zeitler P, Barker J, Barry S, Birks L, Bomsburger L, Bookert T, Briggs L, Burdick P, Cabrera R, Chase P, Cobry E, Conley A, Cook G, Daniels J, DiDomenico D, Eckert J, Ehler A, Eisenbarth G, Fain P, Fiallo-Scharer R, Frank N, Goettle H, Haarhues M, Harris S, Horton L, Hutton J, Jeffrrey J, Jenison R, Jones K, Kastelic W, King MA, Lehr D, Lungaro J, Mason K, Maurer H, Nguyen L, Proto A, Realsen J, Schmitt K, Schwartz M, Skovgaard S, Smith J, Vanderwel B, Voelmle M, Wagner R, Wallace A, Walravens P, Weiner L, Westerhoff B, Westfall E, Widmer K, Wright H, Schatz D, Abraham A, Atkinson M, Cintron M, Clare-Salzler M, Ferguson J, Haller M, Hosford J, Mancini D, Rohrs H, Silverstein J, Thomas J, Winter W, Cole G, Cook R, Coy R, Hicks E, Lewis N, Marks J, Pugliese A, Blaschke C, Matheson D, Sanders-Branca N, Sosenko J, Arazo L, Arce R, Cisneros M, Sabbag S, Moran A, Gibson C, Fife B, Hering B, Kwong C, Leschyshyn J, Nathan B, Pappenfus B, Street A, Boes MA, Eck SP, Finney L, Fischer TA, Martin A, Muzamhindo CJ, Rhodes M, Smith J, Wagner J, Wood B, Becker D, Delallo K, Diaz A, Elnyczky B, Libman I, Pasek B, Riley K, Trucco M, Copemen B, Gwynn D, Toledo F, Rodriguez H, Bollepalli S, Diamond F, Eyth E, Henson D, Lenz A, Shulman D, Raskin P, Adhikari S, Dickson B, Dunnigan E, Lingvay I, Pruneda L, Ramos-Roman M, Raskin P, Rhee C, Richard J, Siegelman M, Sturges D, Sumpter K, White P, Alford M, Arthur J, Aviles-Santa ML, Cordova E, Davis R, Fernandez S, Fordan S, Hardin T, Jacobs A, Kaloyanova P, Lukacova-Zib I, Mirfakhraee S, Mohan A, Noto H, Smith O, Torres N, Wherrett D, Balmer D, Eisel L, Kovalakovska R, Mehan M, Sultan F, Ahenkorah B, Cevallos J, Razack N, Ricci MJ, Rhode A, Srikandarajah M, Steger R, Russell WE, Black M, Brendle F, Brown A, Moore D, Pittel E, Robertson A, Shannon A, Thomas JW, Herold K, Feldman L, Sherwin R, Tamborlane W, Weinzimer S, Toppari J, Kallio T, Kärkkäinen M, Mäntymäki E, Niininen T, Nurmi B, Rajala P, Romo M, Suomenrinne S, Näntö-Salonen K, Simell O, Simell T, Bosi E, Battaglia M, Bianconi E, Bonfanti R, Grogan P, Laurenzi A, Martinenghi S, Meschi F, Pastore M, Falqui L, Muscato MT, Viscardi M, Castleden H, Farthing N, Loud S, Matthews C, McGhee J, Morgan A, Pollitt J, Elliot-Jones R, Wheaton C, Knip M, Siljander H, Suomalainen H, Colman P, Healy F, Mesfin S, Redl L, Wentworth J, Willis J, Farley M, Harrison L, Perry C, Williams F, Mayo A, Paxton J, Thompson V, Volin L, Fenton C, Carr L, Lemon E, Swank M, Luidens M, Salgam M, Sharma V, Schade D, King C, Carano R, Heiden J, Means N, Holman L, Thomas I, Madrigal D, Muth T, Martin C, Plunkett C, Ramm C, Auchus R, Lane W, Avots E, Buford M, Hale C, Hoyle J, Lane B, Muir A, Shuler S, Raviele N, Ivie E, Jenkins M, Lindsley K, Hansen I, Fadoju D, Felner E, Bode B, Hosey R, Sax J, Jefferies C, Mannering S, Prentis R, She J, Stachura M, Hopkins D, Williams J, Steed L, Asatapova E, Nunez S, Knight S, Dixon P, Ching J, Donner T, Longnecker S, Abel K, Arcara K, Blackman S, Clark L, Cooke D, Plotnick L, Levin P, Bromberger L, Klein K, Sadurska K, Allen C, Michaud D, Snodgrass H, Burghen G, Chatha S, Clark C, Silverberg J, Wittmer C, Gardner J, LeBoeuf C, Bell P, McGlore O, Tennet H, Alba N, Carroll M, Baert L, Beaton H, Cordell E, Haynes A, Reed C, Lichter K, McCarthy P, McCarthy S, Monchamp T, Roach J, Manies S, Gunville F, Marosok L, Nelson T, Ackerman K, Rudolph J, Stewart M, McCormick K, May S, Falls T, Barrett T, Dale K, Makusha L, McTernana C, Penny-Thomas K, Sullivan K, Narendran P, Robbie J, Smith D, Christensen R, Koehler B, Royal C, Arthur T, Houser H, Renaldi J, Watsen S, Wu P, Lyons L, House B, Yu J, Holt H, Nation M, Vickers C, Watling R, Heptulla R, Trast J, Agarwal C, Newell D, Katikaneni R, Gardner C, Del Rio A, Logan A, Collier H, Rishton C, Whalley G, Ali A, Ramtoola S, Quattrin T, Mastrandea L, House A, Ecker M, Huang C, Gougeon C, Ho J, Pacuad D, Dunger D, May J, O’Brien C, Acerini C, Salgin B, Thankamony A, Williams R, Buse J, Fuller G, Duclos M, Tricome J, Brown H, Pittard D, Bowlby D, Blue A, Headley T, Bendre S, Lewis K, Sutphin K, Soloranzo C, Puskaric J, Madison H, Rincon M, Carlucci M, Shridharani R, Rusk B, Tessman E, Huffman D, Abrams H, Biederman B, Jones M, Leathers V, Brickman W, Petrie P, Zimmerman D, Howard J, Miller L, Alemzadeh R, Mihailescu D, Melgozza-Walker R, Abdulla N, Boucher-Berry C, Ize-Ludlow D, Levy R, Swenson Brousell C, Scott R, Heenan H, Lunt H, Kendall D, Willis J, Darlow B, Crimmins N, Edler D, Weis T, Schultz C, Rogers D, Latham D, Mawhorter C, Switzer C, Spencer W, Konstantnopoulus P, Broder S, Klein J, Bachrach B, Gardner M, Eichelberger D, Knight L, Szadek L, Welnick G, Thompson B, Hoffman R, Revell A, Cherko J, Carter K, Gilson E, Haines J, Arthur G, Bowen B, Zipf W, Graves P, Lozano R, Seiple D, Spicer K, Chang A, Fregosi J, Harbinson J, Paulson C, Stalters S, Wright P, Zlock D, Freeth A, Victory J, Maheshwari H, Maheshwari A, Holmstrom T, Bueno J, Arguello R, Ahern J, Noreika L, Watson V, Hourse S, Breyer P, Kissel C, Nicholson Y, Pfeifer M, Almazan S, Bajaj J, Quinn M, Funk K, McCance J, Moreno E, Veintimilla R, Wells A, Cook J, Trunnel S, Transue D, Surhigh J, Bezzaire D, Moltz K, Zacharski E, Henske J, Desai S, Frizelis K, Khan F, Sjoberg R, Allen K, Manning P, Hendry G, Taylor B, Jones S, Couch R, Danchak R, Lieberman D, Strader W, Bencomo M, Bailey T, Bedolla L, Roldan C, Moudiotis C, Vaidya B, Anning C, Bunce S, Estcourt S, Folland E, Gordon E, Harrill C, Ireland J, Piper J, Scaife L, Sutton K, Wilkins S, Costelloe M, Palmer J, Casas L, Miller C, Burgard M, Erickson C, Hallanger-Johnson J, Clark P, Taylor W, Galgani J, Banerjee S, Banda C, McEowen D, Kinman R, Lafferty A, Gillett S, Nolan C, Pathak M, Sondrol L, Hjelle T, Hafner S, Kotrba J, Hendrickson R, Cemeroglu A, Symington T, Daniel M, Appiagyei-Dankah Y, Postellon D, Racine M, Kleis L, Barnes K, Godwin S, McCullough H, Shaheen K, Buck G, Noel L, Warren M, Weber S, Parker S, Gillespie I, Nelson B, Frost C, Amrhein J, Moreland E, Hayes A, Peggram J, Aisenberg J, Riordan M, Zasa J, Cummings E, Scott K, Pinto T, Mokashi A, McAssey K, Helden E, Hammond P, Dinning L, Rahman S, Ray S, Dimicri C, Guppy S, Nielsen H, Vogel C, Ariza C, Morales L, Chang Y, Gabbay R, Ambrocio L, Manley L, Nemery R, Charlton W, Smith P, Kerr L, Steindel-Kopp B, Alamaguer M, Tabisola-Nuesca E, Pendersen A, Larson N, Cooper-Olviver H, Chan D, Fitz-Patrick D, Carreira T, Park Y, Ruhaak R, Liljenquist D. A Type 1 Diabetes Genetic Risk Score Predicts Progression of Islet Autoimmunity and Development of Type 1 Diabetes in Individuals at Risk. Diabetes Care 2018; 41:1887-1894. [PMID: 30002199 PMCID: PMC6105323 DOI: 10.2337/dc18-0087] [Show More Authors] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/06/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We tested the ability of a type 1 diabetes (T1D) genetic risk score (GRS) to predict progression of islet autoimmunity and T1D in at-risk individuals. RESEARCH DESIGN AND METHODS We studied the 1,244 TrialNet Pathway to Prevention study participants (T1D patients' relatives without diabetes and with one or more positive autoantibodies) who were genotyped with Illumina ImmunoChip (median [range] age at initial autoantibody determination 11.1 years [1.2-51.8], 48% male, 80.5% non-Hispanic white, median follow-up 5.4 years). Of 291 participants with a single positive autoantibody at screening, 157 converted to multiple autoantibody positivity and 55 developed diabetes. Of 953 participants with multiple positive autoantibodies at screening, 419 developed diabetes. We calculated the T1D GRS from 30 T1D-associated single nucleotide polymorphisms. We used multivariable Cox regression models, time-dependent receiver operating characteristic curves, and area under the curve (AUC) measures to evaluate prognostic utility of T1D GRS, age, sex, Diabetes Prevention Trial-Type 1 (DPT-1) Risk Score, positive autoantibody number or type, HLA DR3/DR4-DQ8 status, and race/ethnicity. We used recursive partitioning analyses to identify cut points in continuous variables. RESULTS Higher T1D GRS significantly increased the rate of progression to T1D adjusting for DPT-1 Risk Score, age, number of positive autoantibodies, sex, and ethnicity (hazard ratio [HR] 1.29 for a 0.05 increase, 95% CI 1.06-1.6; P = 0.011). Progression to T1D was best predicted by a combined model with GRS, number of positive autoantibodies, DPT-1 Risk Score, and age (7-year time-integrated AUC = 0.79, 5-year AUC = 0.73). Higher GRS was significantly associated with increased progression rate from single to multiple positive autoantibodies after adjusting for age, autoantibody type, ethnicity, and sex (HR 2.27 for GRS >0.295, 95% CI 1.47-3.51; P = 0.0002). CONCLUSIONS The T1D GRS independently predicts progression to T1D and improves prediction along T1D stages in autoantibody-positive relatives.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
109 |
6
|
Herold K, Moser B, Chen Y, Zeng S, Yan SF, Ramasamy R, Emond J, Clynes R, Schmidt AM. Receptor for advanced glycation end products (RAGE) in a dash to the rescue: inflammatory signals gone awry in the primal response to stress. J Leukoc Biol 2007; 82:204-12. [PMID: 17513693 DOI: 10.1189/jlb.1206751] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The multiligand receptor for advanced glycation end products (RAGE) of the Ig superfamily transduces the biological impact of discrete families of ligands, including advanced glycation end products, certain members of the S100/calgranulin family, high mobility group box-1, Mac-1 (alpha(M)beta(2), CD11b/CD18), and amyloid-beta peptide and beta-sheet fibrils. Although structurally dissimilar, at least at the monomeric level, recent evidence suggests that oligomeric forms of these RAGE ligands may be especially apt to activate the receptor and up-regulate a program of inflammatory and tissue injury-provoking genes. The challenge in probing the biology of RAGE and its impact in acute responses to stress and the potential development of chronic disease is to draw the line between mechanisms that evoke repair versus those that sustain inflammation and tissue damage. In this review, we suggest the concept that the ligands of RAGE comprise a primal program in the acute response to stress. When up-regulated in environments laden with oxidative stress, inflammation, innate aging, or high glucose, as examples, the function of these ligand families may be transformed from ones linked to rapid repair to those that drive chronic disease. Identification of the threshold beyond which ligands of RAGE mediate repair versus injury is a central component in delineating optimal strategies to target RAGE in the clinic.
Collapse
|
Review |
18 |
107 |
7
|
Ramasamy R, Yan SF, Herold K, Clynes R, Schmidt AM. Receptor for advanced glycation end products: fundamental roles in the inflammatory response: winding the way to the pathogenesis of endothelial dysfunction and atherosclerosis. Ann N Y Acad Sci 2008; 1126:7-13. [PMID: 18448789 DOI: 10.1196/annals.1433.056] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The multiligand receptor for advanced glycation end products (RAGE) of the immunoglobulin superfamily is expressed on multiple cell types implicated in the immune-inflammatory response and in atherosclerosis. Multiple studies have elucidated that ligand-RAGE interaction on cells, such as monocytes, macrophages, and endothelial cells, mediates cellular migration and upregulation of proinflammatory and prothrombotic molecules. In addition, recent studies reveal definitive rules for RAGE in effective T lymphocyte priming in vivo. RAGE ligand AGEs may be formed in diverse settings; although AGEs are especially generated in hyperglycemia, their production in settings characterized by oxidative stress and inflammation suggests that these species, in part via RAGE, may contribute to the pathogenesis of atherosclerosis. In murine models of atherosclerosis, vascular inflammation is a key factor and one which is augmented, in parallel with even further increases in RAGE ligands, in diabetic macrovessels. The findings that antagonism and genetic disruption of RAGE in atherosclerosis-susceptible mice strikingly reduces vascular inflammation and atherosclerotic lesion area and complexity link RAGE intimately to these processes and suggest that RAGE is a logical target for therapeutic intervention in aberrant inflammatory mechanisms and in atherosclerosis.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
17 |
104 |
8
|
Ouziel-Yahalom L, Zalzman M, Anker-Kitai L, Knoller S, Bar Y, Glandt M, Herold K, Efrat S. Expansion and redifferentiation of adult human pancreatic islet cells. Biochem Biophys Res Commun 2006; 341:291-8. [PMID: 16446152 DOI: 10.1016/j.bbrc.2005.12.187] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 12/16/2005] [Indexed: 12/19/2022]
Abstract
Beta-cell replacement represents the ultimate cure for type 1 diabetes, however it is limited by availability of organ donors. Adult human islets are difficult to propagate in culture, and efforts to expand them result in dedifferentiation. Here we describe conditions for expansion of adult human islet cells, as well as a way for their redifferentiation. Most cells in islets isolated from human pancreata were induced to replicate within the first week of culture in expansion medium. Cells were propagated for 16 population doublings, without a change in replication rate or noticeable cell mortality, representing an expansion of over 65,000-fold. Replication was accompanied by a decrease in expression of key beta-cell genes. Shift of the cells to differentiation medium containing betacellulin resulted in redifferentiation, as manifested by restoration of beta-cell gene expression and insulin content. These methods may allow transplantation of functional islet cells from single donors into multiple recipients.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
95 |
9
|
Simpson NR, Souza F, Witkowski P, Maffei A, Raffo A, Herron A, Kilbourn M, Jurewicz A, Herold K, Liu E, Hardy MA, Van Heertum R, Harris PE. Visualizing pancreatic beta-cell mass with [11C]DTBZ. Nucl Med Biol 2007; 33:855-64. [PMID: 17045165 PMCID: PMC3743255 DOI: 10.1016/j.nucmedbio.2006.07.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 06/29/2006] [Accepted: 07/03/2006] [Indexed: 01/09/2023]
Abstract
Beta-cell mass (BCM) influences the total amount of insulin secreted, varies by individual and by the degree of insulin resistance, and is affected by physiologic and pathologic conditions. The islets of Langerhans, however, appear to have a reserve capacity of insulin secretion and, overall, assessments of insulin and blood glucose levels remain poor measures of BCM, beta-cell function and progression of diabetes. Thus, novel noninvasive determinations of BCM are needed to provide a quantitative endpoint for novel therapies of diabetes, islet regeneration and transplantation. Built on previous gene expression studies, we tested the hypothesis that the targeting of vesicular monoamine transporter 2 (VMAT2), which is expressed by beta cells, with [11C]dihydrotetrabenazine ([11C]DTBZ), a radioligand specific for VMAT2, and the use of positron emission tomography (PET) can provide a measure of BCM. In this report, we demonstrate decreased radioligand uptake within the pancreas of Lewis rats with streptozotocin-induced diabetes relative to their euglycemic historical controls. These studies suggest that quantitation of VMAT2 expression in beta cells with the use of [11C]DTBZ and PET represents a method for noninvasive longitudinal estimates of changes in BCM that may be useful in the study and treatment of diabetes.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
92 |
10
|
Clynes R, Moser B, Yan SF, Ramasamy R, Herold K, Schmidt AM. Receptor for AGE (RAGE): weaving tangled webs within the inflammatory response. Curr Mol Med 2007; 7:743-51. [PMID: 18331232 DOI: 10.2174/156652407783220714] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The family of RAGE ligands, including Advanced Glycation Endproducts (AGEs), S100/calgranulins, High Mobility Group Box-1 (HMGB1) and amyloid beta peptide (Abeta) and beta-sheet fibrils are highly enriched in immune and inflammatory foci. In parallel, upregulation of Receptor for AGE (RAGE) is noted in diverse forms of inflammation and autoimmunity, based on experiments examining human tissues as well as animal models. Indeed, prior to the demonstration that S100/calgranulins were signal transduction ligands of RAGE, these molecules were considered "biomarkers" of disease and disease activity in disorders such as colitis and arthritis. Premiere roles for RAGE in advancing cellular migration implicate this receptor in targeting immune cells to vulnerable foci. Once engaged, ligand-RAGE interaction in inflammatory and vascular cells amplifies upregulation of inflammatory cytokines, adhesion molecules and matrix metalloproteinases (MMPs). Discerning the primal versus chronic injury-provoking roles for this ligand-receptor interaction is a challenge in delineating the functions of the ligand/RAGE axis. As RAGE is expressed by many of the key cell types linked integrally to the immune response, we propose that the sites and time course of ligand-RAGE stimulation determine the phenotype produced by this axis. Ultimately, drawing the fine line between antagonism versus stimulation of the receptor in health and disease will depend on the full characterization of RAGE in repair versus injury.
Collapse
|
Review |
18 |
86 |
11
|
Maffei A, Liu Z, Witkowski P, Moschella F, Del Pozzo G, Liu E, Herold K, Winchester RJ, Hardy MA, Harris PE. Identification of tissue-restricted transcripts in human islets. Endocrinology 2004; 145:4513-21. [PMID: 15231694 DOI: 10.1210/en.2004-0691] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of our study was to identify transcripts specific for tissue-restricted, membrane-associated proteins in human islets that, in turn, might serve as markers of healthy or diseased islet cell masses. Using oligonucleotide chips, we obtained gene expression profiles of human islets for comparison with the profiles of exocrine pancreas, liver, and kidney tissue. As periislet presence of type 1 interferon is associated with the development of type 1 diabetes, the expression profile of human islets treated ex vivo with interferon-alpha2beta (IFNalpha2beta) was also determined. A set of genes encoding transmembrane- or membrane-associated proteins with novel islet-restricted expression was resolved by determining the intersection of the islet set with the complement of datasets obtained from other tissues. Under the influence of IFNalpha2beta, the expression levels of transcripts for several of the identified gene products were up- or down-regulated. One of the islet-restricted gene products identified in this study, vesicular monoamine transporter type 2, was shown to bind [3H]dihydrotetrabenazine, a ligand with derivatives suitable for positron emission tomography imaging. We report here the first comparison of gene expression profiles of human islets with other tissues and the identification of a target molecule with possible use in determining islet cell masses.
Collapse
|
|
21 |
75 |
12
|
Moser B, Desai DD, Downie MP, Chen Y, Yan SF, Herold K, Schmidt AM, Clynes R. Receptor for advanced glycation end products expression on T cells contributes to antigen-specific cellular expansion in vivo. THE JOURNAL OF IMMUNOLOGY 2008; 179:8051-8. [PMID: 18056345 DOI: 10.4049/jimmunol.179.12.8051] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Receptor for advanced glycation end products (RAGE) is an activation receptor triggered by inflammatory S100/calgranulins and high mobility group box-1 ligands. We have investigated the importance of RAGE on Ag priming of T cells in murine models in vivo. RAGE is inducibly up-regulated during T cell activation. Transfer of RAGE-deficient OT II T cells into OVA-immunized hosts resulted in reduced proliferative responses that were further diminished in RAGE-deficient recipients. Examination of RAGE-deficient dendritic cells did not reveal functional impairment in Ag presentation, maturation, or migratory capacities. However, RAGE-deficient T cells showed markedly impaired proliferative responses in vitro to nominal and alloantigens, in parallel with decreased production of IFN-gamma and IL-2. These data indicate that RAGE expressed on T cells is required for efficient priming of T cells and elucidate critical roles for RAGE engagement during cognate dendritic cell-T cell interactions.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
75 |
13
|
Kim W, Hudson BI, Moser B, Guo J, Rong LL, Lu Y, Qu W, Lalla E, Lerner S, Chen Y, Yan SSD, D'Agati V, Naka Y, Ramasamy R, Herold K, Yan SF, Schmidt AM. Receptor for advanced glycation end products and its ligands: a journey from the complications of diabetes to its pathogenesis. Ann N Y Acad Sci 2005; 1043:553-61. [PMID: 16037278 DOI: 10.1196/annals.1338.063] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many studies have suggested that the expression of RAGE (receptor for advanced glycation end products) is upregulated in human tissues susceptible to the long-term complications of diabetes. From the kidneys to the macrovessels of the aorta, RAGE expression is upregulated in a diverse array of cell types, from glomerular epithelial cells (podocytes) to endothelial cells, vascular smooth muscle cells, and inflammatory mononuclear phagocytes and lymphocytes. Although RAGE was first described as a receptor for advanced glycation end products (AGEs), the key finding that RAGE was also a signaling receptor for proinflammatory S100/calgranulins and amphoterin, led to the premise that even in euglycemia, ligand-RAGE interaction propagated inflammatory mechanisms linked to chronic cellular perturbation and tissue injury. Indeed, such considerations suggested that RAGE might even participate in the pathogenesis of type 1 diabetes. Our studies have shown that pharmacological and/or genetic deletion/mutation of the receptor attenuates the development of hyperglycemia in NOD mice; in mice with myriad complications of diabetes, interruption of ligand-RAGE interaction prevents or delays the chronic complications of the disease in both macro- and microvessel structures. Taken together, these findings suggest that RAGE is "at the right place and time" to contribute to the pathogenesis of diabetes and it complications. Studies are in progress to test the premise that antagonism of this interaction is a logical strategy for the prevention and treatment of diabetes.
Collapse
|
Review |
20 |
70 |
14
|
Thornton PS, Satin-Smith MS, Herold K, Glaser B, Chiu KC, Nestorowicz A, Permutt MA, Baker L, Stanley CA. Familial hyperinsulinism with apparent autosomal dominant inheritance: clinical and genetic differences from the autosomal recessive variant. J Pediatr 1998; 132:9-14. [PMID: 9469993 DOI: 10.1016/s0022-3476(98)70477-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We describe three families with hypoglycemia caused by familial hyperinsulinism (HI) in whom vertical transmission of the disorder occurred, suggesting autosomal dominant (AD) inheritance. We therefore examined the relationship between the apparent AD disorder and the more common autosomal recessive (AR) form of HI, which has recently been linked to the sulfonylurea receptor on chromosome 11p15.1. The clinical features of the 11 patients with AD HI were milder than those seen in 14 patients with AR HI. Hypoglycemia was readily controlled with either diet alone or with diazoxide in 10 of 11 patients with AD HI but in none of those with the AR form. In one large pedigree, analysis of genomic DNA with polymorphic simple sequence repeat markers excluded linkage of AD HI to the SUR locus in a dominant manner. The possibility of linkage to the SUR locus could not be absolutely excluded in the two smaller pedigrees. None of the published mutations of the SUR gene identified in patients with AR HI were detected in the patients with the AD form. We conclude that the AD form of hyperinsulinism is phenotypically different from the AR variant. The identification of more families with this form of HI may make it possible to locate the responsible gene by the use of linkage analysis.
Collapse
|
|
27 |
61 |
15
|
Damsky W, Jilaveanu L, Turner N, Perry C, Zito C, Tomayko M, Leventhal J, Herold K, Meffre E, Bosenberg M, Kluger HM. B cell depletion or absence does not impede anti-tumor activity of PD-1 inhibitors. J Immunother Cancer 2019; 7:153. [PMID: 31200747 PMCID: PMC6567557 DOI: 10.1186/s40425-019-0613-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Background PD-1 inhibitors are approved for multiple malignancies and function by stimulating T cells. However, the role of B cells in the anti-tumor activity of these drugs is unknown, as is their activity in patients who have received B cell depleting drugs or with immunoglobulin deficiencies. Methods We studied B cell content in 40 melanomas from patients treated with pembrolizumab or nivolumab and assessed the association with response to therapy. Murine MC38 colon cancer and YUMMER1.7 melanoma models were used to determine whether concomitant anti-CD20 antibody injections diminish the anti-tumor effects of anti-PD-1. Results were validated in muMT mice, which lack B cells. Results B cells were sparse in most melanomas and B cell content was not associated with response to anti-PD-1 or overall survival. Employing MC38 and YUMMER1.7 models, we demonstrated that anti-CD20 antibodies reduce tumor-infiltrating B cells yet had no effect on tumor growth, response to PD-1 inhibition, or survival. In muMT mice, T-cell dependent tumor rejection and anti-PD-1 responses were no different than in wildtype C57BL/6 J mice. Conclusions The degree of tumor infiltrating B cell content is not associated with response to anti-PD-1 inhibitors in melanoma. PD-1 inhibitors cause tumor shrinkage in murine cancer models even when B cells are absent or are depleted. PD-1 inhibitors are likely to be active in patients with impaired B cell function, such as patients undergoing B cell depletion with drugs including rituximab for conditions such as B cell malignancies or autoimmune disorders. Electronic supplementary material The online version of this article (10.1186/s40425-019-0613-1) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
59 |
16
|
Yu L, Herold K, Krause-Steinrauf H, McGee PL, Bundy B, Pugliese A, Krischer J, Eisenbarth GS. Rituximab selectively suppresses specific islet antibodies. Diabetes 2011; 60:2560-5. [PMID: 21831969 PMCID: PMC3178300 DOI: 10.2337/db11-0674] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The TrialNet Study Group evaluated rituximab, a B-cell-depleting monoclonal antibody, for its effect in new-onset patients with type 1A diabetes. Rituximab decreased the loss of C-peptide over the first year of follow-up and markedly depleted B lymphocytes for 6 months after administration. This article analyzes the specific effect of rituximab on multiple islet autoantibodies. RESEARCH DESIGN AND METHODS A total of 87 patients between the ages of 8 and 40 years received either rituximab or a placebo infusion weekly for four doses close to the onset of diabetes. Autoantibodies to insulin (IAAs), GAD65 (GADAs), insulinoma-associated protein 2 (IA2As), and ZnT8 (ZnT8As) were measured with radioimmunoassays. The primary outcome for this autoantibody analysis was the mean level of autoantibodies during follow-up. RESULTS Rituximab markedly suppressed IAAs compared with the placebo injection but had a much smaller effect on GADAs, IA2As, and ZnT8As. A total of 40% (19 of 48) of rituximab-treated patients who were IAA positive became IAA negative versus 0 of 29 placebo-treated patients (P < 0.0001). In the subgroup (n = 6) treated within 50 days of diabetes, IAAs were markedly suppressed by rituximab in all patients for 1 year and for four patients as long as 3 years despite continuing insulin therapy. Independent of rituximab treatment, the mean level of IAAs at study entry was markedly lower (P = 0.035) for patients who maintained C-peptide levels during the first year of follow-up in both rituximab-treated and placebo groups. CONCLUSIONS A single course of rituximab differentially suppresses IAAs, clearly blocking IAAs for >1 year in insulin-treated patients. For the patients receiving insulin for >2 weeks prior to rituximab administration, we cannot assess whether rituximab not only blocks the acquisition of insulin antibodies induced by insulin administration and/or also suppresses preformed insulin autoantibodies. Studies in prediabetic non-insulin-treated patients will likely be needed to evaluate the specific effects of rituximab on levels of IAAs.
Collapse
|
Randomized Controlled Trial |
14 |
57 |
17
|
Cook S, Herold K, Edidin DV, Briars R. Increasing problem solving in adolescents with type 1 diabetes: the choices diabetes program. DIABETES EDUCATOR 2002; 28:115-24. [PMID: 11852741 DOI: 10.1177/014572170202800113] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED The purpose of this pilot study was to test the hypothesis that adolescents with type 1 diabetes can learn to become better problem solvers in diabetes self-care and thereby improve their metabolic control. METHODS Fifty-three adolescents aged 13 to 17 with type 1 diabetes were randomly assigned to either a 6-week problem-solving diabetes education program or to a control group (usual care). A1C levels were obtained as well as assessments of problem solving, frequency of behavior, level of responsibility, and 24-hour behavior recall at baseline and 6 months. RESULTS The experimental group participants showed significantly improved problem-solving test scores and A1C values from baseline to 6 months, changes not evident in the control group. At 6 months, the experimental group participants were doing blood glucose testing more often than those in the control group. However, there was no significant difference in problem-solving test scores or A1C values. CONCLUSIONS This 6-week intervention for adolescents with diabetes resulted in better problem-solving skills, more frequent blood glucose testing, and improved A1C values. The results suggest that a diabetes problem-solving program for adolescents can be effective in improving metabolic control.
Collapse
|
Clinical Trial |
23 |
55 |
18
|
Coney L, Wang B, Ugen KE, Boyer J, McCallus D, Srikantan V, Agadjanyan M, Pachuk CJ, Herold K, Merva M. Facilitated DNA inoculation induces anti-HIV-1 immunity in vivo. Vaccine 1994; 12:1545-50. [PMID: 7879423 DOI: 10.1016/0264-410x(94)90082-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vaccine design against HIV-1 is complicated both by the latent aspects of lentiviral infection and the diversity of the virus. The type of vaccine approach used is therefore likely to be critically important. In general, vaccination strategies have relied on the use of live attenuated material or inactivated/subunit preparations as specific immunogens. Each of these methodologies has advantages and disadvantages in terms of the elicitation of broad cellular and humoral immune responses. Although most success has been achieved with live attenuated vaccines, there is a conceptual safety concern associated with the use of these vaccines for the prevention of human infections. In contrast, subunit or killed vaccine preparations enjoy advantages in preparation and conceptual safety; however, their ability to elicit broad immunity is more limited. In theory, inoculation of a plasmid DNA that supports in vivo expression of proteins, and therefore presentation of the processed protein antigen to the immune system, could be used to combine the features of a subunit vaccine and a live attenuated vaccine. We have designed a strategy for intramuscular DNA inoculation to elicit humoral and cellular immune responses against expressed HIV antigens. Uptake and expression are significantly enhanced if DNA is administered in conjunction with the facilitating agent bupivacaine-HCl. Using this technique we have demonstrated functional cellular and humoral immune responses against the majority of HIV-1 encoded antigens in both rodents and non-human primates.
Collapse
|
Review |
31 |
47 |
19
|
Sarikonda G, Sachithanantham S, Manenkova Y, Kupfer T, Posgai A, Wasserfall C, Bernstein P, Straub L, Pagni PP, Schneider D, Calvo TR, Coulombe M, Herold K, Gill RG, Atkinson M, Nepom G, Ehlers M, Staeva T, Garren H, Steinman L, Chan AC, von Herrath M. Transient B-cell depletion with anti-CD20 in combination with proinsulin DNA vaccine or oral insulin: immunologic effects and efficacy in NOD mice. PLoS One 2013; 8:e54712. [PMID: 23405091 PMCID: PMC3566105 DOI: 10.1371/journal.pone.0054712] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/17/2012] [Indexed: 01/10/2023] Open
Abstract
A recent type 1 diabetes (T1D) clinical trial of rituximab (a B cell-depleting anti-CD20 antibody) achieved some therapeutic benefit in preserving C-peptide for a period of approximately nine months in patients with recently diagnosed diabetes. Our previous data in the NOD mouse demonstrated that co-administration of antigen (insulin) with anti-CD3 antibody (a T cell-directed immunomodulator) offers better protection than either entity alone, indicating that novel combination therapies that include a T1D-related autoantigen are possible. To accelerate the identification and development of novel combination therapies that can be advanced into the clinic, we have evaluated the combination of a mouse anti-CD20 antibody with either oral insulin or a proinsulin-expressing DNA vaccine. Anti-CD20 alone, given once or on 4 consecutive days, produced transient B cell depletion but did not prevent or reverse T1D in the NOD mouse. Oral insulin alone (twice weekly for 6 weeks) was also ineffective, while proinsulin DNA (weekly for up to 12 weeks) showed a trend toward modest efficacy. Combination of anti-CD20 with oral insulin was ineffective in reversing diabetes in NOD mice whose glycemia was controlled with SC insulin pellets; these experiments were performed in three independent labs. Combination of anti-CD20 with proinsulin DNA was also ineffective in diabetes reversal, but did show modest efficacy in diabetes prevention (p = 0.04). In the prevention studies, anti-CD20 plus proinsulin resulted in modest increases in Tregs in pancreatic lymph nodes and elevated levels of proinsulin-specific CD4+ T-cells that produced IL-4. Thus, combination therapy with anti-CD20 and either oral insulin or proinsulin does not protect hyperglycemic NOD mice, but the combination with proinsulin offers limited efficacy in T1D prevention, potentially by augmentation of proinsulin-specific IL-4 production.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD20/immunology
- B-Lymphocytes/cytology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Drug Therapy, Combination/methods
- Female
- Hyperglycemia/drug therapy
- Hyperglycemia/immunology
- Insulin/administration & dosage
- Insulin/genetics
- Insulin/immunology
- Interleukin-4/immunology
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Pancreas/drug effects
- Pancreas/immunology
- Proinsulin/administration & dosage
- Proinsulin/genetics
- Proinsulin/immunology
- Spleen/drug effects
- Spleen/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
31 |
20
|
Jaspan JB, Towle VL, Maselli R, Herold K. Clinical studies with an aldose reductase inhibitor in the autonomic and somatic neuropathies of diabetes. Metabolism 1986; 35:83-92. [PMID: 3083212 DOI: 10.1016/0026-0495(86)90193-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Clinical investigations with the aldose reductase inhibitor (ARI) sorbinil in diabetic patients with neuropathy are described. Cardiac autonomic neuropathy was studied in 36 patients, in a double-blind, placebo-controlled, randomized, noncrossover trial. Patients received sorbinil (250 mg qd) or placebo over 6 weeks after a one-week baseline period. Diabetic control did not change over the study period, as indicated by unchanged glycohemoglobin. Response was assessed by expiration/inspiration (E/I) ratios on EKG during 6 c/min respiration and resting minimum heart rate, both measures of vagal function. In the sorbinil group, E/I ratios improved from 1.074 +/- 0.012 to 1.096 +/- 0.020 (P less than 0.03) with a slight decrease in the placebo group from 1.112 +/- 0.023 to 1.105 +/- 0.023 (P = NS). The difference between the week 6 and week 0 changes in each group was significant (P less than 0.01). Resting minimum heart rate decreased in the sorbinil group from 76.4 +/- 2.3 to 66.8 +/- 2.4 beats/min (P less than 0.001), with a mean change of 10 +/- 2. In the placebo group, heart rate was unchanged (77.9 +/- 3.9 to 77.5 +/- 3.3). The two sample t tests of the within-group differences were likewise significant (P less than 0.001). These changes in both E/I ratio and resting minimum heart rate are consistent with a sorbinil-related improvement in cardiac parasympathetic nerve function. Several isolated cases with apparent sorbinil-related improvement in autonomic symptoms will also be described. Studies of somatic neuropathy have previously shown improvement in nerve conduction velocities with sorbinil. In a study of 11 patients with severely painful diabetic neuropathy treated with sorbinil for 3 weeks [placebo-controlled in single-blind fashion (n = 8)], pains (as assessed on a 0 to 20 rating scale) improved from a mean score of 16 down to 8, with deterioration following drug withdrawal. Objective improvements in sensation and strength were observed in some cases. In this group of patients, statistically significant improvements in nerve conduction velocity, E/I ratios, and resting minimal heart rate, similar to those previously discussed, were also documented. Somatosensory-evoked potentials studies in the 36-patient study showed significant improvements in peripheral conduction and cortical responses. Sorbinil toxicity in 106 patients was 11.3%, with sex incidence of 7/73 males (9.6%) and 5/33 females (15.2%).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
Case Reports |
39 |
31 |
21
|
Jaspan JB, Herold K, Bartkus C. Effects of sorbinil therapy in diabetic patients with painful peripheral neuropathy and autonomic neuropathy. Am J Med 1985; 79:24-37. [PMID: 3000176 DOI: 10.1016/0002-9343(85)90507-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Clinical investigations with the aldose reductase inhibitor sorbinil in patients with peripheral neuropathy due to diabetes are described. After an improvement in motor and sensory nerve conduction velocities was demonstrated in asymptomatic diabetic patients taking sorbinil (compared with velocities during a placebo period), 11 patients with painful diabetic neuropathy were treated with sorbinil for three weeks without alterations in diabetic management or control. Therapy was placebo-controlled in a single-blind fashion in eight patients. Pain (assessed by or on a zero to 20 rating scale), which had been constant for many months before entry into the study and unresponsive to numerous medications, improved from a mean score of 16 to 8 and returned when the drug was discontinued. Objective improvement in sensation and strength were observed in some cases. Improvements in nerve conduction velocity and cardiac autonomic function were also documented. Cardiac autonomic neuropathy was studied in 36 patients in a double-blind, placebo-controlled, randomized, noncrossover trial. Patients received one 250-mg sorbinil tablet or one placebo tablet daily for six weeks, after a one-week baseline period. Glycemic control did not change during the study period, as indicated by unaltered glycohemoglobin levels. Response was assessed by expiration-inspiration ratios, obtained on electrocardiography during six cycles per minute respiration, and by resting minimal heart rate, both measures of vagal function. In the sorbinil-treated group, expiration-inspiration ratios improved from 1.074 +/- 0.012 to 1.096 +/- 0.020 (p less than 0.03). There was a slight decrease in the ratios in the placebo-treated group, from 1.112 +/- 0.023 to 1.105 +/- 0.023 (not significant). The difference between the Week 0 to Week 6 changes in each group was significant (p less than 0.01). Resting minimal heart rate decreased in the sorbinil-treated group from 76.4 +/- 2.3 to 66.8 +/- 2.8 +/- 2.4 beats per minute (p less than 0.001), with a mean change of 10 +/- 2. In the placebo-treated group, heart rate was unchanged (77.9 +/- 3.9 to 77.5 +/- 3.3 beats per minute). The two-sample t test of the within-group differences was also significant (p less than 0.001). The changes in both expiration-inspiration ratios and resting minimal heart rate are consistent with a sorbinil-related improvement in cardiac parasympathetic nerve function. Several isolated cases of apparent sorbinil-related improvements in autonomic symptoms have been observed.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
Clinical Trial |
40 |
29 |
22
|
Sosenko JM, Skyler JS, Krischer JP, Greenbaum CJ, Mahon J, Rafkin LE, Cuthbertson D, Cowie C, Herold K, Eisenbarth G, Palmer JP. Glucose excursions between states of glycemia with progression to type 1 diabetes in the diabetes prevention trial-type 1 (DPT-1). Diabetes 2010; 59:2386-9. [PMID: 20682683 PMCID: PMC3279562 DOI: 10.2337/db10-0534] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE We characterized fluctuations between states of glycemia in progressors to type 1 diabetes and studied whether those fluctuations are related to the early C-peptide response to oral glucose. RESEARCH DESIGN AND METHODS Oral glucose tolerance tests (OGTTs) from differing states of glycemia were compared within individuals for glucose and C-peptide. Dysglycemic OGTTs (DYSOGTTs) were compared with normal OGTTs (NLOGTT), while transient diabetic OGTTs (TDOGTTs) were compared with subsequent nondiabetic OGTTs and with OGTTs performed at diagnosis. RESULTS Of 135 progressors with four or more OGTTs, 30 (22%) went from NLOGTTs to DYSOGTTs at least twice. Area under the curve (AUC) glucose values from the second NLOGTT were higher (P < 0.001) than values from the first NLOGTT. Among 98 progressors whose DYSOGTTs and NLOGTTs were synchronized for the time before diagnosis, despite higher glucose levels (P < 0.01 at all time points) in the DYSOGTTs, 30- to 0-min C-peptide difference values changed little. Likewise, 30- to 0-min C-peptide difference values did not differ between TDOGTTs and subsequent (within 3 months) nondiabetic OGTTs in 55 progressors. In contrast, as glucose levels increased overall from the first to last OGTTs before diagnosis (P < 0.001 at every time point, n = 207), 30- to 0-min C-peptide difference values decreased (P < 0.001). CONCLUSIONS Glucose levels fluctuate widely as they gradually increase overall with progression to type 1 diabetes. As glucose levels increase, the early C-peptide response declines. In contrast, glucose fluctuations are not related to the early C-peptide response. This suggests that changes in insulin sensitivity underlie the glucose fluctuations.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
29 |
23
|
Efrat S, Serreze D, Svetlanov A, Post CM, Johnson EA, Herold K, Horwitz M. Adenovirus early region 3(E3) immunomodulatory genes decrease the incidence of autoimmune diabetes in NOD mice. Diabetes 2001; 50:980-4. [PMID: 11334441 DOI: 10.2337/diabetes.50.5.980] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The early three (E3) region of the adenovirus (Ad) encodes a number of immunomodulatory proteins that interfere with class I major histocompatibility-mediated antigen presentation and confer resistance to cytokine-induced apoptosis in cells infected by the virus. Transgenic expression of Ad E3 genes under the rat insulin II promoter (RIP-E3) in beta-cells in nonobese diabetic (NOD) mice decreases the incidence and delays the onset of autoimmune diabetes. The immune effector cells of RIP-E3/NOD mice maintain the ability to infiltrate the islets and transfer diabetes into NOD-scid recipients, although at a significantly reduced rate compared with wild-type littermates. The islets of RIP-E3/ NOD mice can be destroyed by adoptive transfer of splenocytes from wild-type NOD mice; however, the time to onset of hyperglycemia is delayed significantly, and 40% of these recipients were not diabetic at the end of the experiment. These findings suggest that expression of E3 genes in beta-cells affects both the activation of immune effector cells and the intrinsic resistance of beta-cells to autoimmune destruction.
Collapse
|
|
24 |
28 |
24
|
Triolo TM, Fouts A, Pyle L, Yu L, Gottlieb PA, Steck AK, Greenbaum CJ, Atkinson M, Baidal D, Battaglia M, Becker D, Bingley P, Bosi E, Buckner J, Clements M, Colman P, DiMeglio L, Gitelman S, Goland R, Gottlieb P, Herold K, Knip M, Krischer J, Lernmark A, Moore W, Moran A, Muir A, Palmer J, Peakman M, Philipson L, Raskin P, Redondo M, Rodriguez H, Russell W, Spain L, Schatz D, Sosenko J, Wentworth J, Wherrett D, Wilson D, Winter W, Ziegler A, Anderson M, Antinozzi P, Benoist C, Blum J, Bourcier K, Chase P, Clare-Salzler M, Clynes R, Eisenbarth G, Fathman C, Grave G, Hering B, Insel R, Kaufman F, Kay T, Leschek E, Mahon J, Marks J, Nanto-Salonen K, Nepom G, Orban T, Parkman R, Pescovitz M, Peyman J, Pugliese A, Roep B, Roncarolo M, Savage P, Simell O, Sherwin R, Siegelman M, Skyler J, Steck A, Thomas J, Trucco M, Wagner J, Krischer JP, Leschek E, Rafkin L, Bourcier K, Cowie C, Foulkes M, Insel R, Krause-Steinrauf H, Lachin JM, Malozowski S, Peyman J, Ridge J, Savage P, Skyler JS, Zafonte SJ, Rafkin L, Sosenko JM, Kenyon NS, Santiago I, Krischer JP, Bundy B, Abbondondolo M, et alTriolo TM, Fouts A, Pyle L, Yu L, Gottlieb PA, Steck AK, Greenbaum CJ, Atkinson M, Baidal D, Battaglia M, Becker D, Bingley P, Bosi E, Buckner J, Clements M, Colman P, DiMeglio L, Gitelman S, Goland R, Gottlieb P, Herold K, Knip M, Krischer J, Lernmark A, Moore W, Moran A, Muir A, Palmer J, Peakman M, Philipson L, Raskin P, Redondo M, Rodriguez H, Russell W, Spain L, Schatz D, Sosenko J, Wentworth J, Wherrett D, Wilson D, Winter W, Ziegler A, Anderson M, Antinozzi P, Benoist C, Blum J, Bourcier K, Chase P, Clare-Salzler M, Clynes R, Eisenbarth G, Fathman C, Grave G, Hering B, Insel R, Kaufman F, Kay T, Leschek E, Mahon J, Marks J, Nanto-Salonen K, Nepom G, Orban T, Parkman R, Pescovitz M, Peyman J, Pugliese A, Roep B, Roncarolo M, Savage P, Simell O, Sherwin R, Siegelman M, Skyler J, Steck A, Thomas J, Trucco M, Wagner J, Krischer JP, Leschek E, Rafkin L, Bourcier K, Cowie C, Foulkes M, Insel R, Krause-Steinrauf H, Lachin JM, Malozowski S, Peyman J, Ridge J, Savage P, Skyler JS, Zafonte SJ, Rafkin L, Sosenko JM, Kenyon NS, Santiago I, Krischer JP, Bundy B, Abbondondolo M, Dixit S, Pasha M, King K, Adcock H, Atterberry L, Fox K, Englert N, Mauras J, Permuy K, Sikes T, Adams T, Berhe B, Guendling L, McLennan L, Paganessi C, Murphy M, Draznin M, Kamboj S, Sheppard V, Lewis L, Coates W, Amado D, Moore G, Babar J, Bedard D, Brenson-Hughes J, Cernich M, Clements R, Duprau S, Goodman L, Hester L, Huerta-Saenz A, Asif I, Karmazin T, Letjen S, Raman D, Morin W, Bestermann E, Morawski J, White A, Brockmyer R, Bays S, Campbell A, Boonstra M, Stapleton N, Stone A, Donoho H, Everett H, Hensley M, Johnson C, Marshall N, Skirvin P, Taylor R, Williams L, Burroughs C, Ray C, Wolverton D, Nickels C, Dothard P, Speiser M, Pellizzari L, Bokor K, Izuora S, Abdelnour P, Cummings S, Cuthbertson D, Paynor M, Leahy M, Riedl S, Shockley R, Saad T, Briones S, Casella C, Herz K, Walsh J, Greening F, Deemer M, Hay S, Hunt N, Sikotra L, Simons D, Karounos R, Oremus L, Dye L, Myers D, Ballard W, Miers R, Eberhard C, Sparks K, Thraikill K, Edwards J, Fowlkes S, Kemp A, Morales L, Holland L, Johnson P, Paul A, Ghatak K, Fiske S, Phelen H, Leyland T, Henderson D, Brenner E, Oppenheimer I, Mamkin C, Moniz C, Clarson M, Lovell A, Peters V, Ford J, Ruelas D, Borut D, Burt M, Jordan S, Castilla P, Flores M, Ruiz L, Hanson J, Green-Blair R, Sheridan K, Garmeson J, Wintergerst G, Pierce A, Omoruyi M, Foster S, Kingery A, Lunsford I, Cervantes T, Parker P, Price J, Urben I, Guillette H, Doughty H, Haydock V, Parker P, Bergman S, Duncum C, Rodda A, Perelman R, Calendo C, Barrera E, Arce-Nunez Y, Geyer S, Martinez M, De la Portilla I, Cardenas L, Garrido M, Villar R, Lorini E, Calandra G, D’Annuzio K, Perri N, Minuto C, Hays B, Rebora R, Callegari O, Ali J, Kramer B, Auble S, Cabrera P, Donohoue R, Fiallo-Scharer M, Hessner P, Wolfgram A, Henderson C, Kansra N, Bettin R, McCuller A, Miller S, Accacha J, Corrigan E, Fiore R, Levine T, Mahoney C, Polychronakos V, Henry M, Gagne H, Starkman M, Fox D, Chin F, Melchionne L, Silverman I, Marshall L, Cerracchio J, Cruz A, Viswanathan J, Heyman K, Wilson S, Chalew S, Valley S, Layburn A, Lala P, Clesi M, Genet G, Uwaifo A, Charron T, Allerton W, Hsiao B, Cefalu L, Melendez-Ramirez R, Richards C, Alleyn E, Gustafson M, Lizanna J, Wahlen S, Aleiwe M, Hansen H, Wahlen C, Karges C, Levy A, Bonaccorso R, Rapaport Y, Tomer D, Chia M, Goldis L, Iazzetti M, Klein C, Levister L, Waldman E, Keaton N, Wallach M, Regelmann Z, Antal M, Aranda C, Reynholds A, Vinik P, Barlow M, Bourcier M, Nevoret J, Couper S, Kinderman A, Beresford N, Thalagne H, Roper J, Gibbons J, Hill S, Balleaut C, Brennan J, Ellis-Gage L, Fear T, Gray L, Law P, Jones C, McNerney L, Pointer N, Price K, Few D, Tomlinson N, Leech D, Wake C, Owens M, Burns J, Leinbach A, Wotherspoon A, Murray K, Short G, Curry S, Kelsey J, Lawson J, Porter S, Stevens E, Thomson S, Winship L, Liu S, Wynn E, Wiltshire J, Krebs P, Cresswell H, Faherty C, Ross L, Denvir J, Drew T, Randell P, Mansell S, Lloyd J, Bell S, Butler Y, Hooton H, Navarra A, Roper G, Babington L, Crate H, Cripps A, Ledlie C, Moulds R, Malloy J, Norton B, Petrova O, Silkstone C, Smith K, Ghai M, Murray V, Viswanathan M, Henegan O, Kawadry J, Olson L, Maddox K, Patterson T, Ahmad B, Flores D, Domek S, Domek K, Copeland M, George J, Less T, Davis M, Short A, Martin J, Dwarakanathan P, O’Donnell B, Boerner L, Larson M, Phillips M, Rendell K, Larson C, Smith K, Zebrowski L, Kuechenmeister M, Miller J, Thevarayapillai M, Daniels H, Speer N, Forghani R, Quintana C, Reh A, Bhangoo P, Desrosiers L, Ireland T, Misla C, Milliot E, Torres S, Wells J, Villar M, Yu D, Berry D, Cook J, Soder A, Powell M, Ng M, Morrison Z, Moore M, Haslam M, Lawson B, Bradley J, Courtney C, Richardson C, Watson E, Keely D, DeCurtis M, Vaccarcello-Cruz Z, Torres K, Muller S, Sandberg H, Hsiang B, Joy D, McCormick A, Powell H, Jones J, Bell S, Hargadon S, Hudson M, Kummer S, Nguyen T, Sauder E, Sutton K, Gensel R, Aguirre-Castaneda V, Benavides, Lopez D, Hemp S, Allen J, Stear E, Davis T, O’Donnell R, Jones A, Roberts J, Dart N, Paramalingam L, Levitt Katz N, Chaudhary K, Murphy S, Willi B, Schwartzman C, Kapadia D, Roberts A, Larson D, McClellan G, Shaibai L, Kelley G, Villa C, Kelley R, Diamond M, Kabbani T, Dajani F, Hoekstra M, Sadler K, Magorno J, Holst V, Chauhan N, Wilson P, Bononi M, Sperl A, Millward M, Eaton L, Dean J, Olshan H, Stavros T, Renna C, Milliard, Brodksy L, Bacon J, Quintos L, Topor S, Bialo B, Bancroft A, Soto W, Lagarde H, Tamura R, Lockemer T, Vanderploeg M, Ibrahim M, Huie V, Sanchez R, Edelen R, Marchiando J, Palmer T, Repas M, Wasson P, Wood K, Auker J, Culbertson T, Kieffer D, Voorhees T, Borgwardt L, DeRaad K, Eckert E, Isaacson H, Kuhn A, Carroll M, Xu P, Schubert G, Francis S, Hagan T, Le M, Penn E, Wickham C, Leyva K, Rivera J, Padilla I, Rodriguez N, Young K, Jospe J, Czyzyk B, Johnson U, Nadgir N, Marlen G, Prakasam C, Rieger N, Glaser E, Heiser B, Harris C, Alies P, Foster H, Slater K, Wheeler D, Donaldson M, Murray D, Hale R, Tragus D, Word J, Lynch L, Pankratz W, Badias F, Rogers R, Newfield S, Holland M, Hashiguchi M, Gottschalk A, Philis-Tsimikas R, Rosal S, Franklin S, Guardado N, Bohannon M, Baker A, Garcia T, Aguinaldo J, Phan V, Barraza D, Cohen J, Pinsker U, Khan J, Wiley L, Jovanovic P, Misra M, Bassi M, Wright D, Cohen K, Huang M, Skiles S, Maxcy C, Pihoker K, Cochrane J, Fosse S, Kearns M, Klingsheim N, Beam C, Wright L, Viles H, Smith S, Heller M, Cunningham A, Daniels L, Zeiden J, Field R, Walker K, Griffin L, Boulware D, Bartholow C, Erickson J, Howard B, Krabbenhoft C, Sandman A, Vanveldhuizen J, Wurlger A, Zimmerman K, Hanisch L, Davis-Keppen A, Bounmananh L, Cotterill J, Kirby M, Harris A, Schmidt C, Kishiyama C, Flores J, Milton W, Martin C, Whysham A, Yerka T, Bream S, Freels J, Hassing J, Webster R, Green P, Carter J, Galloway D, Hoelzer S, Roberts S, Said P, Sullivan H, Freeman D, Allen E, Reiter E, Feinberg C, Johnson L, Newhook D, Hagerty N, White L, Levandoski J, Kyllo M, Johnson C, Gough J, Benoit P, Iyer F, Diamond H, Hosono S, Jackman L, Barette P, Jones I, Sills S, Bzdick J, Bulger R, Ginem J, Weinstock I, Douek R, Andrews G, Modgill G, Gyorffy L, Robin N, Vaidya S, Crouch K, O’Brien C, Thompson N, Granger M, Thorne J, Blumer J, Kalic L, Klepek J, Paulett B, Rosolowski J, Horner M, Watkins J, Casey K, Carpenter C, Michelle Kieffer MH, Burns J, Horton C, Pritchard D, Soetaert A, Wynne C, Chin O, Molina C, Patel R, Senguttuvan M, Wheeler O, Lane P, Furet C, Steuhm D, Jelley S, Goudeau L, Chalmers D, Greer C, Panagiotopoulos D, Metzger D, Nguyen M, Horowitz M, Linton C, Christiansen E, Glades C, Morimoto M, Macarewich R, Norman K, Patin C, Vargas A, Barbanica A, Yu P, Vaidyanathan W, Nallamshetty L, Osborne R, Mehra S, Kaster S, Neace J, Horner G, Reeves C, Cordrey L, Marrs T, Miller S, Dowshen D, Oduah V, Doyle S, Walker D, Catte H, Dean M, Drury-Brown B, Hackman M, Lee S, Malkani K, Cullen K, Johnson P, Parrimon Y, Hampton M, McCarrell C, Curtis E, Paul, Zambrano Y, Paulus K, Pilger J, Ramiro J, Luvon Ritzie AQ, Sharma A, Shor A, Song X, Terry A, Weinberger J, Wootten M, Lachin JM, Foulkes M, Harding P, Krause-Steinrauf H, McDonough S, McGee PF, Owens Hess K, Phoebus D, Quinlan S, Raiden E, Batts E, Buddy C, Kirpatrick K, Ramey M, Shultz A, Webb C, Romesco M, Fradkin J, Leschek E, Spain L, Savage P, Aas S, Blumberg E, Beck G, Brillon D, Gubitosi-Klug R, Laffel L, Vigersky R, Wallace D, Braun J, Lernmark A, Lo B, Mitchell H, Naji A, Nerup J, Orchard T, Steffes M, Tsiatis A, Veatch R, Zinman B, Loechelt B, Baden L, Green M, Weinberg A, Marcovina S, Palmer JP, Weinberg A, Yu L, Babu S, Winter W, Eisenbarth GS, Bingley P, Clynes R, DiMeglio L, Eisenbarth G, Hays B, Leschek E, Marks J, Matheson D, Rafkin L, Rodriguez H, Spain L, Wilson D, Redondo M, Gomez D, McDonald A, Pena S, Pietropaolo M, Shippy K, Batts E, Brown T, Buckner J, Dove A, Hammond M, Hefty D, Klein J, Kuhns K, Letlau M, Lord S, McCulloch-Olson M, Miller L, Nepom G, Odegard J, Ramey M, Sachter E, St. Marie M, Stickney K, VanBuecken D, Vellek B, Webber C, Allen L, Bollyk J, Hilderman N, Ismail H, Lamola S, Sanda S, Vendettuoli H, Tridgell D, Monzavi R, Bock M, Fisher L, Halvorson M, Jeandron D, Kim M, Wood J, Geffner M, Kaufman F, Parkman R, Salazar C, Goland R, Clynes R, Cook S, Freeby M, Pat Gallagher M, Gandica R, Greenberg E, Kurland A, Pollak S, Wolk A, Chan M, Koplimae L, Levine E, Smith K, Trast J, DiMeglio L, Blum J, Evans-Molina C, Hufferd R, Jagielo B, Kruse C, Patrick V, Rigby M, Spall M, Swinney K, Terrell J, Christner L, Ford L, Lynch S, Menendez M, Merrill P, Pescovitz M, Rodriguez H, Alleyn C, Baidal D, Fay S, Gaglia J, Resnick B, Szubowicz S, Weir G, Benjamin R, Conboy D, deManbey A, Jackson R, Jalahej H, Orban T, Ricker A, Wolfsdorf J, Zhang HH, Wilson D, Aye T, Baker B, Barahona K, Buckingham B, Esrey K, Esrey T, Fathman G, Snyder R, Aneja B, Chatav M, Espinoza O, Frank E, Liu J, Perry J, Pyle R, Rigby A, Riley K, Soto A, Gitelman S, Adi S, Anderson M, Berhel A, Breen K, Fraser K, Gerard-Gonzalez A, Jossan P, Lustig R, Moassesfar S, Mugg A, Ng D, Prahalod P, Rangel-Lugo M, Sanda S, Tarkoff J, Torok C, Wesch R, Aslan I, Buchanan J, Cordier J, Hamilton C, Hawkins L, Ho T, Jain A, Ko K, Lee T, Phelps S, Rosenthal S, Sahakitrungruang T, Stehl L, Taylor L, Wertz M, Wong J, Philipson L, Briars R, Devine N, Littlejohn E, Grant T, Gottlieb P, Klingensmith G, Steck A, Alkanani A, Bautista K, Bedoy R, Blau A, Burke B, Cory L, Dang M, Fitzgerald-Miller L, Fouts A, Gage V, Garg S, Gesauldo P, Gutin R, Hayes C, Hoffman M, Ketchum K, Logsden-Sackett N, Maahs D, Messer L, Meyers L, Michels A, Peacock S, Rewers M, Rodriguez P, Sepulbeda F, Sippl R, Steck A, Taki I, Tran BK, Tran T, Wadwa RP, Zeitler P, Barker J, Barry S, Birks L, Bomsburger L, Bookert T, Briggs L, Burdick P, Cabrera R, Chase P, Cobry E, Conley A, Cook G, Daniels J, DiDomenico D, Eckert J, Ehler A, Eisenbarth G, Fain P, Fiallo-Scharer R, Frank N, Goettle H, Haarhues M, Harris S, Horton L, Hutton J, Jeffrrey J, Jenison R, Jones K, Kastelic W, King MA, Lehr D, Lungaro J, Mason K, Maurer H, Nguyen L, Proto A, Realsen J, Schmitt K, Schwartz M, Skovgaard S, Smith J, Vanderwel B, Voelmle M, Wagner R, Wallace A, Walravens P, Weiner L, Westerhoff B, Westfall E, Widmer K, Wright H, Schatz D, Abraham A, Atkinson M, Cintron M, Clare-Salzler M, Ferguson J, Haller M, Hosford J, Mancini D, Rohrs H, Silverstein J, Thomas J, Winter W, Cole G, Cook R, Coy R, Hicks E, Lewis N, Marks J, Pugliese A, Blaschke C, Matheson D, Pugliese A, Sanders-Branca N, Ray Arce LA, Cisneros M, Sabbag S, Moran A, Gibson C, Fife B, Hering B, Kwong C, Leschyshyn J, Nathan B, Pappenfus B, Street A, Boes MA, Peterson Eck S, Finney L, Albright Fischer T, Martin A, Jacqueline Muzamhindo C, Rhodes M, Smith J, Wagner J, Wood B, Becker D, Delallo K, Diaz A, Elnyczky B, Libman I, Pasek B, Riley K, Trucco M, Copemen B, Gwynn D, Toledo F, Rodriguez H, Bollepalli S, Diamond F, Eyth E, Henson D, Lenz A, Shulman D, Raskin P, Adhikari S, Dickson B, Dunnigan E, Lingvay I, Pruneda L, Ramos-Roman M, Raskin P, Rhee C, Richard J, Siegelman M, Sturges D, Sumpter K, White P, Alford M, Arthur J, Aviles-Santa ML, Cordova E, Davis R, Fernandez S, Fordan S, Hardin T, Jacobs A, Kaloyanova P, Lukacova-Zib I, Mirfakhraee S, Mohan A, Noto H, Smith O, Torres N, Wherrett D, Balmer D, Eisel L, Kovalakovska R, Mehan M, Sultan F, Ahenkorah B, Cevallos J, Razack N, Jo Ricci M, Rhode A, Srikandarajah M, Steger R, Russell WE, Black M, Brendle F, Brown A, Moore D, Pittel E, Robertson A, Shannon A, Thomas JW, Herold K, Feldman L, Sherwin R, Tamborlane W, Weinzimer S, Toppari J, Kallio T, Kärkkäinen M, Mäntymäki E, Niininen T, Nurmi B, Rajala P, Romo M, Suomenrinne S, Näntö-Salonen K, Simell O, Simell T, Bosi E, Battaglia M, Bianconi E, Bonfanti R, Grogan P, Laurenzi A, Martinenghi S, Meschi F, Pastore M, Falqui L, Teresa Muscato M, Viscardi M, Bingley P, Castleden H, Farthing N, Loud S, Matthews C, McGhee J, Morgan A, Pollitt J, Elliot-Jones R, Wheaton C, Knip M, Siljander H, Suomalainen H, Colman P, Healy F, Mesfin S, Redl L, Wentworth J, Willis J, Farley M, Harrison L, Perry C, Williams F, Mayo A, Paxton J, Thompson V, Volin L, Fenton C, Carr L, Lemon E, Swank M, Luidens M, Salgam M, Sharma V, Schade D, King C, Carano R, Heiden J, Means N, Holman L, Thomas I, Madrigal D, Muth T, Martin C, Plunkett C, Ramm C, Auchus R, Lane W, Avots E, Buford M, Hale C, Hoyle J, Lane B, Muir A, Shuler S, Raviele N, Ivie E, Jenkins M, Lindsley K, Hansen I, Fadoju D, Felner E, Bode B, Hosey R, Sax J, Jefferies C, Mannering S, Prentis R, She J, Stachura M, Hopkins D, Williams J, Steed L, Asatapova E, Nunez S, Knight S, Dixon P, Ching J, Donner T, Longnecker S, Abel K, Arcara K, Blackman S, Clark L, Cooke D, Plotnick L, Levin P, Bromberger L, Klein K, Sadurska K, Allen C, Michaud D, Snodgrass H, Burghen G, Chatha S, Clark C, Silverberg J, Wittmer C, Gardner J, LeBoeuf C, Bell P, McGlore O, Tennet H, Alba N, Carroll M, Baert L, Beaton H, Cordell E, Haynes A, Reed C, Lichter K, McCarthy P, McCarthy S, Monchamp T, Roach J, Manies S, Gunville F, Marosok L, Nelson T, Ackerman K, Rudolph J, Stewart M, McCormick K, May S, Falls T, Barrett T, Dale K, Makusha L, McTernana C, Penny-Thomas K, Sullivan K, Narendran P, Robbie J, Smith D, Christensen R, Koehler B, Royal C, Arthur T, Houser H, Renaldi J, Watsen S, Wu P, Lyons L, House B, Yu J, Holt H, Nation M, Vickers C, Watling R, Heptulla R, Trast J, Agarwal C, Newell D, Katikaneni R, Gardner C, Del A, Rio A, Logan H, Collier C, Rishton G, Whalley A, Ali S, Ramtoola T, Quattrin L, Mastrandea A, House M, Ecker C, Huang C, Gougeon J, Ho D, Pacuad D, Dunger J, May C, O’Brien C, Acerini B, Salgin A, Thankamony R, Williams J, Buse G, Fuller M, Duclos J, Tricome H, Brown D, Pittard D, Bowlby A, Blue T, Headley S, Bendre K, Lewis K, Sutphin C, Soloranzo J, Puskaric H, Madison M, Rincon M, Carlucci R, Shridharani B, Rusk E, Tessman D, Huffman H, Abrams B, Biederman M, Jones V, Leathers W, Brickman P, Petrie D, Zimmerman J, Howard L, Miller R, Alemzadeh D, Mihailescu R, Melgozza-Walker N, Abdulla C, Boucher-Berry D, Ize-Ludlow R, Levy C, Swenson, Brousell N, Crimmins D, Edler T, Weis C, Schultz D, Rogers D, Latham C, Mawhorter C, Switzer W, Spencer P, Konstantnopoulus S, Broder J, Klein L, Knight L, Szadek G, Welnick B, Thompson R, Hoffman A, Revell J, Cherko K, Carter E, Gilson J, Haines G, Arthur B, Bowen W, Zipf P, Graves R, Lozano D, Seiple K, Spicer A, Chang J, Fregosi J, Harbinson C, Paulson S, Stalters P, Wright D, Zlock A, Freeth J, Victory H, Maheshwari A, Maheshwari T, Holmstrom J, Bueno R, Arguello J, Ahern L, Noreika V, Watson S, Hourse P, Breyer C, Kissel Y, Nicholson M, Pfeifer S, Almazan J, Bajaj M, Quinn K, Funk J, McCance E, Moreno R, Veintimilla A, Wells J, Cook S, Trunnel J, Henske S, Desai K, Frizelis F, Khan R, Sjoberg K, Allen P, Manning G, Hendry B, Taylor S, Jones W, Strader M, Bencomo T, Bailey L, Bedolla C, Roldan C, Moudiotis B, Vaidya C, Anning S, Bunce S, Estcourt E, Folland E, Gordon C, Harrill J, Ireland J, Piper L, Scaife K, Sutton S, Wilkins M, Costelloe J, Palmer L, Casas C, Miller M, Burgard C, Erickson J, Hallanger-Johnson P, Clark W, Taylor A, Lafferty S, Gillett C, Nolan M, Pathak L, Sondrol T, Hjelle S, Hafner J, Kotrba R, Hendrickson A, Cemeroglu T, Symington M, Daniel Y, Appiagyei-Dankah D, Postellon M, Racine L, Kleis K, Barnes S, Godwin H, McCullough K, Shaheen G, Buck L, Noel M, Warren S, Weber S, Parker I, Gillespie B, Nelson C, Frost J, Amrhein E, Moreland A, Hayes J, Peggram J, Aisenberg M, Riordan J, Zasa E, Cummings K, Scott T, Pinto A, Mokashi K, McAssey E, Helden P, Hammond L, Dinning S, Rahman S, Ray C, Dimicri S, Guppy H, Nielsen C, Vogel C, Ariza L, Morales Y, Chang R, Gabbay L, Ambrocio L, Manley R, Nemery W, Charlton P, Smith L, Kerr B, Steindel-Kopp M, Alamaguer D, Liljenquist G, Browning T, Coughenour M, Sulk E, Tsalikan M, Tansey J, Cabbage N. Identical and Nonidentical Twins: Risk and Factors Involved in Development of Islet Autoimmunity and Type 1 Diabetes. Diabetes Care 2019; 42:192-199. [PMID: 30061316 PMCID: PMC6341285 DOI: 10.2337/dc18-0288] [Show More Authors] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/28/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE There are variable reports of risk of concordance for progression to islet autoantibodies and type 1 diabetes in identical twins after one twin is diagnosed. We examined development of positive autoantibodies and type 1 diabetes and the effects of genetic factors and common environment on autoantibody positivity in identical twins, nonidentical twins, and full siblings. RESEARCH DESIGN AND METHODS Subjects from the TrialNet Pathway to Prevention Study (N = 48,026) were screened from 2004 to 2015 for islet autoantibodies (GAD antibody [GADA], insulinoma-associated antigen 2 [IA-2A], and autoantibodies against insulin [IAA]). Of these subjects, 17,226 (157 identical twins, 283 nonidentical twins, and 16,786 full siblings) were followed for autoantibody positivity or type 1 diabetes for a median of 2.1 years. RESULTS At screening, identical twins were more likely to have positive GADA, IA-2A, and IAA than nonidentical twins or full siblings (all P < 0.0001). Younger age, male sex, and genetic factors were significant factors for expression of IA-2A, IAA, one or more positive autoantibodies, and two or more positive autoantibodies (all P ≤ 0.03). Initially autoantibody-positive identical twins had a 69% risk of diabetes by 3 years compared with 1.5% for initially autoantibody-negative identical twins. In nonidentical twins, type 1 diabetes risk by 3 years was 72% for initially multiple autoantibody-positive, 13% for single autoantibody-positive, and 0% for initially autoantibody-negative nonidentical twins. Full siblings had a 3-year type 1 diabetes risk of 47% for multiple autoantibody-positive, 12% for single autoantibody-positive, and 0.5% for initially autoantibody-negative subjects. CONCLUSIONS Risk of type 1 diabetes at 3 years is high for initially multiple and single autoantibody-positive identical twins and multiple autoantibody-positive nonidentical twins. Genetic predisposition, age, and male sex are significant risk factors for development of positive autoantibodies in twins.
Collapse
|
Clinical Trial |
6 |
26 |
25
|
Witkowski P, Liu Z, Guo Q, Poumian-Ruiz E, Cernea S, Herold K, Hardy MA. Two-Layer Method in Short-Term Pancreas Preservation for Successful Islet Isolation. Transplant Proc 2005; 37:3398-401. [PMID: 16298606 DOI: 10.1016/j.transproceed.2005.09.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND We sought to determine whether the two-layer method (TLM) offers advantages over UW storage solution for locally procured pancreata with cold ischemia time of <8 hours for successful islet isolation. METHODS From October 2003 through February 2005, 22 human pancreata were procured locally from cadaveric donors and preserved using UW solution (n = 11) or TLM (n = 11). RESULTS Donor characteristics were similar in the two groups, with no statistical difference. Cold ischemia time was 4.5 +/- 0.6 (2.5 to 8) hours in the UW and 5.1 +/- 0.5 (3 to 8) hours in TLM group (P > .05). Organs preserved with TLM were exposed to PFC for 4 +/- 0.5 (2 to 7.5) hours. After TLM preservation, 8 of 11 (72%) pancreata yielded >300,000 IEQ pancreatic islets, which met all criteria for clinical transplantation; after UW cold storage, only 3 of 11 isolations were equally successful (27%) (P < .05). Mean IEQ was higher in the TLM than in the UW group: 349,000 +/- 37,000 vs 277,800 +/- 34,000; IEQ/g was also higher at 5100 +/- 760 vs 3000 +/- 570, respectively (P < .05). Islet quality, characterized by purity, viability, and insulin SI, did not differ statistically in the two groups: 67 +/- 4 vs 74 +/- 4%, 87 +/- 2 vs 83 +/- 4%, and 4 +/- 0.7 vs 4.8 +/- 1, respectively (P > .05). CONCLUSIONS The Two Layer Method for locally procured human pancreata with cold ischemia time lower than 8 hours offers significant advantage over UW cold storage increasing the pancreatic islet isolation yield and the isolation success rate.
Collapse
|
|
20 |
17 |