1
|
Morelle K, Podgórski T, Prévot C, Keuling O, Lehaire F, Lejeune P. Towards understanding wild boar S
us scrofa
movement: a synthetic movement ecology approach. Mamm Rev 2014. [DOI: 10.1111/mam.12028] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
11 |
70 |
2
|
Morelle K, Bubnicki J, Churski M, Gryz J, Podgórski T, Kuijper DPJ. Disease-Induced Mortality Outweighs Hunting in Causing Wild Boar Population Crash After African Swine Fever Outbreak. Front Vet Sci 2020; 7:378. [PMID: 32850993 PMCID: PMC7399055 DOI: 10.3389/fvets.2020.00378] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/28/2020] [Indexed: 01/02/2023] Open
Abstract
African swine fever (ASF) has been spreading in the Eurasian continent for more than 10 years now. Although the course of ASF in domestic pigs and its negative economic impact on the pork industry are well-known, we still lack a quantitative assessment of the impact of ASF on wild boar (Sus scrofa) populations under natural conditions. Wild boar is not only a reservoir for ASF; it is also one of the key wildlife species affecting structure and functioning of ecosystems. Therefore, knowledge on how ASF affects wild boar populations is crucial to better predict ecosystem response and for the design of scientific-based wild boar management to control ASF. We used a long-term camera trap survey (2012-2017) from the Białowieza Primeval Forest (BPF, Poland), where an ASF outbreak occurred in 2015, to investigate the impact of the disease on wild boar population dynamics under two contrasting management regimes (hunted vs. non-hunted). In the hunted part of BPF ("managed area"), hunting was drastically increased prior and after the first ASF case occurred (March 2015), whereas inside the National Park, hunting was not permitted ("unmanaged area," first detected case in June 2015). Using a random encounter model (REM), we showed that the density and abundance of wild boar dropped by 84 and 95% within 1 year following ASF outbreak in the unmanaged and managed area, respectively. In the managed area, we showed that 11-22% additional mortality could be attributed to hunting. Our study suggests that ASF-induced mortality, by far, outweighs hunting-induced mortality in causing wild boar population decline and shows that intensified hunting in newly ASF-infected areas does not achieve much greater reduction of population size than what is already caused by the ASF virus.
Collapse
|
Journal Article |
5 |
28 |
3
|
Morelle K, Jezek M, Licoppe A, Podgorski T. Deathbed choice by ASF-infected wild boar can help find carcasses. Transbound Emerg Dis 2019; 66:1821-1826. [PMID: 31183963 DOI: 10.1111/tbed.13267] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
African swine fever (ASF) is a fatal disease infectious to wild and domesticated suids. This disease entered the European Union in 2014 and recently reached western Europe, with the first cases observed in Belgium in September 2018. Carcasses of ASF-infected wild boar play an important role in the spread and persistence of the virus in the environment. Thus, rapidly finding and removing carcasses is a crucial measure for effective ASF control. Using distribution modelling, we investigated whether the fine-scale distribution of ASF-infected animals can be predicted and support wild boar carcass searches. Our results suggest that ASF-infected wild boar selected deathbeds in cool and moist habitats; thus, deathbed choice was mostly influenced by topographic and water-dependent covariates. Furthermore, we show that in the case of an epidemic, it is important to quickly collect a minimum of 75-100 carcasses with exact locations to build a well-performing and efficient carcass distribution model. The proposed model provides an indication of where carcasses are most likely to be found and can be used as a guide to strategically allocate resources.
Collapse
|
|
6 |
24 |
4
|
Morelle K, Lejeune P. Seasonal variations of wild boar Sus scrofa distribution in agricultural landscapes: a species distribution modelling approach. EUR J WILDLIFE RES 2014. [DOI: 10.1007/s10344-014-0872-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
|
11 |
21 |
5
|
Markov N, Pankova N, Morelle K. Where winter rules: Modeling wild boar distribution in its north-eastern range. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:1055-1064. [PMID: 31412443 DOI: 10.1016/j.scitotenv.2019.06.157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/27/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Wild boars are distributed almost all over the Earth. Though, Northern Asia remained not inhabited by the species until the end of the 20th century. In the last two decades slowly but surely the wild boar has expanded the northeastern edge of its range to the northern border of the taiga. Investigating environmental factors that underlie range expansions is crucial for understanding its mechanism and predict future changes in species distribution and biodiversity. Here we investigated the distribution of wild boar in its northeastern range, comparing the role of habitat and climate variables at three spatial scales: the permanently occupied area, the area of potential expansion and the total area. We have shown that along the gradient of wild boar occupancy (from permanently to sporadically occupied to presently unoccupied) the importance of habitat variables decreases while importance of climatic variables increases. Our analysis suggests that the potential range increase of the species results from the combined effect of habitat and climatic variables. A possibility for future expansion, however, is rather related to climate change (particularly to the increase of temperature at high latitudes) than to the alteration of habitat or shifts in resource use.
Collapse
|
|
6 |
19 |
6
|
Morelle K, Bouché P, Lehaire F, Leeman V, Lejeune P. Game species monitoring using road-based distance sampling in association with thermal imagers: a covariate analysis. ANIMAL BIODIVERSITY AND CONSERVATION 2012. [DOI: 10.32800/abc.2012.35.0253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Monitoring of game species populations is necessary to adequately assess culling by hunters in areas where natural large predators are absent. However, game managers have to control several species and they often lack of an efficient and convenient survey design method. Monitoring several species at that same time over large areas could thus be cost– and time–effective. We tested the influence of several factors during monitoring of three common game species, (wild boar, roe deer and red fox, using road–based distance sampling in association with thermal imagers. This pilot survey based on 20 night counts in five contrasting sites studied the effect of several covariates (species, thermal imaging, observer, group size, and habitat type) on the detection probabilities (= dp). No differences were observed between thermal imagers (dpJENOPTIK: 0.186, dpFLIR: 0.193) and group sizes (dp1ind.: 0.243, dp2ind.: 0.259, dp> 2ind.: 0.223), but we found differences between observers (dpobs1: 0.207, dpobs2: 0.274, dpobs3: 0.159). Expected differences were also observed between species (dpwild boar: 0.22, dproe deer: 0.35, dpred fox: 0.32) and between habitat type (dpforest: 0.27, dpedge: 0.74, dpopen: 0.35). Our results show that the detectability of low cost thermal imaging equipment is similar to that of more expensive methods, highlighting new possibilities for the use of thermal imagery by game managers. Although adjustments should be made to the study design our findings suggest that large–scale multi–species monitoring could be an efficient method for common game species.
Collapse
|
|
13 |
14 |
7
|
Morelle K, Lehaire F, Lejeune P. Is Wild Boar Heading Towards Movement Ecology? A Review of Trends and Gaps. WILDLIFE BIOLOGY 2014. [DOI: 10.2981/wlb.00017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
|
11 |
12 |
8
|
Fattebert J, Morelle K, Jurkiewicz J, Ukalska J, Borkowski J. Safety first: seasonal and diel habitat selection patterns by red deer in a contrasted landscape. J Zool (1987) 2019. [DOI: 10.1111/jzo.12657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
|
6 |
11 |
9
|
Mauroy A, Depoorter P, Saegerman C, Cay B, De Regge N, Filippitzi ME, Fischer C, Laitat M, Maes D, Morelle K, Nauwynck H, Simons X, van den Berg T, Van Huffel X, Thiry E, Dewulf J. Semi-quantitative risk assessment by expert elicitation of potential introduction routes of African swine fever from wild reservoir to domestic pig industry and subsequent spread during the Belgian outbreak (2018-2019). Transbound Emerg Dis 2021; 68:2761-2773. [PMID: 33713549 DOI: 10.1111/tbed.14067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/01/2022]
Abstract
Since the introduction in Georgia in 2007 of an African swine fever (ASF) genotype 2 virus strain, the virus has rapidly spread to both Western European and Asian countries. It now constitutes a major threat for the global swine industry. The ongoing European transmission cycle has been related to the 'wild boar habitat' with closed transmission events between wild boar populations and incidental spillovers to commercial and non-commercial (backyard) pig holdings. During the epidemic in Belgium, only wild boar were infected and although the introduction route has not yet been elucidated, the 'human factor' is highly suspected. While ASF was successfully contained in a small region in the Southern part of Belgium without affecting domestic pigs, the risk of spillover at the wild/domestic interface remains poorly assessed. In this study, we used a semi-quantitative method, involving national and international experts, to assess the risk associated with different transmission routes for ASF introduction from wild boar to domestic pig holdings and subsequent dissemination between holdings in the Belgian epidemiological context. Qualitative responses obtained by our questionnaire were numerically transformed and statistically processed to provide a semi-quantitative assessment of the occurrence of the hazard and a ranking of all transmission routes. 'Farmer', 'bedding material', 'veterinarian' and 'professionals from the pig sector' were considered as the most important transmission routes for ASF introduction from the wild reservoir to pig holdings. 'Animal movements', 'farmer', 'veterinarian', 'iatrogenic', 'animal transport truck' and 'animal care equipment' were considered as the most important transmission routes posing a risk of ASF spread between pig holdings. Combined with specific biosecurity checks in the holdings, this assessment helps in prioritizing risk mitigation measures against ASF introduction and further spread in the domestic pig industry, particularly while the ASF situation in Western Europe is worsening.
Collapse
|
Journal Article |
4 |
7 |
10
|
Rittié JL, Morelle K, Micheau P, Rancé F, Brémont F. Devenir à moyen et long terme des malformations pulmonaires de l'enfant. Arch Pediatr 2004; 11:520-1. [PMID: 15158817 DOI: 10.1016/j.arcped.2004.03.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
|
21 |
5 |
11
|
Morelle K, Bunnefeld N, Lejeune P, Oswald SA. From animal tracks to fine‐scale movement modes: a straightforward approach for identifying multiple spatial movement patterns. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
8 |
4 |
12
|
Morelle K, Barasona JA, Bosch J, Heine G, Daim A, Arnold J, Bauch T, Kosowska A, Cadenas-Fernández E, Aviles MM, Zuñiga D, Wikelski M, Vizcaino-Sanchez JM, Safi K. Accelerometer-based detection of African swine fever infection in wild boar. Proc Biol Sci 2023; 290:20231396. [PMID: 37644835 PMCID: PMC10465979 DOI: 10.1098/rspb.2023.1396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Infectious wildlife diseases that circulate at the interface with domestic animals pose significant threats worldwide and require early detection and warning. Although animal tracking technologies are used to discern behavioural changes, they are rarely used to monitor wildlife diseases. Common disease-induced behavioural changes include reduced activity and lethargy ('sickness behaviour'). Here, we investigated whether accelerometer sensors could detect the onset of African swine fever (ASF), a viral infection that induces high mortality in suids for which no vaccine is currently available. Taking advantage of an experiment designed to test an oral ASF vaccine, we equipped 12 wild boars with an accelerometer tag and quantified how ASF affects their activity pattern and behavioural fingerprint, using overall dynamic body acceleration. Wild boars showed a daily reduction in activity of 10-20% from the healthy to the viremia phase. Using change point statistics and comparing healthy individuals living in semi-free and free-ranging conditions, we show how the onset of disease-induced sickness can be detected and how such early detection could work in natural settings. Timely detection of infection in animals is crucial for disease surveillance and control, and accelerometer technology on sentinel animals provides a viable complementary tool to existing disease management approaches.
Collapse
|
research-article |
2 |
2 |
13
|
Wild TA, van Schalkwyk L, Viljoen P, Heine G, Richter N, Vorneweg B, Koblitz JC, Dechmann DKN, Rogers W, Partecke J, Linek N, Volkmer T, Gregersen T, Havmøller RW, Morelle K, Daim A, Wiesner M, Wolter K, Fiedler W, Kays R, Ezenwa VO, Meboldt M, Wikelski M. A multi-species evaluation of digital wildlife monitoring using the Sigfox IoT network. ANIMAL BIOTELEMETRY 2023; 11:13. [PMID: 38800509 PMCID: PMC11116194 DOI: 10.1186/s40317-023-00326-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/15/2023] [Indexed: 05/29/2024]
Abstract
Bio-telemetry from small tags attached to animals is one of the principal methods for studying the ecology and behaviour of wildlife. The field has constantly evolved over the last 80 years as technological improvement enabled a diversity of sensors to be integrated into the tags (e.g., GPS, accelerometers, etc.). However, retrieving data from tags on free-ranging animals remains a challenge since satellite and GSM networks are relatively expensive and or power hungry. Recently a new class of low-power communication networks have been developed and deployed worldwide to connect the internet of things (IoT). Here, we evaluated one of these, the Sigfox IoT network, for the potential as a real-time multi-sensor data retrieval and tag commanding system for studying fauna across a diversity of species and ecosystems. We tracked 312 individuals across 30 species (from 25 g bats to 3 t elephants) with seven different device concepts, resulting in more than 177,742 successful transmissions. We found a maximum line of sight communication distance of 280 km (on a flying cape vulture [Gyps coprotheres]), which sets a new documented record for animal-borne digital data transmission using terrestrial infrastructure. The average transmission success rate amounted to 68.3% (SD 22.1) on flying species and 54.1% (SD 27.4) on terrestrial species. In addition to GPS data, we also collected and transmitted data products from accelerometers, barometers, and thermometers. Further, we assessed the performance of Sigfox Atlas Native, a low-power method for positional estimates based on radio signal strengths and found a median accuracy of 12.89 km (MAD 5.17) on animals. We found that robust real-time communication (median message delay of 1.49 s), the extremely small size of the tags (starting at 1.28 g without GPS), and the low power demands (as low as 5.8 µAh per transmitted byte) unlock new possibilities for ecological data collection and global animal observation.
Collapse
|
research-article |
2 |
1 |
14
|
Brémont F, Morelle K, Guilloux S. Traitement chirurgical des pleuropneumopathies bactériennes du nourrisson et de l'enfant : les indications discutables. Arch Pediatr 2005; 12:832-4. [PMID: 15904820 DOI: 10.1016/j.arcped.2005.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
|
20 |
|