1
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
|
Review |
3 |
83 |
2
|
Marianski M, Mucha E, Greis K, Moon S, Pardo A, Kirschbaum C, Thomas DA, Meijer G, von Helden G, Gilmore K, Seeberger PH, Pagel K. Remote Participation during Glycosylation Reactions of Galactose Building Blocks: Direct Evidence from Cryogenic Vibrational Spectroscopy. Angew Chem Int Ed Engl 2020; 59:6166-6171. [PMID: 31944510 PMCID: PMC7187407 DOI: 10.1002/anie.201916245] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/19/2022]
Abstract
The stereoselective formation of 1,2-cis-glycosidic bonds is challenging. However, 1,2-cis-selectivity can be induced by remote participation of C4 or C6 ester groups. Reactions involving remote participation are believed to proceed via a key ionic intermediate, the glycosyl cation. Although mechanistic pathways were postulated many years ago, the structure of the reaction intermediates remained elusive owing to their short-lived nature. Herein, we unravel the structure of glycosyl cations involved in remote participation reactions via cryogenic vibrational spectroscopy and first principles theory. Acetyl groups at C4 ensure α-selective galactosylations by forming a covalent bond to the anomeric carbon in dioxolenium-type ions. Unexpectedly, also benzyl ether protecting groups can engage in remote participation and promote the stereoselective formation of 1,2-cis-glycosidic bonds.
Collapse
|
brief-report |
5 |
75 |
3
|
Thomas DA, Chang R, Mucha E, Lettow M, Greis K, Gewinner S, Schöllkopf W, Meijer G, von Helden G. Probing the conformational landscape and thermochemistry of DNA dinucleotide anions via helium nanodroplet infrared action spectroscopy. Phys Chem Chem Phys 2020; 22:18400-18413. [PMID: 32797142 DOI: 10.1039/d0cp02482a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Isolation of biomolecules in vacuum facilitates characterization of the intramolecular interactions that determine three-dimensional structure, but experimental quantification of conformer thermochemistry remains challenging. Infrared spectroscopy of molecules trapped in helium nanodroplets is a promising methodology for the measurement of thermochemical parameters. When molecules are captured in a helium nanodroplet, the rate of cooling to an equilibrium temperature of ca. 0.4 K is generally faster than the rate of isomerization, resulting in "shock-freezing" that kinetically traps molecules in local conformational minima. This unique property enables the study of temperature-dependent conformational equilibria via infrared spectroscopy at 0.4 K, thereby avoiding the deleterious effects of spectral broadening at higher temperatures. Herein, we demonstrate the first application of this approach to ionic species by coupling electrospray ionization mass spectrometry (ESI-MS) with helium nanodroplet infrared action spectroscopy to probe the structure and thermochemistry of deprotonated DNA dinucleotides. Dinucleotide anions were generated by ESI, confined in an ion trap at temperatures between 90 and 350 K, and entrained in traversing helium nanodroplets. The infrared action spectra of the entrained ions show a strong dependence on pre-pickup ion temperature, consistent with the preservation of conformer population upon cooling to 0.4 K. Non-negative matrix factorization was utilized to identify component conformer infrared spectra and determine temperature-dependent conformer populations. Relative enthalpies and entropies of conformers were subsequently obtained from a van't Hoff analysis. IR spectra and conformer thermochemistry are compared to results from ion mobility spectrometry (IMS) and electronic structure methods. The implementation of ESI-MS as a source of dopant molecules expands the diversity of molecules accessible for thermochemical measurements, enabling the study of larger, non-volatile species.
Collapse
|
Journal Article |
5 |
20 |
4
|
Kirschbaum C, Saied EM, Greis K, Mucha E, Gewinner S, Schöllkopf W, Meijer G, von Helden G, Poad BLJ, Blanksby SJ, Arenz C, Pagel K. Resolving Sphingolipid Isomers Using Cryogenic Infrared Spectroscopy. Angew Chem Int Ed Engl 2020; 59:13638-13642. [PMID: 32291895 PMCID: PMC7496694 DOI: 10.1002/anie.202002459] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/23/2020] [Indexed: 12/21/2022]
Abstract
1‐Deoxysphingolipids are a recently described class of sphingolipids that have been shown to be associated with several disease states including diabetic and hereditary neuropathy. The identification and characterization of 1‐deoxysphingolipids and their metabolites is therefore highly important. However, exact structure determination requires a combination of sophisticated analytical techniques due to the presence of various isomers, such as ketone/alkenol isomers, carbon–carbon double‐bond (C=C) isomers and hydroxylation regioisomers. Here we demonstrate that cryogenic gas‐phase infrared (IR) spectroscopy of ionized 1‐deoxysphingolipids enables the identification and differentiation of isomers by their unique spectroscopic fingerprints. In particular, C=C bond positions and stereochemical configurations can be distinguished by specific interactions between the charged amine and the double bond. The results demonstrate the power of gas‐phase IR spectroscopy to overcome the challenge of isomer resolution in conventional mass spectrometry and pave the way for deeper analysis of the lipidome.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
19 |
5
|
Lettow M, Grabarics M, Greis K, Mucha E, Thomas DA, Chopra P, Boons GJ, Karlsson R, Turnbull JE, Meijer G, Miller RL, von Helden G, Pagel K. Cryogenic Infrared Spectroscopy Reveals Structural Modularity in the Vibrational Fingerprints of Heparan Sulfate Diastereomers. Anal Chem 2020; 92:10228-10232. [PMID: 32658472 DOI: 10.1021/acs.analchem.0c02048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heparan sulfate and heparin are highly acidic polysaccharides with a linear sequence, consisting of alternating glucosamine and hexuronic acid building blocks. The identity of hexuronic acid units shows a variability along their sequence, as d-glucuronic acid and its C5 epimer, l-iduronic acid, can both occur. The resulting backbone diversity represents a major challenge for an unambiguous structural assignment by mass spectrometry-based techniques. Here, we employ cryogenic infrared spectroscopy on mass-selected ions to overcome this challenge and distinguish isomeric heparan sulfate tetrasaccharides that differ only in the configuration of their hexuronic acid building blocks. High-resolution infrared spectra of a systematic set of synthetic heparan sulfate stereoisomers were recorded in the fingerprint region from 1000 to 1800 cm-1. The experiments reveal a characteristic combination of spectral features for each of the four diastereomers studied and imply structural modularity in the vibrational fingerprints. Strong spectrum-structure correlations were found and rationalized by state-of-the-art quantum chemical calculations. The findings demonstrate the potential of cryogenic infrared spectroscopy to extend the mass spectrometry-based toolkit for the sequencing of heparan sulfate and structurally related biomolecules.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
18 |
6
|
Greis K, Kirschbaum C, Leichnitz S, Gewinner S, Schöllkopf W, von Helden G, Meijer G, Seeberger PH, Pagel K. Direct Experimental Characterization of the Ferrier Glycosyl Cation in the Gas Phase. Org Lett 2020; 22:8916-8919. [PMID: 33151077 DOI: 10.1021/acs.orglett.0c03301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Ferrier rearrangement reaction is crucial for the synthesis of pharmaceuticals. Although its mechanism was described more than 50 years ago, the structure of the intermediate remains elusive. Two structures have been proposed for this Ferrier glycosyl cation: a 1,2-unsaturated cation that is resonance-stabilized within the pyranose ring or a cation that is stabilized by the anchimeric assistance of a neighboring acetyl group. Using a combination of gas-phase cryogenic infrared spectroscopy in helium nanodroplets and first-principles density functional theory, we provide the first direct structural characterization of Ferrier cations. The data show that both acetylated glucal and galactal lead to glycosyl cations of the dioxolenium type.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
16 |
7
|
Marianski M, Mucha E, Greis K, Moon S, Pardo A, Kirschbaum C, Thomas DA, Meijer G, Helden G, Gilmore K, Seeberger PH, Pagel K. Fernpartizipation in Glykosylierungen von Galaktose‐Bausteinen: Direktnachweis durch kryogene Schwingungsspektroskopie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916245] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
|
5 |
16 |
8
|
Greis K, Mucha E, Lettow M, Thomas DA, Kirschbaum C, Moon S, Pardo‐Vargas A, von Helden G, Meijer G, Gilmore K, Seeberger PH, Pagel K. The Impact of Leaving Group Anomericity on the Structure of Glycosyl Cations of Protected Galactosides. Chemphyschem 2020; 21:1905-1907. [PMID: 32652759 PMCID: PMC7540451 DOI: 10.1002/cphc.202000473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Indexed: 12/31/2022]
Abstract
It has been reported that fragments produced by glycosidic bond breakage in mass spectrometry-based experiments can retain a memory of their anomeric configuration, which has major implications for glycan sequencing. Herein, we use cryogenic vibrational spectroscopy and ion mobility-mass spectrometry to study the structure of B-type fragments of protected galactosides. Cationic fragments were generated from glycosyl donors carrying trichloroacetimidate or thioethyl leaving groups of different anomeric configuration. The obtained infrared signatures indicate that the investigated fragments exhibit an identical structure, which suggests that there is no anomeric memory in B-type ions of fully protected monosaccharides.
Collapse
|
brief-report |
5 |
14 |
9
|
Greis K, Leichnitz S, Kirschbaum C, Chang CW, Lin MH, Meijer G, von Helden G, Seeberger PH, Pagel K. The Influence of the Electron Density in Acyl Protecting Groups on the Selectivity of Galactose Formation. J Am Chem Soc 2022; 144:20258-20266. [PMID: 36289569 PMCID: PMC9650713 DOI: 10.1021/jacs.2c05859] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The stereoselective formation of 1,2-cis-glycosidic
bonds is a major bottleneck in the synthesis of carbohydrates. We
here investigate how the electron density in acyl protecting groups
influences the stereoselectivity by fine-tuning the efficiency of
remote participation. Electron-rich C4-pivaloylated galactose building
blocks show an unprecedented α-selectivity. The trifluoroacetylated
counterpart with electron-withdrawing groups, on the other hand, exhibits
a lower selectivity. Cryogenic infrared spectroscopy in helium nanodroplets
and density functional theory calculations revealed the existence
of dioxolenium-type intermediates for this reaction, which suggests
that remote participation of the pivaloyl protecting group is the
origin of the high α-selectivity of the pivaloylated building
blocks. According to these findings, an α-selective galactose
building block for glycosynthesis is developed based on rational considerations
and is subsequently employed in automated glycan assembly exhibiting
complete stereoselectivity. Based on the obtained selectivities in
the glycosylation reactions and the results from infrared spectroscopy
and density functional theory, we suggest a mechanism by which these
reactions could proceed.
Collapse
|
|
3 |
14 |
10
|
Kirschbaum C, Greis K, Polewski L, Gewinner S, Schöllkopf W, Meijer G, von Helden G, Pagel K. Unveiling Glycerolipid Fragmentation by Cryogenic Infrared Spectroscopy. J Am Chem Soc 2021; 143:14827-14834. [PMID: 34473927 PMCID: PMC8447261 DOI: 10.1021/jacs.1c06944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Mass spectrometry
is routinely employed for structure elucidation
of molecules. Structural information can be retrieved from intact
molecular ions by fragmentation; however, the interpretation of fragment
spectra is often hampered by poor understanding of the underlying
dissociation mechanisms. For example, neutral headgroup loss from
protonated glycerolipids has been postulated to proceed via an intramolecular
ring closure but the mechanism and resulting ring size have never
been experimentally confirmed. Here we use cryogenic gas-phase infrared
(IR) spectroscopy in combination with computational chemistry to unravel
the structures of fragment ions and thereby shed light on elusive
dissociation mechanisms. Using the example of glycerolipid fragmentation,
we study the formation of protonated five-membered dioxolane and six-membered
dioxane rings and show that dioxolane rings are predominant throughout
different glycerolipid classes and fragmentation channels. For comparison,
pure dioxolane and dioxane ions were generated from tailor-made dehydroxyl
derivatives inspired by natural 1,2- and 1,3-diacylglycerols and subsequently
interrogated using IR spectroscopy. Furthermore, the cyclic structure
of an intermediate fragment occurring in the phosphatidylcholine fragmentation
pathway was spectroscopically confirmed. Overall, the results contribute
substantially to the understanding of glycerolipid fragmentation and
showcase the value of vibrational ion spectroscopy to mechanistically
elucidate crucial fragmentation pathways in lipidomics.
Collapse
|
|
4 |
10 |
11
|
Lettow M, Greis K, Mucha E, Lambeth TR, Yaman M, Kontodimas V, Manz C, Hoffmann W, Meijer G, Julian RR, von Helden G, Marianski M, Pagel K. Decoding the Fucose Migration Product during Mass-Spectrometric analysis of Blood Group Epitopes. Angew Chem Int Ed Engl 2023; 62:e202302883. [PMID: 36939315 PMCID: PMC10299593 DOI: 10.1002/anie.202302883] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/21/2023]
Abstract
Fucose is a signaling carbohydrate that is attached at the end of glycan processing. It is involved in a range of processes, such as the selectin-dependent leukocyte adhesion or pathogen-receptor interactions. Mass-spectrometric techniques, which are commonly used to determine the structure of glycans, frequently show fucose-containing chimeric fragments that obfuscate the analysis. The rearrangement leading to these fragments-often referred to as fucose migration-has been known for more than 25 years, but the chemical identity of the rearrangement product remains unclear. In this work, we combine ion-mobility spectrometry, radical-directed dissociation mass spectrometry, cryogenic IR spectroscopy of ions, and density-functional theory calculations to deduce the product of the rearrangement in the model trisaccharides Lewis x and blood group H2. The structural search yields the fucose moiety attached to the galactose with an α(1→6) glycosidic bond as the most likely product.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
9 |
12
|
Greis K, Kirschbaum C, von Helden G, Pagel K. Gas-phase infrared spectroscopy of glycans and glycoconjugates. Curr Opin Struct Biol 2021; 72:194-202. [PMID: 34952241 DOI: 10.1016/j.sbi.2021.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/02/2021] [Accepted: 11/21/2021] [Indexed: 11/28/2022]
Abstract
Glycans are intrinsically complex biomolecules that pose particular analytical challenges. Standard workflows for glycan analysis are based on mass spectrometry, often coupled with separation techniques such as liquid chromatography and ion mobility spectrometry. However, this approach does not yield direct structural information and cannot always distinguish between isomers. This gap might be filled in the future by gas-phase infrared spectroscopy, which has emerged as a promising structure-sensitive technique for glycan fingerprinting. This review highlights recent applications of gas-phase infrared spectroscopy for the analysis of synthetic and biological glycans and how they can be integrated into mass spectrometry-based workflows.
Collapse
|
Review |
4 |
6 |
13
|
Greis K, Canty AJ, O’Hair RAJ. Gas-Phase Reactions of the Group 10 Organometallic Cations, [(phen)M(CH 3)] + with Acetone: Only Platinum Promotes a Catalytic Cycle via the Enolate [(phen)Pt(OC(CH 2)CH 3)] +. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2018-1355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Electrospray ionisation of the ligated group 10 metal complexes [(phen)M(O2CCH3)2] (M = Ni, Pd, Pt) generates the cations [(phen)M(O2CCH3)]+, whose gas-phase chemistry was studied using multistage mass spectrometry experiments in an ion trap mass spectrometer with the combination of collision-induced dissociation (CID) and ion-molecule reactions (IMR). A new catalytic cycle has been discovered. In step 1, decarboxylation of [(phen)M(O2CCH3)]+ under CID conditions generates the organometallic cations [(phen)M(CH3)]+, which react with acetone to generate the [(phen)M(CH3)(OC(CH3)2)]+ adducts in competition with formation of the coordinated enolate for M = Pt (step 2). For M = Ni and Pd, the adducts regenerate [(phen)M(CH3)]+ upon CID. In the case of M = Pt, loss of methane is favored over loss of acetone and results in the formation of the enolate complex, [(phen)Pt(OC(CH2)CH3)]+. Upon further CID, both methane and CO loss can be observed resulting in the formation of the ketenyl and ethyl complexes [(phen)Pt(OCCH)]+ and [(phen)Pt(CH2CH3)]+ (step 3), respectively. In step 4, CID of [(phen)Pt(CH2CH3)]+ results in a beta-hydride elimination reaction to yield the hydride complex, [(phen)Pt(H)]+, which reacts with acetic acid to regenerate the acetate complex [(phen)Pt(O2CCH3)]+ and H2 in step 5. Thus, the catalytic cycle is formally closed, which corresponds to the decomposition of acetone and acetic acid into methane, CO, CO2, ethene and H2. All except the last step of the catalytic cycle are modelled using DFT calculations with optimizations of structures at the M06/SDD 6-31G(d) level of theory.
Collapse
|
|
6 |
5 |
14
|
Lettow M, Greis K, Grabarics M, Horlebein J, Miller RL, Meijer G, von Helden G, Pagel K. Chondroitin Sulfate Disaccharides in the Gas Phase: Differentiation and Conformational Constraints. J Phys Chem A 2021; 125:4373-4379. [PMID: 33979516 PMCID: PMC8279649 DOI: 10.1021/acs.jpca.1c02463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Glycosaminoglycans
(GAGs) are a family of complex carbohydrates
vital to all mammalian organisms and involved in numerous biological
processes. Chondroitin and dermatan sulfate, an important class of
GAGs, are linear macromolecules consisting of disaccharide building
blocks of N-acetylgalactosamine and two different
uronic acids. The varying degree and the site of sulfation render
their characterization challenging. Here, we combine mass spectrometry
with cryogenic infrared spectroscopy in the wavenumber range from
1000 to 1800 cm–1. Fingerprint spectra were recorded
for a comprehensive set of disaccharides bearing all known motifs
of sulfation. In addition, state-of-the-art quantum chemical calculations
were performed to aid the understanding of the differences in the
experimental fingerprint spectra. The results show that the degree
and position of charged sulfate groups define the size of the conformational
landscape in the gas phase. The detailed understanding of cryogenic
infrared spectroscopy for acidic and often highly sulfated glycans
may pave the way to utilize the technique in fragment-based sequencing
approaches.
Collapse
|
Journal Article |
4 |
5 |
15
|
Greis K, Kirschbaum C, Fittolani G, Mucha E, Chang R, von Helden G, Meijer G, Delbianco M, Seeberger PH, Pagel K. Neighboring Group Participation of Benzoyl Protecting Groups in C3- and C6-Fluorinated Glucose. European J Org Chem 2022; 2022:e202200255. [PMID: 35915640 PMCID: PMC9321577 DOI: 10.1002/ejoc.202200255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Fluorination is a potent method to modulate chemical properties of glycans. Here, we study how C3- and C6-fluorination of glucosyl building blocks influence the structure of the intermediate of the glycosylation reaction, the glycosyl cation. Using a combination of gas-phase infrared spectroscopy and first-principles theory, glycosyl cations generated from fluorinated and non-fluorinated monosaccharides are structurally characterized. The results indicate that neighboring group participation of the C2-benzoyl protecting group is the dominant structural motif for all building blocks, correlating with the β-selectivity observed in glycosylation reactions. The infrared signatures indicate that participation of the benzoyl group in enhanced by resonance effects. Participation of remote acyl groups such as Fmoc or benzyl on the other hand is unfavored. The introduction of the less bulky fluorine leads to a change in the conformation of the ring pucker, whereas the structure of the active dioxolenium site remains unchanged.
Collapse
|
research-article |
3 |
5 |
16
|
Greis K, Yang Y, Canty AJ, O'Hair RAJ. Gas-Phase Synthesis and Reactivity of Ligated Group 10 Ions in the Formal +1 Oxidation State. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1867-1880. [PMID: 31183840 DOI: 10.1007/s13361-019-02231-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Electrospray ionization of the group 10 complexes [(phen)M(O2CCH3)2] (phen=1,10-phenanthroline, M = Ni, Pd, Pt) generates the cations [(phen)M(O2CCH3)]+, whose gas-phase chemistry was studied using multistage mass spectrometry experiments in an ion trap mass spectrometer with the combination of collision-induced dissociation (CID) and ion-molecule reactions (IMR). Decarboxylation of [(phen)M(O2CCH3)]+ under CID conditions generates the organometallic cations [(phen)M(CH3)]+, which undergo bond homolysis upon a further stage of CID to generate the cations [(phen)M]+· in which the metal center is formally in the +1 oxidation state. In the case of [(phen)Pt(CH3)]+, the major product ion [(phen)H]+ was formed via loss of the metal carbene Pt=CH2. DFT calculated energetics for the competition between bond homolysis and M=CH2 loss are consistent with their experimentally observed branching ratios of 2% and 98% respectively. The IMR of [(phen)M]+· with O2, N2, H2O, acetone, and allyl iodide were examined. Adduct formation occurs for O2, N2, H2O, and acetone. Upon CID, all adducts fragment to regenerate [(phen)M]+·, except for [(phen)Pt(OC(CH3)2)]+·, which loses a methyl radical to form [(phen)Pt(OCCH3)]+ which upon a further stage of CID regenerates [(phen)Pt(CH3)]+ via CO loss. This closes a formal catalytic cycle for the decomposition of acetone into CO and two methyl radicals with [(phen)Pt]+· as catalyst. In the IMR of [(phen)M]+· with allyl iodide, formation of [(phen)M(CH2CHCH2)]+ was observed for all three metals, whereas for M = Pt also [(phen)Pt(I)]+ and [(phen)Pt(I)2(CH2CHCH2)]+ were observed. Finally, DFT calculated reaction energetics for all IMR reaction channels are consistent with the experimental observations.
Collapse
|
|
6 |
4 |
17
|
Perez EH, Schleif T, Messinger JP, Rullán Buxó AG, Moss OC, Greis K, Johnson MA. Structures and Chemical Rearrangements of Benzoate Derivatives Following Gas Phase Decarboxylation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1914-1920. [PMID: 36084146 DOI: 10.1021/jasms.2c00188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Decarboxylation of carboxylate ions in the gas phase provides a useful window into the chemistry displayed by these reactive carbanion intermediates. Here, we explore the species generated by decarboxylation of two benzoate derivatives: 2-formylbenzoate (2FBA) and 2-benzoylbenzoate (2BBA). The nascent product anions are transferred to a cryogenic ion trap where they are cooled to ∼15 K and analyzed by their pattern of vibrational bands obtained with IR photodissociation spectroscopy of weakly bound H2 molecules. The structures of the quenched species are then determined by comparison of these spectra with those predicted by electronic structure calculations for local minima on the potential energy surface. The 2-phenide carbanion generated by decarboxylation of 2FBA occurs in two isomeric forms that differ in the orientation of the formyl group, both of which yield a very large (∼110 cm-1) redshift in the stretching frequency of the H2 molecule attached to the anionic carbon center. Although calculated to be a local minimum, the analogous 2-phenide species could not be isolated upon decarboxylation of 2BBA. Rather, the anionic product adopts a ring-closed structure, indicating efficient nucleophilic attack on the pendant phenyl group by the nascent phenide. The barrier for ring closing is evaluated with electronic structure calculations.
Collapse
|
|
3 |
3 |
18
|
Kirschbaum C, Greis K, Gewinner S, Schöllkopf W, Meijer G, von Helden G, Pagel K. Cryogenic infrared spectroscopy provides mechanistic insight into the fragmentation of phospholipid silver adducts. Anal Bioanal Chem 2022; 414:5275-5285. [PMID: 35147717 PMCID: PMC9242943 DOI: 10.1007/s00216-022-03927-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
Tandem mass spectrometry is arguably the most important analytical tool for structure elucidation of lipids and other metabolites. By fragmenting intact lipid ions, valuable structural information such as the lipid class and fatty acyl composition are readily obtainable. The information content of a fragment spectrum can often be increased by the addition of metal cations. In particular, the use of silver ions is deeply rooted in the history of lipidomics due to their propensity to coordinate both electron-rich heteroatoms and C = C bonds in aliphatic chains. Not surprisingly, coordination of silver ions was found to enable the distinction of sn-isomers in glycerolipids by inducing reproducible intensity differences in the fragment spectra, which could, however, not be rationalized. Here, we investigate the fragmentation behaviors of silver-adducted sn- and double bond glycerophospholipid isomers by probing fragment structures using cryogenic gas-phase infrared (IR) spectroscopy. Our results confirm that neutral headgroup loss from silver-adducted glycerophospholipids leads to dioxolane-type fragments generated by intramolecular cyclization. By combining high-resolution IR spectroscopy and computational modelling of silver-adducted fragments, we offer qualitative explanations for different fragmentation behaviors of glycerophospholipid isomers. Overall, the results demonstrate that gas-phase IR spectroscopy of fragment ions can significantly contribute to our understanding of lipid dissociation mechanisms and the influence of coordinating cations.
Collapse
|
research-article |
3 |
3 |
19
|
Fischer M, Bachor E, Bagus H, Bauschulte S, Greis K, Kampmann D, Streicher B, Jahnke K. [Ambulatory rehabilitation after cochlear prosthesis implantation]. HNO 2000; 48:832-8. [PMID: 11139889 DOI: 10.1007/s001060050670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE This study compares the results of the outpatient-based program of the Cochlear Implant Center Ruhr with inpatient-based rehabilitation, which is almost exclusively performed in Germany. PATIENTS/METHODS The Department of Otorhinolaryngology at the University of Essen in Germany provided 52 patients with either 22- or 24-channel Nucleus cochlear implants from March 1996 to July 1999. Almost all patients (n = 49) were rehabilitated on an outpatient basis, which is the standard in many cochlear implant centers outside Germany. RESULTS The longest follow-up period at the University of Essen Department of Otorhinolaryngology was 36 months. Minor complications occurred in 10% of the patients. After 24 months, the first three implanted patients were able to discriminate 100% of numbers and over 60% of syllables in the Freiburg speech discrimination test. The patients who developed an understanding of open speech were able to discriminate 31 words per minute with cochlear implant and without lipreading after 24 months. Children were seen to double their Schmid-Giovannini scores at 6 months postimplantation. CONCLUSIONS The Essen outpatient-based cochlear implant program demonstrates results in speech development and speech understanding equal to those of centers providing inpatient rehabilitation. A special advantage is continuous rehabilitation with professionals known to the child for several years. In children especially, exhaustive commuting reduces school attendance and is a burden on the accompanying guardians. As an inpatient, however, the child is torn from his familiar environment. Parents with several children have particular difficulties in accompanying their child and indeed this may not always be possible.
Collapse
|
Comparative Study |
25 |
2 |
20
|
Lutomski CA, El‐Baba TJ, Hinkle JD, Liko I, Bennett JL, Kalmankar NV, Dolan A, Kirschbaum C, Greis K, Urner LH, Kapoor P, Yen H, Pagel K, Mullen C, Syka JEP, Robinson CV. Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G Protein-Coupled Receptors. Angew Chem Int Ed Engl 2023; 62:e202305694. [PMID: 37329506 PMCID: PMC7615181 DOI: 10.1002/anie.202305694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/20/2023] [Accepted: 06/15/2023] [Indexed: 06/19/2023]
Abstract
Membrane proteins are challenging to analyze by native mass spectrometry (MS) as their hydrophobic nature typically requires stabilization in detergent micelles that are removed prior to analysis via collisional activation. There is however a practical limit to the amount of energy which can be applied, which often precludes subsequent characterization by top-down MS. To overcome this barrier, we have applied a modified Orbitrap Eclipse Tribrid mass spectrometer coupled to an infrared laser within a high-pressure linear ion trap. We show how tuning the intensity and time of incident photons enables liberation of membrane proteins from detergent micelles. Specifically, we relate the ease of micelle removal to the infrared absorption of detergents in both condensed and gas phases. Top-down MS via infrared multiphoton dissociation (IRMPD), results in good sequence coverage enabling unambiguous identification of membrane proteins and their complexes. By contrasting and comparing the fragmentation patterns of the ammonia channel with two class A GPCRs, we identify successive cleavage of adjacent amino acids within transmembrane domains. Using gas-phase molecular dynamics simulations, we show that areas prone to fragmentation maintain aspects of protein structure at increasing temperatures. Altogether, we propose a rationale to explain why and where in the protein fragment ions are generated.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
2 |
21
|
Greis K, Kirschbaum C, Taccone MI, Götze M, Gewinner S, Schöllkopf W, Meijer G, von Helden G, Pagel K. Frontispiece: Studying the Key Intermediate of RNA Autohydrolysis by Cryogenic Gas‐Phase Infrared Spectroscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/anie.202281961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
3 |
1 |
22
|
Kirschbaum C, Saied EM, Greis K, Mucha E, Gewinner S, Schöllkopf W, Meijer G, Helden G, Poad BLJ, Blanksby SJ, Arenz C, Pagel K. Inside Cover: Resolving Sphingolipid Isomers Using Cryogenic Infrared Spectroscopy (Angew. Chem. Int. Ed. 32/2020). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/anie.202007701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
5 |
1 |
23
|
Greis K, Kirschbaum C, Taccone MI, Götze M, Gewinner S, Schöllkopf W, Meijer G, von Helden G, Pagel K. Studying the Key Intermediate of RNA Autohydrolysis by Cryogenic Gas-Phase Infrared Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202115481. [PMID: 35231141 PMCID: PMC9314874 DOI: 10.1002/anie.202115481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 11/09/2022]
Abstract
Over the course of the COVID-19 pandemic, mRNA-based vaccines have gained tremendous importance. The development and analysis of modified RNA molecules benefit from advanced mass spectrometry and require sufficient understanding of fragmentation processes. Analogous to the degradation of RNA in solution by autohydrolysis, backbone cleavage of RNA strands was equally observed in the gas phase; however, the fragmentation mechanism remained elusive. In this work, autohydrolysis-like intermediates were generated from isolated RNA dinucleotides in the gas phase and investigated using cryogenic infrared spectroscopy in helium nanodroplets. Data from both experiment and density functional theory provide evidence for the formation of a five-membered cyclic phosphate intermediate and rule out linear or six-membered structures. Furthermore, the experiments show that another prominent condensed-phase reaction of RNA nucleotides can be induced in the gas phase: the tautomerization of cytosine. Both observed reactions are therefore highly universal and intrinsic properties of the investigated molecules.
Collapse
|
brief-report |
3 |
1 |
24
|
Khuu T, Stropoli SJ, Greis K, Yang N, Johnson MA. Microhydration of the metastable N-Protomer of 4-Aminobenzoic acid by condensation at 80 K: H/D exchange without conversion to the more stable O-protomer . J Chem Phys 2022; 157:131102. [DOI: 10.1063/5.0119027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
4-Aminobenzoic acid (4ABA) is a model scaffold for studying solvent-mediated proton transfer. Although protonation at the carboxylic group (O-protomer) is energetically favored in the gas phase, the N-protomer, where the proton remains on the amino group, can be kinetically trapped by electrospray ionization of 4ABA in an aprotic solvent such as acetonitrile. Here we report the formation of the hydrated deuterium isotopologues of the N-protomers, RND3+‧(H2O) n=1-3, (R=C6H4COOD), which are generated by condensing water molecules onto the bare N-protomers in a liquid nitrogen cooled, radiofrequency octopole ion trap at 80 K. The product clusters are then transferred to a 20 K cryogenic ion trap where they are tagged with weakly bound D2 molecules. The structures of these clusters are determined by analysis of their vibrational patterns obtained by resonant IR photodissociation. The resulting patterns confirm that the metastable N-protomer configuration remains intact even when warmed by sequential condensation of water molecules. Attachment of H2O molecules onto the RND3+ head group also affords the opportunity to explore the possibility of H/D exchange between the acid scaffold and the proximal water network. The spectroscopic results establish that although the RND3+‧(H2O) n=1,2 clusters are formed without H/D exchange, the n = 3 cluster exhibits about 10% H/D exchange as evidenced by the appearance of the telltale HOD bands. The site of exchange on the acid is determined to be the acidic OH by the emergence of the OH stretching fundamental in the -COOH motif.
Collapse
|
|
3 |
1 |
25
|
Lettow M, Greis K, Mucha E, Lambeth TR, Yaman M, Kontodimas V, Manz C, Hoffmann W, Meijer G, Julian RR, von Helden G, Marianski MR, Pagel K. Decoding the Fucose Migration Product during Mass‐Spectrometric Analysis of Blood Group Epitopes. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202302883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
|
2 |
|