1
|
Ozawa K, Suchanek G, Breitschopf H, Brück W, Budka H, Jellinger K, Lassmann H. Patterns of oligodendroglia pathology in multiple sclerosis. Brain 1994; 117 ( Pt 6):1311-22. [PMID: 7820568 DOI: 10.1093/brain/117.6.1311] [Citation(s) in RCA: 317] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Patterns of inflammation, demyelination and oligodendrocyte pathology were studied in acute multiple sclerosis and during early and late exacerbations of chronic multiple sclerosis. Cells within lesions were identified by immunocytochemistry with markers for T lymphocytes, macrophages, oligodendrocytes and astrocytes. In addition, in situ hybridization for proteolipid protein mRNA was used to identify myelinating and myelin supporting oligodendrocytes. Degenerating cells in the lesions were detected by DNA fragmentation in cell nuclei. The inflammatory reaction in all three types of multiple sclerosis lesions was shown to be dominated by T lymphocytes and macrophages. In late chronic multiple sclerosis lesions, a significant increase in the number of immunoglobulin producing plasma cells was found in infiltrates as compared with acute and early multiple sclerosis lesions. In all three types of multiple sclerosis, confluent plaques of demyelination were found to be present. In acute multiple sclerosis, demyelination was found to be associated with extensive destruction of other tissue elements, including oligodendrocytes, astrocytes and axons, but even in these destructive lesions a considerable number of oligodendrocytes was preserved and at disposal therefore, for rapid remyelination. During early exacerbations of chronic multiple sclerosis, selective demyelination was associated with almost complete preservation of oligodendrocytes in the majority of cases. Correspondingly, a high number of remyelinating lesions was present at that stage of disease. In lesions developing late after onset of multiple sclerosis, demyelination generally accompanied extensive destruction and loss of oligodendrocytes. In these lesions, remyelination was sparse and restricted to lesional borders. The observed patterns of cell death suggest that in some cases oligodendrocytes, in others myelin sheaths are the primary target of the destructive process. Our data indicate that the type and amount of inflammation, de- and remyelination, and of tissue damage vary between different forms of multiple sclerosis and between different stages of the disease, possibly reflecting different pathogenic mechanisms in a disease spectrum.
Collapse
|
|
31 |
317 |
2
|
Kurtzman GJ, Ozawa K, Cohen B, Hanson G, Oseas R, Young NS. Chronic bone marrow failure due to persistent B19 parvovirus infection. N Engl J Med 1987; 317:287-94. [PMID: 3037373 DOI: 10.1056/nejm198707303170506] [Citation(s) in RCA: 313] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
Case Reports |
38 |
313 |
3
|
Ozawa K, Szallasi Z, Kazanietz M, Blumberg P, Mischak H, Mushinski J, Beaven M. Ca(2+)-dependent and Ca(2+)-independent isozymes of protein kinase C mediate exocytosis in antigen-stimulated rat basophilic RBL-2H3 cells. Reconstitution of secretory responses with Ca2+ and purified isozymes in washed permeabilized cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53916-8] [Citation(s) in RCA: 280] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
|
32 |
280 |
4
|
Chui DH, Tanahashi H, Ozawa K, Ikeda S, Checler F, Ueda O, Suzuki H, Araki W, Inoue H, Shirotani K, Takahashi K, Gallyas F, Tabira T. Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat Med 1999; 5:560-4. [PMID: 10229234 DOI: 10.1038/8438] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Familial Alzheimer disease mutations of presenilin 1 (PS-1) enhance the generation of A beta1-42, indicating that PS-1 is involved in amyloidogenesis. However, PS-1 transgenic mice have failed to show amyloid plaques in their brains. Because PS-1 mutations facilitate apoptotic neuronal death in vitro, we did careful quantitative studies in PS-1 transgenic mice and found that neurodegeneration was significantly accelerated in mice older than 13 months (aged mice) with familial Alzheimer disease mutant PS-1, without amyloid plaque formation. However, there were significantly more neurons containing intracellularly deposited A beta42 in aged mutant transgenic mice. Our data indicate that the pathogenic role of the PS-1 mutation is upstream of the amyloid cascade.
Collapse
|
|
26 |
270 |
5
|
Abstract
The B19 parvovirus is responsible for at least three human diseases. The virus was successfully propagated in suspension cultures of human erythroid bone marrow from patients with hemolytic anemias; release of newly synthesized virus into the supernatants of infected cultures was observed. This culture system allowed study at a molecular level of events associated with the B19 life cycle. The B19 parvovirus replicated through high molecular weight intermediate forms, linked through a terminal hairpin structure. B19 replication in vitro was highly dependent on the erythropoietic content of cultures and on addition of the hormone erythropoietin.
Collapse
|
|
39 |
246 |
6
|
Ohnishi T, Suzuki T, Suzuki Y, Ozawa K. A comparative study of plasma membrane Mg2+ -ATPase activities in normal, regenerating and malignant cells. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 684:67-74. [PMID: 6120003 DOI: 10.1016/0005-2736(82)90050-5] [Citation(s) in RCA: 216] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Plasma membranes have been prepared from rat normal liver cells, regenerating liver cells and Yoshida ascites hepatoma 66 cells after intact cells were first bound to polylysine-coated polyacrylamide beads, and the membrane-associated Mg2+ -ATPase activity was assayed directly on beads with membrane attached. With plasma membranes from normal liver cells, Km for ATP and V were found to be higher than those in regenerating liver cells and hepatoma cells. Vanadate caused a different sensitivity of the activity, without an effect in normal liver cells and with an inhibition in regenerating liver cells and hepatoma cells. The activity in normal and regenerating liver cells decreased with increasing temperature above 24-30 degrees C, while the activity in hepatoma cells continued to increase linearly to 37 degrees C. Unlike the enzyme in normal and regenerating liver cells, the hepatoma enzyme was shown to have a higher phase transition temperature and lower activation energies. In all three kinds of cells the activity was increased by the dephosphorylation of plasma membranes and unaffected by the phosphorylation. By means of histochemical Mg2+ -ATPase staining applied on polyacrylamide gels, at least three major bands which show the enzymic activity were visible in normal and regenerating liver and a single band was detected in hepatoma cells.
Collapse
|
Comparative Study |
43 |
216 |
7
|
Ichikawa S, Ozawa K, Hirabayashi Y. Molecular cloning and characterization of the mouse ceramide glucosyltransferase gene. Biochem Biophys Res Commun 1998; 253:707-11. [PMID: 9918791 DOI: 10.1006/bbrc.1998.9855] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ceramide glucosyltransferase (glucosylceramide synthase, GlcT-1, EC 2.4.1.80) catalyzes the first step in glycosphingolipid synthesis, the transfer of glucose from UDP-glucose to ceramide. The product, glucosylceramide, serves as a core structure for over 300 species of glycosphingolipids. The enzyme is a key regulatory factor controlling intracellular levels of ceramide and glycosphingolipids. We have cloned the gene for mouse ceramide glucosyltransferase, Ugcg. The gene spans approximately 32 kb and is composed of 9 exons and 8 introns. The promoter region was found to lack TATA and CAAT boxes but contains Spl binding sites, which are indicators of typical housekeeping genes. In addition to these general transcription factor binding sites, the motifs for AhR, NF-kappaB, AP-2 and GATA-1 binding sites were found.
Collapse
|
|
27 |
207 |
8
|
Nakamoto T, Sakai R, Ozawa K, Yazaki Y, Hirai H. Direct binding of C-terminal region of p130Cas to SH2 and SH3 domains of Src kinase. J Biol Chem 1996; 271:8959-65. [PMID: 8621540 DOI: 10.1074/jbc.271.15.8959] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
p130Cas is a major tyrosine-phosphorylated protein that tightly binds v-Crk in v-crk-transformed cells and v-Src in v-src-transformed cells. The "substrate domain" of p130Cas contains 15 possible Src homology (SH) 2-binding motifs, most of which conform to the binding motif for the Crk SH2 domain. Another region near its C terminus contains possible binding motifs for the Src SH2 domain and proline-rich sequences that are candidates for SH3-binding sites. Using GST fusion proteins, we revealed that both SH2 and SH3 domains of Src bind p130Cas, whereas v-Crk binds p130Cas through its SH2 domain. We located the binding site of p130Cas for the Src SH3 domain at the sequence RPLPSPP in the region near its C terminus. Mutations within this sequence or at Tyr762 of p130Cas caused a significant reduction in the association of p130Cas with Src, and no association was detected when both of them were deleted. The kinase activity in v-Crk-transformed cells was also associated with p130Cas through this region. On the other hand, the deletion of the substrate domain abolished the binding with v-Crk. The association through the C-terminal region of p130Cas with Src kinase may facilitate effective hyperphosphorylation of tyrosine residues in the substrate domain of p130Cas, resulting in the binding of SH2-containing molecules to p130Cas.
Collapse
|
|
29 |
196 |
9
|
Nakamura H, Matsuda M, Furuke K, Kitaoka Y, Iwata S, Toda K, Inamoto T, Yamaoka Y, Ozawa K, Yodoi J. Adult T cell leukemia-derived factor/human thioredoxin protects endothelial F-2 cell injury caused by activated neutrophils or hydrogen peroxide. Immunol Lett 1994; 42:75-80. [PMID: 7829134 DOI: 10.1016/0165-2478(94)90038-8] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Adult T cell leukemia-derived factor (ADF), originally defined as an interleukin 2 receptor/alpha (alpha) chain inducer produced by human T-lymphotropic virus type-I transformed cells, is identical to human thioredoxin (TRX). In this study, the protective effect of ADF/TRX on the cytotoxicity of endothelial cells caused by phorbol myristate acetate (PMA)-activated neutrophils or hydrogen peroxide (H2O2) was examined. When murine endothelial F-2 cells established from an ultraviolet light-induced tumor on a nude mouse were incubated with PMA-activated neutrophils or with 1 mM H2O2 for 6 hours, the cytotoxicity of F-2 cells was respectively 51 +/- 4% or 40 +/- 8% by the 51Cr releasing assay. Recombinant ADF/TRX (rADF/TRX) inhibited this cytotoxicity in a dose-dependent manner, although mutant ADF/TRX (cysteine 31 to serine), 2-mercaptoethanol and dithiothreitol did not. On a molar basis, rADF/TRX was more effective than glutathione but less effective than catalase. Immunoblotting analysis showed that treatment with 0.1 mM H2O2 induced murine TRX on F-2 cells. These findings indicate that ADF/TRX is an oxidative stress-inducible endogenous protein and rADF/TRX plays a protective role against activated neutrophils- or H2O2-induced endothelial cytotoxicity.
Collapse
|
|
31 |
193 |
10
|
Ozawa K, Ayub J, Hao YS, Kurtzman G, Shimada T, Young N. Novel transcription map for the B19 (human) pathogenic parvovirus. J Virol 1987; 61:2395-406. [PMID: 3599180 PMCID: PMC255655 DOI: 10.1128/jvi.61.8.2395-2406.1987] [Citation(s) in RCA: 187] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The B19 parvovirus, a small single-stranded DNA virus of 5.4 kilobases, is pathogenic in humans. B19 has remarkable specificity for erythroid progenitor cells and has been propagated in vitro only with human erythroid bone marrow. Replication of viral DNA and the viral protein products of B19 appear similar to those of other animal parvoviruses. However, B19 transcription had unusual features in comparison with that in other animal parvoviruses. At least nine overlapping poly(A)+ transcripts were identified in infected cells; all but one contained large introns. B19 differed from other parvoviruses in the initiation of all transcripts at a strong left side promoter (p6) and the absence of a functional internal promoter; the presence of short 5' leader sequences of about 60 bases and very large introns for RNAs encoded by the right side of the genome; two separate transcription termination sites, in contrast to cotermination at the far right side of the genome for other parvoviruses; the probable utilization by three transcripts of a variant polyadenylation signal (ATTAAA or AATAAC) in the middle of the genome; and the abundance of two unique transcripts from the middle of the genome which did not code for capsid proteins. The unusual transcription map of B19 suggests that regulation of the relative abundance of transcripts occurs by splicing and termination-polyadenylation events rather than by promoter strength. In combination with the published nucleotide sequence, the novel transcription map separated the pathogenic B19 virus at a molecular level from other animal parvoviruses and human adeno-associated virus.
Collapse
|
research-article |
38 |
187 |
11
|
Surosky RT, Urabe M, Godwin SG, McQuiston SA, Kurtzman GJ, Ozawa K, Natsoulis G. Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome. J Virol 1997; 71:7951-9. [PMID: 9311886 PMCID: PMC192153 DOI: 10.1128/jvi.71.10.7951-7959.1997] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have developed a system for site-specific DNA integration in human cells, mediated by the adeno-associated virus (AAV) Rep proteins. In its normal lysogenic cycle, AAV integrates at a site on human chromosome 19 termed AAVS1. We describe a rapid PCR assay for the detection of integration events at AAVS1 in whole populations of cells. Using this assay, we determined that the AAV Rep proteins, delivered in cis or trans, are required for integration at AAVS1. Only the large forms of the Rep protein, Rep78 and Rep68, promoted site-specific integration. The AAV inverted terminal repeats, present in cis, were not essential for integration at AAVS1, but in cells containing Rep, they increased the efficiency of integration. In the presence of the Rep proteins, the integration of a plasmid containing AAV inverted terminal repeats occurred at high frequency, such that clones containing the plasmid could be isolated without selection. In two of the five clones analyzed by fluorescence in situ hybridization, the plasmid DNA was integrated at AAVS1. In most of the clones, at least one copy of the entire plasmid was integrated in a tandem array. Detailed analysis of the integrated plasmid structure in one clone suggested a complex mechanism producing rearrangements of the flanking genomic DNA, similar to those observed with wild-type AAV.
Collapse
|
research-article |
28 |
178 |
12
|
Ozawa K, Aoyama H, Yasuda K, Shimahara Y, Nakatani T, Tanaka J, Yamamoto M, Kamiyama Y, Tobe T. Metabolic abnormalities associated with postoperative organ failure. A redox theory. ARCHIVES OF SURGERY (CHICAGO, ILL. : 1960) 1983; 118:1245-51. [PMID: 6639332 DOI: 10.1001/archsurg.1983.01390110003001] [Citation(s) in RCA: 173] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We studied metabolic abnormalities of postoperative organ failure in 55 patients and classified them into four groups according to the postoperative changes in the arterial blood-ketone body ratio (acetoacetic acid-beta-hydroxybutyric acid) reflecting hepatic mitochondrial redox potential: patients in group A had no decrease below 0.7, patients in group B had a transient decrease to 0.4, patients in group C had a progressive decrease to below 0.4, and patients in group D (terminal stage) had a decrease to below 0.25. All group A and B patients tolerated their operations well; the group C and D patients had multiple organ failure. In groups B, C, and D, plasma concentrations of alanine, proline, phenylalanine, and tyrosine were negatively correlated with the blood--ketone body ratio and the molar ratios between the plasma concentrations of branched-chain amino acids and aromatic amino acids were positively correlated with the blood--ketone body ratio. Hepatic energy deficit associated with decreasing blood-ketone body ratio may be the metabolic basis of postoperative organ failure.
Collapse
|
Case Reports |
42 |
173 |
13
|
Shinjyo T, Kuribara R, Inukai T, Hosoi H, Kinoshita T, Miyajima A, Houghton PJ, Look AT, Ozawa K, Inaba T. Downregulation of Bim, a proapoptotic relative of Bcl-2, is a pivotal step in cytokine-initiated survival signaling in murine hematopoietic progenitors. Mol Cell Biol 2001; 21:854-64. [PMID: 11154272 PMCID: PMC86676 DOI: 10.1128/mcb.21.3.854-864.2001] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two distinct signaling pathways regulate the survival of interleukin-3 (IL-3)-dependent hematopoietic progenitors. One originates from the membrane-proximal portion of the cytoplasmic domain of the IL-3 receptor (betac chain), which is shared by IL-3 and granulocyte-macrophage colony-stimulating factor and is involved in the regulation of Bcl-x(L) through activation of STAT5. The other pathway emanates from the distal region of the betac chain and overlaps with downstream signals from constitutively active Ras proteins. Although the latter pathway is indispensable for cell survival, its downstream targets remain largely undefined. Here we show that the expression of Bim, a member of the BH3-only subfamily of cell death activators, is downregulated by IL-3 signaling through either of two major Ras pathways: Raf/mitogen-activated protein kinase and the phosphatidylinositol 3-kinase/mammalian target of rapamycin. Akt/phosphokinase B does not appear to play a significant role in this regulatory cascade. Bim downregulation has important implications for cell survival, since enforced expression of this death activator at levels equivalent to those induced by cytokine withdrawal led to apoptosis even in the presence of IL-3. We conclude that Bim is a pivotal molecule in cytokine regulation of hematopoietic cell survival.
Collapse
|
research-article |
24 |
170 |
14
|
Tamatani M, Matsuyama T, Yamaguchi A, Mitsuda N, Tsukamoto Y, Taniguchi M, Che YH, Ozawa K, Hori O, Nishimura H, Yamashita A, Okabe M, Yanagi H, Stern DM, Ogawa S, Tohyama M. ORP150 protects against hypoxia/ischemia-induced neuronal death. Nat Med 2001; 7:317-23. [PMID: 11231630 DOI: 10.1038/85463] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oxygen-regulated protein 150 kD (ORP150) is a novel endoplasmic-reticulum-associated chaperone induced by hypoxia/ischemia. Although ORP150 was sparingly upregulated in neurons from human brain undergoing ischemic stress, there was robust induction in astrocytes. Cultured neurons overexpressing ORP150 were resistant to hypoxemic stress, whereas astrocytes with inhibited ORP150 expression were more vulnerable. Mice with targeted neuronal overexpression of ORP150 had smaller strokes compared with controls. Neurons with increased ORP150 demonstrated suppressed caspase-3-like activity and enhanced brain-derived neurotrophic factor (BDNF) under hypoxia signaling. These data indicate that ORP150 is an integral participant in ischemic cytoprotective pathways.
Collapse
|
|
24 |
164 |
15
|
Inukai T, Inoue A, Kurosawa H, Goi K, Shinjyo T, Ozawa K, Mao M, Inaba T, Look AT. SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein. Mol Cell 1999; 4:343-52. [PMID: 10518215 DOI: 10.1016/s1097-2765(00)80336-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The E2A-HLF fusion gene transforms human pro-B lymphocytes by interfering with an early step in apoptotic signaling. In a search for E2A-HLF-responsive genes, we identified a zinc finger transcription factor, SLUG, whose product belongs to the Snail family of developmental regulatory proteins. Importantly, SLUG bears close homology to the CES-1 protein of C. elegans, which acts downstream of CES-2 in a neuron-specific cell death pathway. Consistent with the postulated role of CES-1 as an antiapoptotic transcription factor, SLUG was nearly as active as Bcl-2 or Bcl-xL in promoting the survival of IL-3-dependent murine pro-B cells deprived of the cytokine. We conclude that SLUG is an evolutionarily conserved transcriptional repressor whose activation by E2A-HLF promotes the aberrant survival and eventual malignant transformation of mammalian pro-B cells otherwise slated for apoptotic death.
Collapse
|
|
26 |
160 |
16
|
Hatano K, Kikuchi J, Takatoku M, Shimizu R, Wada T, Ueda M, Nobuyoshi M, Oh I, Sato K, Suzuki T, Ozaki K, Mori M, Nagai T, Muroi K, Kano Y, Furukawa Y, Ozawa K. Bortezomib overcomes cell adhesion-mediated drug resistance through downregulation of VLA-4 expression in multiple myeloma. Oncogene 2008; 28:231-42. [DOI: 10.1038/onc.2008.385] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
17 |
142 |
17
|
Wang L, Muramatsu S, Lu Y, Ikeguchi K, Fujimoto K, Okada T, Mizukami H, Hanazono Y, Kume A, Urano F, Ichinose H, Nagatsu T, Nakano I, Ozawa K. Delayed delivery of AAV-GDNF prevents nigral neurodegeneration and promotes functional recovery in a rat model of Parkinson's disease. Gene Ther 2002; 9:381-9. [PMID: 11960314 DOI: 10.1038/sj.gt.3301682] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2001] [Accepted: 01/23/2002] [Indexed: 11/09/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a strong candidate agent in the neuroprotective treatment of Parkinson's disease (PD). We investigated whether adeno-associated viral (AAV) vector-mediated delivery of a GDNF gene in a delayed manner could prevent progressive degeneration of dopaminergic (DA) neurons, while preserving a functional nigrostriatal pathway. Four weeks after a unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA), rats received injection of AAV vectors expressing GDNF tagged with FLAG peptide (AAV-GDNFflag) or beta-galactosidase (AAV-LacZ) into the lesioned striatum. Immunostaining for FLAG demonstrated retrograde transport of GDNFflag to the substantia nigra (SN). The density of tyrosine hydroxylase (TH)-positive DA fibers in the striatum and the number of TH-positive or cholera toxin subunit B (CTB, neuronal tracer)-labeled neurons in the SN were significantly greater in the AAV-GDNFflag group than in the AAV-LacZ group. Dopamine levels and those of its metabolites in the striatum were remarkably higher in the AAV-GDNFflag group compared with the control group. Consistent with anatomical and biochemical changes, significant behavioral recovery was observed from 4-20 weeks following AAV-GDNFflag injection. These data indicate that a delayed delivery of GDNF gene using AAV vector is efficacious even 4 weeks after the onset of progressive degeneration in a rat model of PD.
Collapse
|
|
23 |
141 |
18
|
Ozawa K, Kuwabara K, Tamatani M, Takatsuji K, Tsukamoto Y, Kaneda S, Yanagi H, Stern DM, Eguchi Y, Tsujimoto Y, Ogawa S, Tohyama M. 150-kDa oxygen-regulated protein (ORP150) suppresses hypoxia-induced apoptotic cell death. J Biol Chem 1999; 274:6397-404. [PMID: 10037731 DOI: 10.1074/jbc.274.10.6397] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the contribution of 150-kDa oxygen-regulated protein (ORP150) to cellular processes underlying adaptation to hypoxia, a cell line stably transfected to overexpress ORP150 antisense RNA was created. In human embryonic kidney (HEK) cells stably overexpressing ORP150 antisense RNA, ORP150 antigen and transcripts were suppressed to low levels in normoxia and hypoxia, whereas wild-type cells showed induction of ORP150 with oxygen deprivation. Inhibition of ORP150 in antisense transfectants was selective, as hypoxia-mediated enhancement of glucose-regulated protein (GRP) 78 and GRP94 was maintained. However, antisense ORP150 transfectants displayed reduced viability when subjected to hypoxia, compared with wild-type and sense-transfected HEK cells. In contrast, diminished levels of ORP150 had no effect on cytotoxicity induced by other stimuli, including oxygen-free radicals and sodium arsenate. Although cellular ATP content was similar in hypoxia, compared with ORP150 antisense transfectants and wild-type HEK cells, suppression of ORP150 expression was associated with accelerated apoptosis. Hypoxia-mediated cell death in antisense HEK transfectants did not cause an increase in caspase activity or in cytoplasmic cytochrome c antigen. A well recognized inducer of apoptosis in HEK cells, staurosporine, caused increased caspase activity and cytoplasmic cytochrome c levels in both wild-type and antisense cells. These data indicate that ORP150 has an important cytoprotective role in hypoxia-induced cellular perturbation and that ORP150-associated inhibition of apoptosis may involve mechanisms distinct from those triggered by other apoptotic stimuli.
Collapse
|
|
26 |
141 |
19
|
Shen Y, Muramatsu SI, Ikeguchi K, Fujimoto KI, Fan DS, Ogawa M, Mizukami H, Urabe M, Kume A, Nagatsu I, Urano F, Suzuki T, Ichinose H, Nagatsu T, Monahan J, Nakano I, Ozawa K. Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson's disease. Hum Gene Ther 2000; 11:1509-19. [PMID: 10945765 DOI: 10.1089/10430340050083243] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD), a neurological disease suited to gene therapy, is biochemically characterized by a severe decrease in the dopamine content of the striatum. One current strategy for gene therapy of PD involves local production of dopamine in the striatum achieved by inducing the expression of enzymes involved in the biosynthetic pathway for dopamine. We previously showed that the coexpression of tyrosine hydroxylase (TH) and aromatic-L-amino-acid decarboxylase (AADC), using two separate adeno-associated virus (AAV) vectors, resulted in more effective dopamine production and more remarkable behavioral recovery in 6-hydroxydopamine-lesioned parkinsonian rats, compared with the expression of TH alone. Not only levels of TH and AADC but also levels of tetrahydrobiopterin (BH4), a cofactor of TH, and GTP cyclohydrolase I (GCH), a rate-limiting enzymes for BH4 biosynthesis, are reduced in parkinsonian striatum. In the present study, we investigated whether transduction with separate AAV vectors expressing TH, AADC, and GCH was effective for gene therapy of PD. In vitro experiments showed that triple transduction with AAV-TH, AAV-AADC, and AAV-GCH resulted in greater dopamine production than double transduction with AAV-TH and AAV-AADC in 293 cells. Furthermore, triple transduction enhanced BH4 and dopamine production in denervated striatum of parkinsonian rats and improved the rotational behavior of the rats more efficiently than did double transduction. Behavioral recovery persisted for at least 12 months after stereotaxic intrastriatal injection. These results suggest that GCH, in addition to TH and AADC, is important for effective gene therapy of PD.
Collapse
|
|
25 |
132 |
20
|
Miyazato A, Ueno S, Ohmine K, Ueda M, Yoshida K, Yamashita Y, Kaneko T, Mori M, Kirito K, Toshima M, Nakamura Y, Saito K, Kano Y, Furusawa S, Ozawa K, Mano H. Identification of myelodysplastic syndrome-specific genes by DNA microarray analysis with purified hematopoietic stem cell fraction. Blood 2001; 98:422-7. [PMID: 11435312 DOI: 10.1182/blood.v98.2.422] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a slowly progressing hematologic malignancy associated with a poor outcome. Despite the relatively high incidence of MDS in the elderly, differentiation of MDS from de novo acute myeloid leukemia (AML) still remains problematic. Identification of genes expressed in an MDS-specific manner would allow the molecular diagnosis of MDS. Toward this goal, AC133 surface marker-positive hematopoietic stem cell (HSC)-like fractions have been collected from a variety of leukemias in a large-scale and long-term genomics project, referred to as "Blast Bank," and transcriptome of these purified blasts from the patients with MDS were then compared with those from AML through the use of oligonucleotide microarrays. A number of genes were shown to be expressed in a disease-specific manner either to MDS or AML. Among the former found was the gene encoding the protein Delta-like (Dlk) that is distantly related to the Delta-Notch family of signaling proteins. Because overexpression of Dlk may play a role in the pathogenesis of MDS, the disease specificity of Dlk expression was tested by a quantitative "real-time" polymerase chain reaction analysis. Examination of the Blast Bank samples from 22 patients with MDS, 31 with AML, and 8 with chronic myeloid leukemia confirmed the highly selective expression of the Dlk gene in the individuals with MDS. Dlk could be the first candidate molecule to differentiate MDS from AML. The proposal is made that microarray analysis with the Blast Bank samples is an efficient approach to extract transcriptome data of clinical relevance for a wide range of hematologic disorders.
Collapse
|
Comparative Study |
24 |
129 |
21
|
Ozawa K, Seta K, Takeda H, Ando K, Handa H, Araki C. On the isolation of mitochondria with high respiratory control from rat brain. J Biochem 1966; 59:501-10. [PMID: 4225395 DOI: 10.1093/oxfordjournals.jbchem.a128334] [Citation(s) in RCA: 125] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
|
59 |
125 |
22
|
Choi SB, Wang C, Muench DG, Ozawa K, Franceschi VR, Wu Y, Okita TW. Messenger RNA targeting of rice seed storage proteins to specific ER subdomains. Nature 2000; 407:765-7. [PMID: 11048726 DOI: 10.1038/35037633] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rice seeds, a rich reserve of starch and protein, are a major food source in many countries. Unlike the seeds of other plants, which typically accumulate one major type of storage protein, rice seeds use two major classes, prolamines and globulin-like glutelins. Both storage proteins are synthesized on the endoplasmic reticulum (ER) and translocated to the ER lumen, but are then sorted into separate intracellular compartments. Prolamines are retained in the ER lumen as protein bodies whereas glutelins are transported and stored in protein storage vacuoles. Mechanisms responsible for the retention of prolamines within the ER lumen and their assembly into intracisternal inclusion granules are unknown, but the involvement of RNA localization has been suggested. Here we show that the storage protein RNAs are localized to distinct ER membranes and that prolamine RNAs are targeted to the prolamine protein bodies by a mechanism based on RNA signal(s), a process that also requires a translation initiation codon. Our results indicate that the ER may be composed of subdomains that specialize in the synthesis of proteins directed to different compartments of the plant endomembrane system.
Collapse
|
|
25 |
122 |
23
|
Ozawa K, Young N. Characterization of capsid and noncapsid proteins of B19 parvovirus propagated in human erythroid bone marrow cell cultures. J Virol 1987; 61:2627-30. [PMID: 3599184 PMCID: PMC255713 DOI: 10.1128/jvi.61.8.2627-2630.1987] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The major capsid and noncapsid proteins of the pathogenic parvovirus B19, propagated in vitro, were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoprecipitation, and immunoblot of the erythroid fraction of infected human bone marrow cell cultures. There were two capsid proteins of 58 kilodaltons (kDa; the major species) and 84 kDa (the minor species). Newly synthesized capsid viral proteins were present in the supernatants of infected cultures. The major noncapsid protein of 77 kDa was localized to the nucleus.
Collapse
|
research-article |
38 |
122 |
24
|
Seki M, Miyazawa H, Tada S, Yanagisawa J, Yamaoka T, Hoshino S, Ozawa K, Eki T, Nogami M, Okumura K. Molecular cloning of cDNA encoding human DNA helicase Q1 which has homology to Escherichia coli Rec Q helicase and localization of the gene at chromosome 12p12. Nucleic Acids Res 1994; 22:4566-73. [PMID: 7527136 PMCID: PMC308502 DOI: 10.1093/nar/22.22.4566] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A complementary DNA encoding DNA-dependent ATPase Q1 possessing DNA helicase activity, which is the major DNA-dependent ATPase in human cell extracts, was cloned from a cDNA library of human KB cells. The predicted amino acid sequence has seven consecutive motifs conserved in the RNA and DNA helicase super family and DNA helicase Q1 belongs to DEXH helicase family. A homology search indicated that helicase Q1 had 47% homology in the seven conserved regions with Escherichia coli RecQ protein. Three RNA bands of 4.0, 3.3, and 2.2 kilobases were detected in HeLa cells by Northern blotting. Analysis of the genomic DNA indicated the presence of a homologous gene in mouse cells. The DNA helicase Q1 gene was localized on the short arm of human chromosome 12 at 12p12.
Collapse
|
research-article |
31 |
120 |
25
|
Newman AJ, Pancheva R, Ozawa K, Neville HJ, Ullman MT. An event-related fMRI study of syntactic and semantic violations. JOURNAL OF PSYCHOLINGUISTIC RESEARCH 2001; 30:339-364. [PMID: 11523278 DOI: 10.1023/a:1010499119393] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We used event-related functional magnetic resonance imaging to identify brain regions involved in syntactic and semantic processing. Healthy adult males read well-formed sentences randomly intermixed with sentences which either contained violations of syntactic structure or were semantically implausible. Reading anomalous sentences, as compared to well-formed sentences, yielded distinct patterns of activation for the two violation types. Syntactic violations elicited significantly greater activation than semantic violations primarily in superior frontal cortex. Semantically incongruent sentences elicited greater activation than syntactic violations in the left hippocampal and parahippocampal gyri, the angular gyri bilaterally, the right middle temporal gyrus, and the left inferior frontal sulcus. These results demonstrate that syntactic and semantic processing result in nonidentical patterns of activation, including greater frontal engagement during syntactic processing and larger increases in temporal and temporo-parietal regions during semantic analyses.
Collapse
|
|
24 |
119 |