1
|
Abstract
Proteoglycans are widely expressed in animal cells. Interactions between negatively charged glycosaminoglycan chains and molecules such as growth factors are essential for differentiation of cells during development and maintenance of tissue organisation. We propose that glycosaminoglycan chains play a role in targeting of proteoglycans to their proper cellular or extracellular location. The variability seen in glycosaminoglycan chain structure from cell type to cell type, which is acquired by use of particular Ser-Gly sites in the protein core, might therefore be important for post-synthesis sorting. This links regulation of glycosaminoglycan synthesis to the post-Golgi fate of proteoglycans.
Collapse
|
|
25 |
310 |
2
|
Pourteymour S, Lee S, Langleite TM, Eckardt K, Hjorth M, Bindesbøll C, Dalen KT, Birkeland KI, Drevon CA, Holen T, Norheim F. Perilipin 4 in human skeletal muscle: localization and effect of physical activity. Physiol Rep 2015; 3:3/8/e12481. [PMID: 26265748 PMCID: PMC4562567 DOI: 10.14814/phy2.12481] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Perilipins (PLINs) coat the surface of lipid droplets and are important for the regulation of lipid turnover. Knowledge about the physiological role of the individual PLINs in skeletal muscle is limited although lipid metabolism is very important for muscle contraction. To determine the effect of long-term exercise on PLINs expression, 26 middle-aged, sedentary men underwent 12 weeks combined endurance and strength training intervention. Muscle biopsies from m. vastus lateralis and subcutaneous adipose tissue were taken before and after the intervention and total gene expression was measured with deep mRNA sequencing. PLIN4 mRNA exhibited the highest expression of all five PLINs in both tissues, and the expression was significantly reduced after long-term exercise in skeletal muscle. Moreover, PLIN4 mRNA expression levels in muscle correlated with the expression of genes involved in de novo phospholipid biosynthesis, with muscular content of phosphatidylethanolamine and phosphatidylcholine, and with the content of subsarcolemmal lipid droplets. The PLIN4 protein was mainly located at the periphery of skeletal muscle fibers, with higher levels in slow-twitch as compared to fast-twitch skeletal muscle fibers. In summary, we report reduced expression of PLIN4 after long-term physical activity, and preferential slow-twitch skeletal muscle fibers and plasma membrane-associated PLIN4 location.
Collapse
|
Journal Article |
10 |
40 |
3
|
Norheim F, Hjorth M, Langleite TM, Lee S, Holen T, Bindesbøll C, Stadheim HK, Gulseth HL, Birkeland KI, Kielland A, Jensen J, Dalen KT, Drevon CA. Regulation of angiopoietin-like protein 4 production during and after exercise. Physiol Rep 2014; 2:2/8/e12109. [PMID: 25138789 PMCID: PMC4246580 DOI: 10.14814/phy2.12109] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Angiopoietin‐like protein 4 (ANGPTL4) may regulate lipoprotein lipase‐dependent plasma clearance of triacylglycerol from skeletal muscle during exercise. The aim of this study was to examine the importance of muscle in regulating ANGPTL4 in response to exercise. We sampled muscle biopsies and serum before, immediately after, and 2 h after 45 min of ergometer cycling. Sampling was done before and after a 12‐week training intervention in controls and dysglycemic subjects. Moreover, fat biopsies were taken before and after the training intervention. The regulation of ANGPTL4 was also investigated in several tissues of exercising mice, and in cultured myotubes. ANGPTL4 levels in serum and expression in muscle were highest 2 h after exercise in both groups. Whereas ANGPTL4 was higher in muscle of exercising controls as compared to dysglycemic subjects, the opposite was observed in serum. In exercising mice, Angptl4 mRNA showed both higher basal expression and induction in liver compared to muscle. Angptl4 mRNA was much higher in adipose tissue than muscle and was also induced by exercise. We observed two mRNA isoforms of ANGPTL4 in muscle and fat in humans. Both were induced by exercise in muscle; one isoform was expressed 5‐ to 10‐fold higher than the other. Studies in mice and cultured myotubes showed that both fatty acids and cortisol have the potential to increase ANGPTL4 expression in muscle during exercise. In conclusion, ANGPTL4 is markedly induced in muscle in response to exercise. However, liver and adipose tissue may contribute more than muscle to the exercise‐induced increase in circulating ANGPTL4. The Production of ANGPTL4 is markedly induced in skeletal muscle in response to exercise. However, liver and adipose tissue may contribute more than skeletal muscle to the exercise‐induced increase in circulatory ANGPTL4.
Collapse
|
Journal Article |
11 |
38 |
4
|
Haugen F, Zahid N, Dalen KT, Hollung K, Nebb HI, Drevon CA. Resistin expression in 3T3-L1 adipocytes is reduced by arachidonic acid. J Lipid Res 2004; 46:143-53. [PMID: 15489540 DOI: 10.1194/jlr.m400348-jlr200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The resistin gene is expressed in adipocytes and encodes a protein proposed to link obesity and type 2 diabetes. Increased plasma FFA is associated with insulin resistance. We examined the effect of separate FFAs on the expression of resistin mRNA in cultured murine 3T3-L1 adipocytes. The FFAs tested did not increase resistin expression, whereas both arachidonic acid (AA) and eicosapentaenoic acid (EPA) reduced resistin mRNA levels. AA was by far the most potent FFA, reducing resistin mRNA levels to approximately 20% of control at 60-250 muM concentration. Selective inhibitors of cyclooxygenase-1 and of mitogen-activated protein kinase kinase counteracted AA-induced reduction in resistin mRNA levels. Transient overexpression of sterol-regulatory element binding protein-1a (SREBP-1a) activated the resistin promoter, but there was no reduction in the abundance of approximately 65 kDa mature SREBP-1 after AA exposure. Actinomycin D as well as cycloheximide abolished the AA-induced reduction of resistin mRNA levels, indicating dependence on de novo transcription and translation. Our data suggest that reductions in resistin mRNA levels involve a destabilization of the resistin mRNA molecule. An inhibitory effect of AA and EPA on resistin expression may explain the beneficial effect of ingesting PUFAs on insulin sensitivity.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
35 |
5
|
Telle-Hansen VH, Halvorsen B, Dalen KT, Narverud I, Wesseltoft-Rao N, Granlund L, Ulven SM, Holven KB. Altered expression of genes involved in lipid metabolism in obese subjects with unfavourable phenotype. GENES AND NUTRITION 2013; 8:425-34. [PMID: 23296345 DOI: 10.1007/s12263-012-0329-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/19/2012] [Indexed: 01/12/2023]
Abstract
Obesity (BMI ≥30 kg/m(2)) increases the risk of developing lifestyle-related diseases. A subgroup of obese individuals has been described as "metabolically healthy, but obese" (MHO). In contrast to at-risk obese (ARO), the MHO phenotype is defined by a favourable lipid profile and a normal or only slightly affected insulin sensitivity, despite the same amount of body fat. The objective was to characterize the metabolic phenotype of MHO subjects. We screened a variety of genes involved in lipid metabolism and inflammation in peripheral blood mononuclear cells (PBMC). Obese subjects (men and women; 18-70 years) with BMI ≥30 kg/m(2) were characterized as MHO (n = 9) or as ARO (n = 10). In addition, eleven healthy, normal weight subjects characterized as healthy by the same criteria as described for the MHO subjects were included. We found that with similar weight, total fat mass and fat mass distribution, the ARO subjects have increased plasma levels of gamma-glutamyl transpeptidase and free fatty acids. This group also has altered expression levels of a number of genes linked to lipid metabolism in PBMC with reduced gene expression levels of uncoupling protein 2, hormone-sensitive lipase and peroxisome proliferator-activated receptor δ compared with MHO subjects. The present metabolic differences between subgroups of obese subjects may contribute to explain some of the underlying mechanisms causing the increased risk of disease among ARO subjects compared with MHO subjects.
Collapse
|
Journal Article |
12 |
27 |
6
|
Drevinge C, Dalen KT, Mannila MN, Täng MS, Ståhlman M, Klevstig M, Lundqvist A, Mardani I, Haugen F, Fogelstrand P, Adiels M, Asin-Cayuela J, Ekestam C, Gådin JR, Lee YK, Nebb H, Svedlund S, Johansson BR, Hultén LM, Romeo S, Redfors B, Omerovic E, Levin M, Gan LM, Eriksson P, Andersson L, Ehrenborg E, Kimmel AR, Borén J, Levin MC. Perilipin 5 is protective in the ischemic heart. Int J Cardiol 2016; 219:446-54. [DOI: 10.1016/j.ijcard.2016.06.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/12/2016] [Indexed: 10/21/2022]
|
|
9 |
25 |
7
|
Andersson L, Drevinge C, Mardani I, Dalen KT, Ståhlman M, Klevstig M, Lundqvist A, Haugen F, Adiels M, Fogelstrand P, Asin-Cayuela J, Hultén LM, Levin M, Ehrenborg E, Lee YK, Kimmel AR, Borén J, Levin MC. Deficiency in perilipin 5 reduces mitochondrial function and membrane depolarization in mouse hearts. Int J Biochem Cell Biol 2017; 91:9-13. [PMID: 28811250 DOI: 10.1016/j.biocel.2017.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 01/18/2023]
Abstract
Myocardial triglycerides stored in lipid droplets are important in regulating the intracellular delivery of fatty acids for energy generation in mitochondria, for membrane biosynthesis, and as agonists for intracellular signaling. Previously, we showed that deficiency in the lipid droplet protein perilipin 5 (Plin5) markedly reduces triglyceride storage in cardiomyocytes and increases the flux of fatty acids into phospholipids. Here, we investigated whether Plin5 deficiency in cardiomyocytes alters mitochondrial function. We found that Plin5 deficiency reduced mitochondrial oxidative capacity. Furthermore, in mitochondria from Plin5-/- hearts, the fatty acyl composition of phospholipids in mitochondrial membranes was altered and mitochondrial membrane depolarization was markedly compromised. These findings suggest that mitochondria isolated from hearts deficient in Plin5, have specific functional defects.
Collapse
|
Research Support, N.I.H., Intramural |
8 |
17 |
8
|
Norheim F, Chella Krishnan K, Bjellaas T, Vergnes L, Pan C, Parks BW, Meng Y, Lang J, Ward JA, Reue K, Mehrabian M, Gundersen TE, Péterfy M, Dalen KT, Drevon CA, Hui ST, Lusis AJ, Seldin MM. Genetic regulation of liver lipids in a mouse model of insulin resistance and hepatic steatosis. Mol Syst Biol 2021; 17:e9684. [PMID: 33417276 PMCID: PMC7792507 DOI: 10.15252/msb.20209684] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/31/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
To elucidate the contributions of specific lipid species to metabolic traits, we integrated global hepatic lipid data with other omics measures and genetic data from a cohort of about 100 diverse inbred strains of mice fed a high-fat/high-sucrose diet for 8 weeks. Association mapping, correlation, structure analyses, and network modeling revealed pathways and genes underlying these interactions. In particular, our studies lead to the identification of Ifi203 and Map2k6 as regulators of hepatic phosphatidylcholine homeostasis and triacylglycerol accumulation, respectively. Our analyses highlight mechanisms for how genetic variation in hepatic lipidome can be linked to physiological and molecular phenotypes, such as microbiota composition.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
15 |
9
|
Zernichow L, Dalen KT, Prydz K, Winberg JO, Kolset SO. Secretion of proteases in serglycin transfected Madin-Darby canine kidney cells. FEBS J 2006; 273:536-47. [PMID: 16420477 DOI: 10.1111/j.1742-4658.2005.05085.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Madin-Darby canine kidney (MDCK) cells, which do not normally express the proteoglycan (PG) serglycin, were stably transfected with cDNA for human serglycin fused to a polyhistidine tag (His-tag). Clones with different levels of serglycin mRNA expression were generated. One clone with lower and one with higher serglycin mRNA expression were selected for this study. 35S-labelled serglycin in cell fractions and conditioned media was isolated using HisTrap affinity chromatography. Serglycin could also be detected in conditioned media using western blotting. To investigate the possible importance of serglycin linked to protease secretion, enzyme activities using chromogenic substrates and zymography were measured in cell fractions and serum-free conditioned media of the different clones. Cells were cultured in both the absence and presence of phorbol 12-myristate 13-acetate (PMA). In general, enzyme secretion was strongly enhanced by treatment with PMA. Our analyses revealed that the clone with the highest serglycin mRNA expression, level of HisTrap isolated 35S-labelled serglycin, and amount of serglycin core protein as detected by western blotting, also showed the highest secretion of proteases. Transfection of serglycin into MDCK cells clearly leads to changes in secretion levels of secreted endogenous proteases, and could provide further insight into the biosynthesis and secretion of serglycin and potential partner molecules.
Collapse
|
|
19 |
12 |
10
|
Doncheva AI, Norheim FA, Hjorth M, Grujic M, Paivandy A, Dankel SN, Hertel JK, Valderhaug TG, Böttcher Y, Fernø J, Mellgren G, Dalen KT, Pejler G, Kolset SO. Serglycin Is Involved in Adipose Tissue Inflammation in Obesity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:121-132. [PMID: 34872979 DOI: 10.4049/jimmunol.2100231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Chronic local inflammation of adipose tissue is an important feature of obesity. Serglycin is a proteoglycan highly expressed by various immune cell types known to infiltrate adipose tissue under obese conditions. To investigate if serglycin expression has an impact on diet-induced adipose tissue inflammation, we subjected Srgn +/+ and Srgn -/- mice (C57BL/6J genetic background) to an 8-wk high-fat and high-sucrose diet. The total body weight was the same in Srgn +/+ and Srgn -/- mice after diet treatment. Expression of white adipose tissue genes linked to inflammatory pathways were lower in Srgn -/- mice. We also noted reduced total macrophage abundance, a reduced proportion of proinflammatory M1 macrophages, and reduced formation of crown-like structures in adipose tissue of Srgn -/- compared with Srgn +/+ mice. Further, Srgn -/- mice had more medium-sized adipocytes and fewer large adipocytes. Differentiation of preadipocytes into adipocytes (3T3-L1) was accompanied by reduced Srgn mRNA expression. In line with this, analysis of single-cell RNA sequencing data from mouse and human adipose tissue supports that Srgn mRNA is predominantly expressed by various immune cells, with low expression in adipocytes. Srgn mRNA expression was higher in obese compared with lean humans and mice, accompanied by an increased expression of immune cell gene markers. SRGN and inflammatory marker mRNA expression was reduced upon substantial weight loss in patients after bariatric surgery. Taken together, this study introduces a role for serglycin in the regulation of obesity-induced adipose inflammation.
Collapse
|
|
3 |
8 |
11
|
Higa R, Pourteymour S, Kolan PS, Dankel SN, Fernø J, Mellgren G, Pan C, Seldin MM, Lusis AJ, Drevon CA, Dalen KT, Norheim FA. Hepatic lipid metabolism is altered in Ubiad1 +/- mice of both sexes. Sci Rep 2025; 15:7022. [PMID: 40016272 PMCID: PMC11868635 DOI: 10.1038/s41598-025-91283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
UbiA prenyltransferase domain containing 1 (Ubiad1) has the potential to affect cholesterol and phospholipid levels in different cell types. We previously identified Ubiad1 as a candidate gene for regulating subcutaneous fat pad weight in a mouse genome-wide association study. Here we evaluated the relationship between Ubiad1 and obesity-related traits in cohorts of humans and mice, and in Ubiad1+/- mice fed a high-fat diet. In both humans and mice, adipose tissue Ubiad1 mRNA expression correlated negatively with adiposity and positively with mitochondria-related genes. To determine the role of Ubiad1 in high-fat diet-induced obesity, we disrupted the Ubiad1 gene in mice. Deletion of Ubiad1 was embryonically lethal in C57BL/6 N mice, preventing analysis of adult Ubiad1-/- mice. Thus, male and female Ubiad1+/+ and Ubiad1+/- mice were fed high-fat diet for 10 weeks, with no difference in weight gain and adipose tissue organ weights observed between the genotypes. Analysis of liver mRNA expression revealed that Ubiad1 heterozygosis (Ubiad1+/-) altered several pathways involved in lipid metabolism. Detailed lipid quantification with HPLC-qTOF/MS showed increased levels of hepatic ceramides in female Ubiad1+/- mice, whereas phosphatidylglycerols, phosohatidylinositol and lysophosphatidylethanolamines were reduced in male Ubiad1+/- mice. Our findings reveal sex-specific effects of Ubiad1 expression on hepatic lipid metabolism.
Collapse
|
research-article |
1 |
|