1
|
Recouvreux MV, Moldenhauer MR, Galenkamp KMO, Jung M, James B, Zhang Y, Lowy A, Bagchi A, Commisso C. Glutamine depletion regulates Slug to promote EMT and metastasis in pancreatic cancer. J Exp Med 2021; 217:151843. [PMID: 32510550 PMCID: PMC7478719 DOI: 10.1084/jem.20200388] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/10/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor cells rely on glutamine to fulfill their metabolic demands and sustain proliferation. The elevated consumption of glutamine can lead to intratumoral nutrient depletion, causing metabolic stress that has the potential to impact tumor progression. Here, we show that nutrient stress caused by glutamine deprivation leads to the induction of epithelial–mesenchymal transition (EMT) in pancreatic ductal adenocarcinoma (PDAC) cells. Mechanistically, we demonstrate that glutamine deficiency regulates EMT through the up-regulation of the EMT master regulator Slug, a process that is dependent on both MEK/ERK signaling and ATF4. We find that Slug is required in PDAC cells for glutamine deprivation–induced EMT, cell motility, and nutrient stress survival. Importantly, we decipher that Slug is associated with nutrient stress in PDAC tumors and is required for metastasis. These results delineate a novel role for Slug in the nutrient stress response and provide insight into how nutrient depletion might influence PDAC progression.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
105 |
2
|
Zhang Y, Recouvreux MV, Jung M, Galenkamp KMO, Li Y, Zagnitko O, Scott DA, Lowy AM, Commisso C. Macropinocytosis in Cancer-Associated Fibroblasts Is Dependent on CaMKK2/ARHGEF2 Signaling and Functions to Support Tumor and Stromal Cell Fitness. Cancer Discov 2021; 11:1808-1825. [PMID: 33653692 DOI: 10.1158/2159-8290.cd-20-0119] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 01/15/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022]
Abstract
Although pancreatic ductal adenocarcinoma (PDAC) cells are exposed to a nutrient-depleted tumor microenvironment, they can acquire nutrients via macropinocytosis, an endocytic form of protein scavenging that functions to support cancer metabolism. Here, we provide evidence that macropinocytosis is also operational in the pancreatic tumor stroma. We find that glutamine deficiency triggers macropinocytic uptake in pancreatic cancer-associated fibroblasts (CAF). Mechanistically, we decipher that stromal macropinocytosis is potentiated via the enhancement of cytosolic Ca2+ and dependent on ARHGEF2 and CaMKK2-AMPK signaling. We elucidate that macropinocytosis has a dual function in CAFs-it serves as a source of intracellular amino acids that sustain CAF cell fitness and function, and it provides secreted amino acids that promote tumor cell survival. Importantly, we demonstrate that stromal macropinocytosis supports PDAC tumor growth. These results highlight the functional role of macropinocytosis in the tumor stroma and provide a mechanistic understanding of how nutrient deficiency can control stromal protein scavenging. SIGNIFICANCE: Glutamine deprivation drives stromal macropinocytosis to support CAF cell fitness and provide amino acids that sustain PDAC cell survival. Selective disruption of macropinocytosis in CAFs suppresses PDAC tumor growth.This article is highlighted in the In This Issue feature, p. 1601.
Collapse
|
Journal Article |
4 |
69 |
3
|
Marques-Fernandez F, Planells-Ferrer L, Gozzelino R, Galenkamp KMO, Reix S, Llecha-Cano N, Lopez-Soriano J, Yuste VJ, Moubarak RS, Comella JX. TNFα induces survival through the FLIP-L-dependent activation of the MAPK/ERK pathway. Cell Death Dis 2013; 4:e493. [PMID: 23412386 PMCID: PMC3734812 DOI: 10.1038/cddis.2013.25] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of tumor necrosis factor receptor-1 can trigger survival or apoptosis pathways. In many cellular models, including the neuronal cell model PC12, it has been demonstrated that inhibition of protein synthesis is sufficient to render cells sensitive to apoptosis induced by TNFα. The survival effect is linked to the translocation of the transcription factor nuclear factor-kappa B (NF-κB) to the nucleus and activation of survival-related genes such as FLICE-like inhibitory protein long form (FLIP-L) or IAPs. Nonetheless, we previously reported an NF-κB-independent contribution of Bcl-xL to cell survival after TNFα treatment. Here, we demonstrate that NF-κB-induced increase in FLIP-L expression levels is essential for mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) activation. We demonstrate that FLIP-L behaves as a Raf-1 activator through both protein-protein interaction and Raf-1 kinase activation, without the requirement of the classical Ras activation. Importantly, prevention of FLIP-L increase by NF-κB inhibition or knockdown of endogenous FLIP-L blocks MAPK/ERK activation after TNFα treatment. From a functional point of view, we show that inhibition of the MAPK/ERK pathway and the NF-κB pathway are equally relevant to render PC12 cells sensitive to cell death induced by TNFα. Apoptosis induced by TNFα under these conditions is dependent on jun nuclear kinase1/2 JNK1/2-dependent Bim upregulation. Therefore, we report a previously undescribed and essential role for MAPK/ERK activation by FLIP-L in the decision between cell survival and apoptosis upon TNFα stimulation.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
51 |
4
|
Galenkamp KMO, Sosicka P, Jung M, Recouvreux MV, Zhang Y, Moldenhauer MR, Brandi G, Freeze HH, Commisso C. Golgi Acidification by NHE7 Regulates Cytosolic pH Homeostasis in Pancreatic Cancer Cells. Cancer Discov 2020; 10:822-835. [PMID: 32200349 DOI: 10.1158/2159-8290.cd-19-1007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/07/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022]
Abstract
Cancer cells reprogram their metabolism to meet elevated energy demands and favor glycolysis for energy production. This boost in glycolytic flux supports proliferation, but also generates acid in the form of hydrogen ions that must be eliminated from the cytoplasm to maintain the alkaline intracellular pH (pHi) associated with transformation. To cope with acid production, tumor cells employ ion transport systems, including the family of sodium-hydrogen exchangers (NHE). Here, we identify NHE7 as a novel regulator of pHi in pancreatic ductal adenocarcinoma (PDAC). We determine that NHE7 suppression causes alkalinization of the Golgi, leading to a buildup of cytosolic acid that diminishes tumor cell fitness mainly through the dysregulation of actin. Importantly, NHE7 knockdown in vivo leads to the abrogation of tumor growth. These results identify Golgi acidification as a mechanism to control pHi and point to the regulation of pHi as a possible therapeutic vulnerability in PDAC. SIGNIFICANCE: NHE7 regulates cytosolic pH through Golgi acidification, which points to the Golgi as a "proton sink" for metabolic acid. Disruption of cytosolic pH homeostasis via NHE7 suppression compromises PDAC cell viability and tumor growth.See related commentary by Ward and DeNicola, p. 768.This article is highlighted in the In This Issue feature, p. 747.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
35 |
5
|
Oleshkevich E, Morancho A, Saha A, Galenkamp KMO, Grayston A, Crich SG, Alberti D, Protti N, Comella JX, Teixidor F, Rosell A, Viñas C. Combining magnetic nanoparticles and icosahedral boron clusters in biocompatible inorganic nanohybrids for cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:101986. [PMID: 31059794 DOI: 10.1016/j.nano.2019.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 12/31/2022]
Abstract
The potential biomedical applications of the MNPs nanohybrids coated with m-carboranylphosphinate (1-MNPs) as a theranostic biomaterial for cancer therapy were tested. The cellular uptake and toxicity profile of 1-MNPs from culture media by human brain endothelial cells (hCMEC/D3) and glioblastoma multiform A172 cell line were demonstrated. Prior to testing 1-MNPs' in vitro toxicity, studies of colloidal stability of the 1-MNPs' suspension in different culture media and temperatures were carried out. TEM images and chemical titration confirmed that 1-MNPs penetrate into cells. Additionally, to explore 1-MNPs' potential use in Boron Neutron Capture Therapy (BNCT) for treating cancer locally, the presence of the m-carboranyl coordinated with the MNPs core after uptake was proven by XPS and EELS. Importantly, thermal neutrons irradiation in BNCT reduced by 2.5 the number of cultured glioblastoma cells after 1-MNP treatment, and the systemic administration of 1-MNPs in mice was well tolerated with no major signs of toxicity.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
22 |
6
|
Planells-Ferrer L, Urresti J, Coccia E, Galenkamp KMO, Calleja-Yagüe I, López-Soriano J, Carriba P, Barneda-Zahonero B, Segura MF, Comella JX. Fas apoptosis inhibitory molecules: more than death-receptor antagonists in the nervous system. J Neurochem 2016; 139:11-21. [DOI: 10.1111/jnc.13729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/14/2016] [Accepted: 07/02/2016] [Indexed: 12/12/2022]
|
|
9 |
20 |
7
|
Urresti J, Ruiz-Meana M, Coccia E, Arévalo JC, Castellano J, Fernández-Sanz C, Galenkamp KMO, Planells-Ferrer L, Moubarak RS, Llecha-Cano N, Reix S, García-Dorado D, Barneda-Zahonero B, Comella JX. Lifeguard Inhibits Fas Ligand-mediated Endoplasmic Reticulum-Calcium Release Mandatory for Apoptosis in Type II Apoptotic Cells. J Biol Chem 2015; 291:1221-34. [PMID: 26582200 DOI: 10.1074/jbc.m115.677682] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 12/29/2022] Open
Abstract
Death receptors are members of the tumor necrosis factor receptor superfamily involved in the extrinsic apoptotic pathway. Lifeguard (LFG) is a death receptor antagonist mainly expressed in the nervous system that specifically blocks Fas ligand (FasL)-induced apoptosis. To investigate its mechanism of action, we studied its subcellular localization and its interaction with members of the Bcl-2 family proteins. We performed an analysis of LFG subcellular localization in murine cortical neurons and found that LFG localizes mainly to the ER and Golgi. We confirmed these results with subcellular fractionation experiments. Moreover, we show by co-immunoprecipitation experiments that LFG interacts with Bcl-XL and Bcl-2, but not with Bax or Bak, and this interaction likely occurs in the endoplasmic reticulum. We further investigated the relationship between LFG and Bcl-XL in the inhibition of apoptosis and found that LFG protects only type II apoptotic cells from FasL-induced death in a Bcl-XL dependent manner. The observation that LFG itself is not located in mitochondria raises the question as to whether LFG in the ER participates in FasL-induced death. Indeed, we investigated the degree of calcium mobilization after FasL stimulation and found that LFG inhibits calcium release from the ER, a process that correlates with LFG blockage of cytochrome c release to the cytosol and caspase activation. On the basis of our observations, we propose that there is a required step in the induction of type II apoptotic cell death that involves calcium mobilization from the ER and that this step is modulated by LFG.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
16 |
8
|
Galenkamp KMO, Commisso C. The Golgi as a "Proton Sink" in Cancer. Front Cell Dev Biol 2021; 9:664295. [PMID: 34055797 PMCID: PMC8155353 DOI: 10.3389/fcell.2021.664295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer cells exhibit increased glycolytic flux and adenosine triphosphate (ATP) hydrolysis. These processes increase the acidic burden on the cells through the production of lactate and protons. Nonetheless, cancer cells can maintain an alkaline intracellular pH (pHi) relative to untransformed cells, which sets the stage for optimal functioning of glycolytic enzymes, evasion of cell death, and increased proliferation and motility. Upregulation of plasma membrane transporters allows for H+ and lactate efflux; however, recent evidence suggests that the acidification of organelles can contribute to maintenance of an alkaline cytosol in cancer cells by siphoning off protons, thereby supporting tumor growth. The Golgi is such an acidic organelle, with resting pH ranging from 6.0 to 6.7. Here, we posit that the Golgi represents a "proton sink" in cancer and delineate the proton channels involved in Golgi acidification and the ion channels that influence this process. Furthermore, we discuss ion channel regulators that can affect Golgi pH and Golgi-dependent processes that may contribute to pHi homeostasis in cancer.
Collapse
|
research-article |
4 |
6 |
9
|
Galenkamp KMO, Galapate CM, Zhang Y, Commisso C. Automated Imaging and Analysis for the Quantification of Fluorescently Labeled Macropinosomes. J Vis Exp 2021. [PMID: 34515683 DOI: 10.3791/62828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Macropinocytosis is a non-specific fluid-phase uptake pathway that allows cells to internalize large extracellular cargo, such as proteins, pathogens, and cell debris, through bulk endocytosis. This pathway plays an essential role in a variety of cellular processes, including the regulation of immune responses and cancer cell metabolism. Given this importance in biological function, examining cell culture conditions can provide valuable information by identifying regulators of this pathway and optimizing conditions to be employed in the discovery of novel therapeutic approaches. The study describes an automated imaging and analysis technique using standard laboratory equipment and a cell imaging multi-mode plate reader for the rapid quantification of the macropinocytic index in adherent cells. The automated method is based on the uptake of high molecular weight fluorescent dextran and can be applied to 96-well microplates to facilitate assessments of multiple conditions in one experiment or fixed samples mounted onto glass coverslips. This approach is aimed at maximizing reproducibility and reducing experimental variation while being both time-saving and cost-effective.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
2 |
10
|
Leibel SL, McVicar RN, Murad R, Kwong EM, Clark AE, Alvarado A, Grimmig BA, Nuryyev R, Young RE, Lee JC, Peng W, Zhu YP, Griffis E, Nowell CJ, James B, Alarcon S, Malhotra A, Gearing LJ, Hertzog PJ, Galapate CM, Galenkamp KMO, Commisso C, Smith DM, Sun X, Carlin AF, Sidman RL, Croker BA, Snyder EY. A therapy for suppressing canonical and noncanonical SARS-CoV-2 viral entry and an intrinsic intrapulmonary inflammatory response. Proc Natl Acad Sci U S A 2024; 121:e2408109121. [PMID: 39028694 PMCID: PMC11287264 DOI: 10.1073/pnas.2408109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 07/21/2024] Open
Abstract
The prevalence of "long COVID" is just one of the conundrums highlighting how little we know about the lung's response to viral infection, particularly to syndromecoronavirus-2 (SARS-CoV-2), for which the lung is the point of entry. We used an in vitro human lung system to enable a prospective, unbiased, sequential single-cell level analysis of pulmonary cell responses to infection by multiple SARS-CoV-2 strains. Starting with human induced pluripotent stem cells and emulating lung organogenesis, we generated and infected three-dimensional, multi-cell-type-containing lung organoids (LOs) and gained several unexpected insights. First, SARS-CoV-2 tropism is much broader than previously believed: Many lung cell types are infectable, if not through a canonical receptor-mediated route (e.g., via Angiotensin-converting encyme 2(ACE2)) then via a noncanonical "backdoor" route (via macropinocytosis, a form of endocytosis). Food and Drug Administration (FDA)-approved endocytosis blockers can abrogate such entry, suggesting adjunctive therapies. Regardless of the route of entry, the virus triggers a lung-autonomous, pulmonary epithelial cell-intrinsic, innate immune response involving interferons and cytokine/chemokine production in the absence of hematopoietic derivatives. The virus can spread rapidly throughout human LOs resulting in mitochondrial apoptosis mediated by the prosurvival protein Bcl-xL. This host cytopathic response to the virus may help explain persistent inflammatory signatures in a dysfunctional pulmonary environment of long COVID. The host response to the virus is, in significant part, dependent on pulmonary Surfactant Protein-B, which plays an unanticipated role in signal transduction, viral resistance, dampening of systemic inflammatory cytokine production, and minimizing apoptosis. Exogenous surfactant, in fact, can be broadly therapeutic.
Collapse
|
research-article |
1 |
|