1
|
Palsa K, Baringer SL, Shenoy G, Spiegelman VS, Simpson IA, Connor JR. Exosomes are involved in iron transport from human blood-brain barrier endothelial cells and are modified by endothelial cell iron status. J Biol Chem 2023; 299:102868. [PMID: 36603765 PMCID: PMC9929479 DOI: 10.1016/j.jbc.2022.102868] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
Iron is essential for normal brain development and function. Hence, understanding the mechanisms of iron efflux at the blood-brain barrier and their regulation are critical for the establishment of brain iron homeostasis. Here, we have investigated the role of exosomes in mediating the transfer of H-ferritin (FTH1)- or transferrin (Tf)-bound iron across the blood-brain barrier endothelial cells (BBBECs). Our study used ECs derived from human-induced pluripotent stem cells that are grown in bicameral chambers. When cells were exposed to 55Fe-Tf or 55Fe-FTH1, the 55Fe activity in the exosome fraction in the basal chamber was significantly higher compared to the supernatant fraction. Furthermore, we determined that the release of endogenous Tf, FTH1, and exosome number is regulated by the iron concentration of the endothelial cells. Moreover, the release of exogenously added Tf or FTH1 to the basal side via exosomes was significantly higher when ECs were iron loaded compared to when they were iron deficient. The release of exosomes containing iron bound to Tf or FTH1 was independent of hepcidin regulation, indicating this mechanism by-passes a major iron regulatory pathway. A potent inhibitor of exosome formation, GW4869, reduced exosomes released from the ECs and also decreased the Tf- and FTH1-bound iron within the exosomes. Collectively, these results indicate that iron transport across the blood-brain barrier is mediated via the exosome pathway and is modified by the iron status of the ECs, providing evidence for a novel alternate mechanism of iron transport into the brain.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
12 |
2
|
Baringer SL, Neely EB, Palsa K, Simpson IA, Connor JR. Regulation of brain iron uptake by apo- and holo-transferrin is dependent on sex and delivery protein. Fluids Barriers CNS 2022; 19:49. [PMID: 35689283 PMCID: PMC9188189 DOI: 10.1186/s12987-022-00345-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background The brain requires iron for a number of processes, including energy production. Inadequate or excessive amounts of iron can be detrimental and lead to a number of neurological disorders. As such, regulation of brain iron uptake is required for proper functioning. Understanding both the movement of iron into the brain and how this process is regulated is crucial to both address dysfunctions with brain iron uptake in disease and successfully use the transferrin receptor uptake system for drug delivery. Methods Using in vivo steady state infusions of apo- and holo-transferrin into the lateral ventricle, we demonstrate the regulatory effects of brain apo- and holo-transferrin ratios on the delivery of radioactive 55Fe bound to transferrin or H-ferritin in male and female mice. In discovering sex differences in the response to apo- and holo-transferrin infusions, ovariectomies were performed on female mice to interrogate the influence of circulating estrogen on regulation of iron uptake. Results Our model reveals that apo- and holo-transferrin significantly regulate iron uptake into the microvasculature and subsequent release into the brain parenchyma and their ability to regulate iron uptake is significantly influenced by both sex and type of iron delivery protein. Furthermore, we show that cells of the microvasculature act as reservoirs of iron and release the iron in response to cues from the interstitial fluid of the brain. Conclusions These findings extend our previous work to demonstrate that the regulation of brain iron uptake is influenced by both the mode in which iron is delivered and sex. These findings further emphasize the role of the microvasculature in regulating brain iron uptake and the importance of cues regarding iron status in the extracellular fluid.
Collapse
|
|
3 |
11 |
3
|
Baringer SL, Palsa K, Spiegelman VS, Simpson IA, Connor JR. Apo- and holo-transferrin differentially interact with hephaestin and ferroportin in a novel mechanism of cellular iron release regulation. J Biomed Sci 2023; 30:36. [PMID: 37277838 PMCID: PMC10243088 DOI: 10.1186/s12929-023-00934-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Apo- (iron free) and holo- (iron bound) transferrin (Tf) participate in precise regulation of brain iron uptake at endothelial cells of the blood-brain barrier. Apo-Tf indicates an iron-deficient environment and stimulates iron release, while holo-Tf indicates an iron sufficient environment and suppresses additional iron release. Free iron is exported through ferroportin, with hephaestin as an aid to the process. Until now, the molecular mechanisms of apo- and holo-Tf influence on iron release was largely unknown. METHODS Here we use a variety of cell culture techniques, including co-immunoprecipitation and proximity ligation assay, in iPSC-derived endothelial cells and HEK 293 cells to investigate the mechanism by which apo- and holo-Tf influence cellular iron release. Given the established role of hepcidin in regulating cellular iron release, we further explored the relationship of hepcidin to transferrin in this model. RESULTS We demonstrate that holo-Tf induces the internalization of ferroportin through the established ferroportin degradation pathway. Furthermore, holo-Tf directly interacts with ferroportin, whereas apo-Tf directly interacts with hephaestin. Only pathophysiological levels of hepcidin disrupt the interaction between holo-Tf and ferroportin, but similar hepcidin levels are unable to interfere with the interaction between apo-Tf and hephaestin. The disruption of the holo-Tf and ferroportin interaction by hepcidin is due to hepcidin's ability to more rapidly internalize ferroportin compared to holo-Tf. CONCLUSIONS These novel findings provide a molecular mechanism for apo- and holo-Tf regulation of iron release from endothelial cells. They further demonstrate how hepcidin impacts these protein-protein interactions, and offer a model for how holo-Tf and hepcidin cooperate to suppress iron release. These results expand on our previous reports on mechanisms mediating regulation of brain iron uptake to provide a more thorough understanding of the regulatory mechanisms mediating cellular iron release in general.
Collapse
|
research-article |
2 |
5 |
4
|
Baringer SL, Lukacher AS, Palsa K, Kim H, Lippmann ES, Spiegelman VS, Simpson IA, Connor JR. Amyloid-β exposed astrocytes induce iron transport from endothelial cells at the blood-brain barrier by altering the ratio of apo- and holo-transferrin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540795. [PMID: 37292926 PMCID: PMC10245582 DOI: 10.1101/2023.05.15.540795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Excessive brain iron accumulation is observed in early in the onset of Alzheimer's disease, notably prior to widespread proteinopathy. These findings suggest that increases in brain iron levels are due to a dysregulation of the iron transport mechanism at the blood-brain barrier. Astrocytes release signals (apo- and holo-transferrin) that communicate brain iron needs to endothelial cells in order to modulate iron transport. Here we use iPSC-derived astrocytes and endothelial cells to investigate how early-disease levels of amyloid-β disrupt iron transport signals secreted by astrocytes to stimulate iron transport from endothelial cells. We demonstrate that conditioned media from astrocytes treated with amyloid-β stimulates iron transport from endothelial cells and induces changes in iron transport pathway protein levels. The mechanism underlying this response begins with increased iron uptake and mitochondrial activity by the astrocytes which in turn increases levels of apo-transferrin in the amyloid-β conditioned astrocyte media leading to increased iron transport from endothelial cells. These novel findings offer a potential explanation for the initiation of excessive iron accumulation in early stages of Alzheimer's disease. What's more, these data provide the first example of how the mechanism of iron transport regulation by apo- and holo-transferrin becomes misappropriated in disease to detrimental ends. The clinical benefit from understanding early dysregulation in brain iron transport in AD cannot be understated. If therapeutics can target this early process, they could possibly prevent the detrimental cascade that occurs with excessive iron accumulation. Significance Statement Excessive brain iron accumulation is hallmark pathology of Alzheimer's disease that occurs early in the disease staging and before widespread proteinopathy deposition. This overabundance of brain iron has been implicated to contribute to disease progression, thus understandingthe mechanism of early iron accumulation has significant therapeutic potential to slow to halt disease progression. Here, we show that in response to low levels of amyloid-β exposure, astrocytes increase their mitochondrial activity and iron uptake, resulting in iron deficient conditions. Elevated levels of apo (iron free)-transferrin stimulate iron release from endothelial cells. These data are the first to propose a mechanism for the initiation of iron accumulation and the misappropriation of iron transport signaling leading to dysfunctional brain iron homeostasis and resultant disease pathology.
Collapse
|
Preprint |
2 |
2 |
5
|
Palsa K, Connor JR, Flanagan J, Hines EA. H-ferritin in sows' colostrum- and milk-derived extracellular vesicles: a novel iron delivery concept. J Anim Sci 2023; 101:skad013. [PMID: 36629252 PMCID: PMC9910394 DOI: 10.1093/jas/skad013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Iron deficiency anemia is a significant problem in piglets, as they are born with insufficient iron stores for supporting their rapid body growth. Further, sows' milk contains inadequate iron levels for meeting the demands of piglet rapid growth in the pre-wean stage. The forms of iron present in the milk are essential to understanding bioavailability and potential routes for supplementing iron to mitigate iron deficiency anemia in piglets. Recently, our studies showed that H-ferritin (FTH1) is involved in iron transport to different tissues and can be used as an oral iron supplement to correct iron deficiency in rats and monkeys. In this study, we investigate the FTH1 levels in colostrum and milk in Yorkshires-crossbred sows (n = 27) and collected samples at the 1st, 15th, and 28th days of lactation to measure FTH1. Colostrum and milk were found to have FTH1, but there is no significant difference between the different days of lactation. FTH1 has been observed to be enriched in extracellular vesicles (EVs) of other species, and therefore examined the EVs in the samples. Colostrum-derived EVs were enriched with L-ferritin compared to FTH1, while in milk-derived EVs, only FTH1 was detected (P = 0.04). In milk-derived EVs, FTH1 was significantly higher (P = 0.021; P = 006) than FTH1 in colostrum-derived EVs. Furthermore, FTH1 levels of milk-derived EVs were significantly higher (P = 0.0002; P = 0004) than whole milk and colostrum FTH1. These results indicate that FTH1 is enriched in the milk-derived EVs and suggest that EVs play a predominant role in the FTH1 delivery mechanism for the piglet. The extent to which FTH1 in EVs accounts for the overall iron delivery mechanism in piglets is yet to be determined.
Collapse
|
research-article |
2 |
1 |
6
|
Shenoy G, Kheirabadi S, Ataie Z, Sahu AP, Palsa K, Wade Q, Khunsriraksakul C, Khristov V, Slagle-Webb B, Lathia JD, Wang HG, Sheikhi A, Connor JR. Iron inhibits glioblastoma cell migration and polarization. FASEB J 2023; 37:e23307. [PMID: 37983646 DOI: 10.1096/fj.202202157rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Glioblastoma is one of the deadliest malignancies facing modern oncology today. The ability of glioblastoma cells to diffusely spread into neighboring healthy brain makes complete surgical resection nearly impossible and contributes to the recurrent disease faced by most patients. Although research into the impact of iron on glioblastoma has addressed proliferation, there has been little investigation into how cellular iron impacts the ability of glioblastoma cells to migrate-a key question, especially in the context of the diffuse spread observed in these tumors. Herein, we show that increasing cellular iron content results in decreased migratory capacity of human glioblastoma cells. The decrease in migratory capacity was accompanied by a decrease in cellular polarization in the direction of movement. Expression of CDC42, a Rho GTPase that is essential for both cellular migration and establishment of polarity in the direction of cell movement, was reduced upon iron treatment. We then analyzed a single-cell RNA-seq dataset of human glioblastoma samples and found that cells at the tumor periphery had a gene signature that is consistent with having lower levels of cellular iron. Altogether, our results suggest that cellular iron content is impacting glioblastoma cell migratory capacity and that cells with higher iron levels exhibit reduced motility.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
1 |
7
|
Shenoy G, Palsa K, Wade Q, Khunsriraksakul C, Khristov V, Slagle-Webb B, Lathia J, Wang HG, Connor J. TMIC-34. INVESTIGATING THE EFFECT OF IRON IN GLIOBLASTOMA CELL POLARIZATION AND MIGRATION. Neuro Oncol 2022. [DOI: 10.1093/neuonc/noac209.1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
Glioblastoma represents one of the most difficult-to-treat malignancies as evidenced by the poor prognosis associated with a diagnosis. The ability of glioblastoma cells to diffusely infiltrate into healthy brain tissue renders complete surgical resection challenging. Consequently, a large majority of glioblastoma patients end up with recurrent disease despite receiving maximally feasible surgical resection and rigorous chemoradiation. This work examined how modulation of cellular iron levels in T98G and LN229 glioblastoma cells impacted migratory capacity. Treatment of T98G or LN229 glioblastoma cells with iron in the form of ferric ammonium citrate (FAC) resulted in significantly reduced migration as assessed by time-lapse phase contrast imaging and wound healing assays. The iron-induced reduction in migration was able to be rescued by the addition of equimolar concentrations of deferoxamine, an iron chelator. Cellular proliferation in response to the iron treatments was quantified using both optical confluence and nucleic-acid-based proliferation assays and it was found that iron treatment at the concentrations used for the migration assays (0 – 300 µM FAC) did not result in reduced proliferation. Mechanistically probing iron’s impact on cell migration revealed that addition of iron resulted in decreased expression of Cdc42, a Rho GTPase that is essential to determining cellular polarity during migration. Functional cellular polarization assays further confirmed that reduced expression of Cdc42 corresponded to reduced cellular polarization. Bioinformatic analysis of CDC42 transcripts revealed the presence of potential iron-responsive-elements that may drive the iron-induced reduction in Cdc42 expression. This work highlights the importance of iron biology in impacting glioblastoma cell phenotype and potentially glioblastoma patient outcomes.
Collapse
|
|
3 |
|
8
|
Baringer SL, Lukacher AS, Palsa K, Kim H, Lippmann ES, Spiegelman VS, Simpson IA, Connor JR. Amyloid-β exposed astrocytes induce iron transport from endothelial cells at the blood-brain barrier by altering the ratio of apo- and holo-transferrin. J Neurochem 2023; 167:248-261. [PMID: 37667496 PMCID: PMC10592116 DOI: 10.1111/jnc.15954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/30/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Excessive brain iron accumulation is observed early in the onset of Alzheimer's disease, notably prior to widespread proteinopathy. These findings suggest that increases in brain iron levels are due to a dysregulation of the iron transport mechanism at the blood-brain barrier. Astrocytes release signals (apo- and holo-transferrin) that communicate brain iron needs to endothelial cells in order to modulate iron transport. Here we use iPSC-derived astrocytes and endothelial cells to investigate how early-disease levels of amyloid-β disrupt iron transport signals secreted by astrocytes to stimulate iron transport from endothelial cells. We demonstrate that conditioned media from astrocytes treated with amyloid-β stimulates iron transport from endothelial cells and induces changes in iron transport pathway proteins. The mechanism underlying this response begins with increased iron uptake and mitochondrial activity by the astrocytes, which in turn increases levels of apo-transferrin in the amyloid-β conditioned astrocyte media leading to increased iron transport from endothelial cells. These novel findings offer a potential explanation for the initiation of excessive iron accumulation in early stages of Alzheimer's disease. What's more, these data provide the first example of how the mechanism of iron transport regulation by apo- and holo-transferrin becomes misappropriated in disease that can lead to iron accumulation. The clinical benefit from understanding early dysregulation in brain iron transport in AD cannot be understated. If therapeutics can target this early process, they could possibly prevent the detrimental cascade that occurs with excessive iron accumulation.
Collapse
|
research-article |
2 |
|
9
|
Pandya Shesh B, Walter V, Palsa K, Slagle-Webb B, Neely E, Schell T, Connor JR. Sexually dimorphic effect of H-ferritin genetic manipulation on survival and tumor microenvironment in a mouse model of glioblastoma. J Neurooncol 2023; 164:569-586. [PMID: 37812288 DOI: 10.1007/s11060-023-04415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Iron plays a crucial role in various biological mechanisms and has been found to promote tumor growth. Recent research has shown that the H-ferritin (FTH1) protein, traditionally recognized as an essential iron storage protein, can transport iron to GBM cancer stem cells, reducing their invasion activity. Moreover, the binding of extracellular FTH1 to human GBM tissues, and brain iron delivery in general, has been found to have a sex bias. These observations raise questions, addressed in this study, about whether H-ferritin levels extrinsic to the tumor can affect tumor cell pathways and if this impact is sex-specific. METHODS To interrogate the role of systemic H-ferritin in GBM we introduce a mouse model in which H-ferritin levels are genetically manipulated. Mice that were genetically manipulated to be heterozygous for H-ferritin (Fth1+/-) gene expression were orthotopically implanted with a mouse GBM cell line (GL261). Littermate Fth1 +/+ mice were used as controls. The animals were evaluated for survival and the tumors were subjected to RNA sequencing protocols. We analyzed the resulting data utilizing the murine Microenvironment Cell Population (mMCP) method for in silico immune deconvolution. mMCP analysis estimates the abundance of tissue infiltrating immune and stromal populations based on cell-specific gene expression signatures. RESULTS There was a clear sex bias in survival. Female Fth1+/- mice had significantly poorer survival than control females (Fth1+/+). The Fth1 genetic status did not affect survival in males. The mMCP analysis revealed a significant reduction in T cells and CD8 + T cell infiltration in the tumors of females with Fth1+/- background as compared to the Fth1+/+. Mast and fibroblast cell infiltration was increased in females and males with Fth1+/- background, respectively, compared to Fth1+/+ mice. CONCLUSION Genetic manipulation of Fth1 which leads to reduced systemic levels of FTH1 protein had a sexually dimorphic impact on survival. Fth1 heterozygosity significantly worsened survival in females but did not affect survival in male GBMs. Furthermore, the genetic manipulation of Fth1 significantly affected tumor infiltration of T-cells, CD8 + T cells, fibroblasts, and mast cells in a sexually dimorphic manner. These results demonstrate a role for FTH1 and presumably iron status in establishing the tumor cellular landscape that ultimately impacts survival and further reveals a sex bias that may inform the population studies showing a sex effect on the prevalence of brain tumors.
Collapse
|
|
2 |
|
10
|
Shenoy G, Troike K, Palsa K, Kuhn M, Wade Q, Slagle-Webb B, Snyder A, Khunsriraksakul C, Lathia JD, Desai D, Wang HG, Proctor E, Connor JR. Abstract 2430: The role of cellular iron and the homeostatic iron regulator (HFE) in high-grade brain tumor cell migration. Cancer Res 2022. [DOI: 10.1158/1538-7445.am2022-2430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
High-grade brain tumors such as grade III astrocytoma and glioblastoma represent among the most difficult to manage malignancies facing oncological practice. Diffuse migration and invasion into adjacent healthy brain tissue yields complete surgical resection of these tumors unfeasible. As a result, despite receiving maximal surgical resection and an aggressive course of chemoradiation, the majority of high-grade brain tumor patients suffer from recurrent disease. Increased expression levels of the homeostatic iron regulator gene (HFE) in high-grade brain tumors have been correlated with poorer outcomes. HFE is known to influence cellular iron metabolism by inhibiting transferrin-mediated iron uptake yet little is known regarding how HFE or iron impact the migratory capabilities of high-grade brain tumor cells. In order to better understand how HFE expression and cellular iron metabolism influence cell migration in high grade brain tumors, we utilized brain tumor cell lines that had been genetically manipulated to express different levels of HFE. We observed that knocking down HFE in KR158 or LN229 glioma cell lines resulted in significantly decreased migratory capacity. Since HFE is known to inhibit transferrin mediated iron uptake, we studied how directly modulating the iron status of glioma cells impacted their ability to migrate. Treatment of a panel of glioma cell lines: LN229, T98G, U87, KR158, with iron in the form of hemin or ferric ammonium citrate resulted in significantly reduced migration. Furthermore, the iron-induced reduction in migration could be rescued by the addition of deferoxamine, an iron chelator. Cell viability in response to the iron treatments was assayed and found to not be significantly altered - suggesting that cellular iron status was influencing migratory capacity independent of cell viability. To gain mechanistic insights into HFE and iron-induced effects on cell migration, we analyzed the Chinese Glioma Genome Atlas (CGGA) for correlations between HFE and the Rho GTPases RHOA, RAC1, and CDC42 – genes which are known to play a crucial role in determining the migratory capacity of cancer cells. Interestingly, we found statistically significant correlations between the Rho GTPases RHOA, RAC1, CDC42 and HFE in both grade III astrocytoma and glioblastoma patient cohorts. Immunoblotting of iron treated glioma cell lines demonstrated that expression of RhoA and Cdc42 was reduced suggesting that alterations in Rho GTPase expression and signaling may play a role in iron-induced effects on cell migration. Our results demonstrate that targeting cancer cell iron metabolism as an addition to existing treatment regimens may be a promising avenue for further investigation.
Citation Format: Ganesh Shenoy, Katie Troike, Kondaiah Palsa, Madison Kuhn, Quinn Wade, Becky Slagle-Webb, Amanda Snyder, Chachrit Khunsriraksakul, Justin D. Lathia, Dhimant Desai, Hong-Gang Wang, Elizabeth Proctor, James R. Connor. The role of cellular iron and the homeostatic iron regulator (HFE) in high-grade brain tumor cell migration [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 2430.
Collapse
|
|
3 |
|
11
|
Shenoy G, Sahu A, Kuhn M, Khristov V, Heebner M, Wilding H, Clegg T, Bhanja D, Wade Q, Liermann LJ, Wang D, Smith N, Remite-Berthet G, Khunsriraksakul C, Palsa K, Slagle-Webb B, Mansouri A, Zacharia BE, Proctor EA, Connor JR. Analysis of transition metal content in glioblastoma reveals association between iron and survival. Transl Oncol 2025; 55:102376. [PMID: 40163909 DOI: 10.1016/j.tranon.2025.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
INTRODUCTION Little is known about the role of transition metals in glioblastoma progression. Here we investigated whether transition metal content is associated with glioblastoma outcomes. METHODS Tumor samples were obtained from 37 newly diagnosed patients with glioblastoma, 21 of which had matched plasma. Iron, zinc, manganese, and copper content in those samples was quantified via inductively-coupled mass spectrometry or atomic emission spectrometry, and subsequently analyzed for associations with overall survival. Multiplexed immune profiling was performed to determine whether transition metal content was associated with altered cytokine profiles. RESULTS Higher plasma iron levels were strongly associated with prolonged survival (Kaplan-Meier analysis: 30.15 months vs. 12.43 months, P = 0.0036; Multivariate Cox regression analysis: HR: 0.79 [0.64 - 0.97], P = 0.03). Zinc, manganese, and copper concentration in plasma or tumor and iron in tumor were not significantly associated with overall survival. Immune profiling of plasma and tumor samples revealed that plasma iron correlated with plasma IFN-β concentration (R = 0.63, P = 0.0057) in patients with glioblastoma. No correlation of plasma iron and IFN-β was observed in age- and sex- matched healthy individuals (R = -0.15, P = 0.153). Plasma transition metal concentration did not correlate with tumor transition metal concentration. Within tumors, manganese and zinc were correlated (R = 0.52, P = 0.0048) as well as copper and zinc (R = 0.36, P = 0.038). CONCLUSIONS Plasma iron is associated with survival in glioblastoma patients and may serve as a prognostic marker. The mechanisms underlying this association require further study.
Collapse
|
|
1 |
|
12
|
Baringer S, Palsa K, Simpson IA, Connor JR. Apo- and holo- transferrin differentially interact with ferroportin and hephaestin to regulate iron release at the blood-brain barrier. RESEARCH SQUARE 2023:rs.3.rs-2429356. [PMID: 36711476 PMCID: PMC9882672 DOI: 10.21203/rs.3.rs-2429356/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background : Apo- (iron free) and holo- (iron bound) transferrin (Tf) participate in precise regulation of brain iron uptake at endothelial cells of the blood-brain barrier. Apo-Tf indicates an iron deficient environment and stimulates iron release, while holo-Tf indicates an iron sufficient environment and suppresses additional iron release. Free iron is exported through ferroportin, with hephaestin as an aid to the process. Until now, the molecular mechanism of apo- and holo-Tf's influence on iron release was largely unknown. Methods : Here we use a variety of cell culture techniques, including co-immunoprecipitation and proximity ligation assay, in iPSC-derived endothelial cells and HEK 293 cells to investigate the mechanism of apo- and holo-Tf's influence over iron release. We placed our findings in physiological context by further deciphering how hepcidin played a role in this mechanism as well. Results : We demonstrate that holo-Tf induces the internalization of ferroportin through the established ferroportin degradation pathway. Furthermore, holo-Tf directly binds to ferroportin, whereas apo-Tf directly binds to hephaestin. Only pathological levels of hepcidin disrupt the interaction between holo-Tf and ferroportin, and no amount of hepcidin disrupts the interaction between apo-Tf and hephaestin. The disruption of the holo-Tf and ferroportin interaction by hepcidin is due to hepcidin's ability to rapidly internalize ferroportin compared to holo-Tf. Conclusions : These novel findings provide a molecular mechanism for apo- and holo-Tf regulation of iron release from endothelial cells. They further demonstrate how hepcidin impacts these protein-protein interactions, and offer a model for how holo-Tf and hepcidin corporate to suppress iron release. We have established a more thorough understanding of the mechanisms behind iron release regulation with great clinical impact for a variety of neurological conditions in which iron release is dysregulated.
Collapse
|
Preprint |
2 |
|
13
|
Shenoy G, Kuhn M, Palsa K, Slagle-Webb B, Snyder AM, Khunsriraksakul C, Troike K, Lathia JD, Wang HG, Proctor EA, Connor JR. Cellular iron status influences cell motility in glioblastoma. Biophys J 2022. [DOI: 10.1016/j.bpj.2021.11.1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
|
3 |
|
14
|
Baringer SL, Palsa K, Simpson IA, Connor JR. Apo- and holo- transferrin differentially interact with ferroportin and hephaestin to regulate iron release at the blood-brain barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.522344. [PMID: 36712094 PMCID: PMC9882075 DOI: 10.1101/2023.01.10.522344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Apo- (iron free) and holo- (iron bound) transferrin (Tf) participate in precise regulation of brain iron uptake at endothelial cells of the blood-brain barrier. Apo-Tf indicates an iron deficient environment and stimulates iron release, while holo-Tf indicates an iron sufficient environment and suppresses additional iron release. Free iron is exported through ferroportin, with hephaestin as an aid to the process. Until now, the molecular mechanism of apo- and holo-Tf's influence on iron release was largely unknown. Methods Here we use a variety of cell culture techniques, including co-immunoprecipitation and proximity ligation assay, in iPSC-derived endothelial cells and HEK 293 cells to investigate the mechanism of apo- and holo-Tf's influence over iron release. We placed our findings in physiological context by further deciphering how hepcidin played a role in this mechanism as well. Results We demonstrate that holo-Tf induces the internalization of ferroportin through the established ferroportin degradation pathway. Furthermore, holo-Tf directly binds to ferroportin, whereas apo-Tf directly binds to hephaestin. Only pathological levels of hepcidin disrupt the interaction between holo-Tf and ferroportin, and no amount of hepcidin disrupts the interaction between apo-Tf and hephaestin. The disruption of the holo-Tf and ferroportin interaction by hepcidin is due to hepcidin's ability to rapidly internalize ferroportin compared to holo-Tf. Conclusions These novel findings provide a molecular mechanism for apo- and holo-Tf regulation of iron release from endothelial cells. They further demonstrate how hepcidin impacts these protein-protein interactions, and offer a model for how holo-Tf and hepcidin corporate to suppress iron release. We have established a more thorough understanding of the mechanisms behind iron release regulation with great clinical impact for a variety of neurological conditions in which iron release is dysregulated.
Collapse
|
Preprint |
2 |
|
15
|
Shenoy G, Khunsriraksakul C, Palsa K, Khristov V, Lathia J, Barnholtz-Sloan J, Connor J. EPID-04. IMPACT OF SEX DIFFERENCES IN IRON SUPPLEMENTATION AND OUTCOMES IN ANEMIC GLIOBLASTOMA PATIENTS. Neuro Oncol 2022. [PMCID: PMC9660350 DOI: 10.1093/neuonc/noac209.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
We performed a retrospective sex-stratified analysis on 1750 histologically confirmed surgical glioblastoma patients (737 female, 1013 male) diagnosed between January 1, 2000 – January 1, 2020 in the TriNetX Research Network. Among 737 female glioblastoma patients, 140 (18.99%) were classified as anemic (defined as having mean 5-year-post-diagnosis hemoglobin levels < 12 g/dL). Among 1013 male patients, 177 (17.4%) were classified as anemic (mean 5-year-post-diagnosis hemoglobin levels < 13 g/dL). Of the 140 anemic female patients, 30 (21.4%) received iron supplementation whereas 28 (15.8%) of 177 anemic male patients received iron supplementation. Anemic female patients receiving iron supplementation were on average younger than anemic female patients who did not receive supplementation (mean age at diagnosis (SD): 59.08 vs. 64.87, p = 0.037), however no statistically significant differences in presence of chemotherapy administration, radiation administration, or Charlson comorbidity index (CCI) were detected. Anemic male patients receiving iron supplementation had no significant difference in mean age at diagnosis, chemotherapy administration, radiation administration, or CCI compared to anemic male patients not receiving iron supplementation. Kaplan-Meier analysis revealed that iron supplementation in anemic female patients was associated with prolonged overall median survival (536 vs. 361 days, p = 0.03) whereas iron supplementation in anemic male patients was not associated with any significant increase in overall survival (392 vs. 361 days, p = 0.89). Multivariate analysis using a Cox proportional hazards model adjusted for mean 5-year-post-diagnosis hemoglobin levels, age at diagnosis, chemotherapy administration, radiation administration, and CCI revealed that iron supplementation was associated with improved survival in anemic female patients (HR: 0.53, 95% CI: 0.30 – 0.96) but not in anemic male patients (HR: 0.87, 95% CI: 0.54 – 1.43). These results highlight the importance of iron biology in glioblastoma and provide evidence for further investigation into iron supplementation of anemic glioblastoma patients.
Collapse
|
|
3 |
|
16
|
Palsa K, Neely EB, Baringer SL, Helmuth TB, Simpson IA, Connor JR. Brain iron acquisition depends on age and sex in iron-deficient mice. FASEB J 2024; 38:e23331. [PMID: 38031991 PMCID: PMC10691552 DOI: 10.1096/fj.202301596rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
Adequate and timely delivery of iron is essential for brain development. The uptake of transferrin-bound (Tf) iron into the brain peaks at the time of myelination, whereas the recently discovered H-ferritin (FTH1) transport of iron into the brain continues to increase beyond the peak in myelination. Here, we interrogate the impact of dietary iron deficiency (ID) on the uptake of FTH1- and Tf-bound iron. In the present study, we used C57BL/6J male and female mice at a developing (post-natal day (PND) 15) and adult age (PND 85). In developing mice, ID results in increased iron delivery from both FTH1 and Tf for both males and females. The amount of iron uptake from FTH1 was higher than the Tf and this difference between the iron delivery was much greater in females. In contrast, in the adult model, ID was associated with increased brain iron uptake by both FTH1 and Tf but only in the males. There was no increased uptake from either protein in the females. Moreover, transferrin receptor expression on the microvasculature as well as whole brain iron, and H and L ferritin levels revealed the male brains became iron deficient but not the female brains. Last, under normal dietary conditions, 55 Fe uptake was higher in the developing group from both delivery proteins than in the adult group. These results indicate that there are differences in iron acquisition between the developing and adult brain for FTH1 and Tf during nutritional ID and demonstrate a level of regulation of brain iron uptake that is age and sex-dependent.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
|
17
|
Helmuth TB, Kumari R, Palsa K, Neely EB, Slagle-Webb B, Simon SD, Connor JR. Common Mutation in the HFE Gene Modifies Recovery After Intracerebral Hemorrhage. Stroke 2023; 54:2886-2894. [PMID: 37750297 PMCID: PMC10996156 DOI: 10.1161/strokeaha.123.043799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is characterized by bleeding into the brain parenchyma. During an ICH, iron released from the breakdown of hemoglobin creates a cytotoxic environment in the brain through increased oxidative stress. Interestingly, the loss of iron homeostasis is associated with the pathological process of other neurological diseases. However, we have previously shown that the H63D mutation in the homeostatic iron regulatory (HFE) gene, prevalent in 28% of the White population in the United States, acts as a disease modifier by limiting oxidative stress. The following study aims to examine the effects of the murine homolog, H67D HFE, on ICH. METHODS An autologous blood infusion model was utilized to create an ICH in the right striatum of H67D and wild-type mice. The motor recovery of each animal was assessed by rotarod. Neurodegeneration was measured using fluorojade-B and mitochondrial damage was assessed by immunofluorescent numbers of CytC+ (cytochrome C) neurons and CytC+ astrocytes. Finally, the molecular antioxidant response to ICH was quantified by measuring Nrf2 (nuclear factor-erythroid 2 related factor), GPX4 (glutathione peroxidase 4), and FTH1 (H-ferritin) levels in the ICH-affected and nonaffected hemispheres via immunoblotting. RESULTS At 3 days post-ICH, H67D mice demonstrated enhanced performance on rotarod compared with wild-type animals despite no differences in lesion size. Additionally, H67D mice displayed higher levels of Nrf2, GPX4, and FTH1 in the ICH-affected hemisphere; however, these levels were not different in the contralateral, non-ICH-affected hemisphere. Furthermore, H67D mice showed decreased degenerated neurons, CytC+ Neurons, and CytC+ astrocytes in the perihematomal area. CONCLUSIONS Our data suggest that the H67D mutation induces a robust antioxidant response 3 days following ICH through Nrf2, GPX4, and FTH1 activation. This activation could explain the decrease in degenerated neurons, CytC+ neurons, and CytC+ astrocytes in the perihematomal region, leading to the improved motor recovery. Based on this study, further investigation into the mechanisms of this neuroprotective response and the effects of the H63D HFE mutation in a population of patients with ICH is warranted.
Collapse
|
research-article |
2 |
|