1
|
Dergilev K, Tsokolaeva Z, Makarevich P, Beloglazova I, Zubkova E, Boldyreva M, Ratner E, Dyikanov D, Menshikov M, Ovchinnikov A, Ageev F, Parfyonova Y. C-Kit Cardiac Progenitor Cell Based Cell Sheet Improves Vascularization and Attenuates Cardiac Remodeling following Myocardial Infarction in Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3536854. [PMID: 30046593 PMCID: PMC6036839 DOI: 10.1155/2018/3536854] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 01/16/2023]
Abstract
The adult heart contains small populations of multipotent cardiac progenitor cells (CPC) that present a convenient and efficient resource for treatment of myocardial infarction. Several clinical studies of direct CPC delivery by injection have already been performed but showed low engraftment rate that limited beneficial effects of procedure. «Cell sheet» technology has been developed to facilitate longer retention of grafted cells and show new directions for cell-based therapy using this strategy. In this study we hypothesized that СPC-based cell sheet transplantation could improve regeneration after myocardial infarction. We demonstrated that c-kit+ CPC were able to form cell sheets on temperature-responsive surfaces. Cell sheet represented a well-organized structure, in which CPC survived, retained ability to proliferate, expressed progenitor cell marker Gata-4 formed connexin-43+ gap junctions, and were surrounded by significant amount of extracellular matrix proteins. Transplantation of cell sheets after myocardial infarction resulted in CPC engraftment as well as their proliferation, migration, and differentiation; cell sheets also stimulated neovascularization and cardiomyocyte proliferation in underlining myocardium and ameliorated left ventricular remodeling. Obtained data strongly supported potential use of CPC sheet transplantation for repair of damaged heart.
Collapse
|
research-article |
7 |
33 |
2
|
Dergilev K, Tsokolaeva Z, Boldyreva M, Beloglazova I, Zubkova E, Parfyonova Y. 447. Notch Activation Enchances Vascular Lineage Commitment of Cardiac Stem Cells. Mol Ther 2016. [DOI: 10.1016/s1525-0016(16)33256-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
|
9 |
1 |
3
|
Beloglazova I, Stepanova V, Zubkova E, Dergilev K, Koptelova N, Tyurin-Kuzmin PA, Dyikanov D, Plekhanova O, Cines DB, Mazar AP, Parfyonova Y. Mesenchymal stromal cells enhance self-assembly of a HUVEC tubular network through uPA-uPAR/VEGFR2/integrin/NOTCH crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119157. [PMID: 34619163 DOI: 10.1016/j.bbamcr.2021.119157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022]
Abstract
Endothelial cells (ECs) degrade the extracellular matrix of vessel walls and contact surrounding cells to facilitate migration during angiogenesis, leading to formation of an EC-tubular network (ETN). Mesenchymal stromal cells (MSC) support ETN formation when co-cultured with ECs, but the mechanism is incompletely understood. We examined the role of the urokinase-type plasminogen activator (uPA) system, i.e. the serine protease uPA, its inhibitor PAI-1, receptor uPAR/CD87, clearance by the low-density lipoprotein receptor-related protein (LRP1) and their molecular partners, in the formation of ETNs supported by adipose tissue-derived MSC. Co-culture of human umbilical vein ECs (HUVEC) with MSC increased mRNA expression levels of uPAR, MMP14, VEGFR2, TGFβ1, integrin β3 and Notch pathway components (Notch1 receptor and ligands: Dll1, Dll4, Jag1) in HUVECs and uPA, uPAR, TGFβ1, integrin β3, Jag1, Notch3 receptor in MSC. Inhibition at several steps in the activation process indicates that uPA, uPAR and LRP1 cross-talk with αv-integrins, VEGFR2 and Notch receptors/ligands to mediate ETN formation in HUVEC-MSC co-culture. The urokinase system mediates ETN formation through the coordinated action of uPAR, uPA's catalytic activity, its binding to uPAR and its nuclear translocation. These studies identify potential targets to help control aberrant angiogenesis with minimal impact on healthy vasculature.
Collapse
|
|
4 |
1 |
4
|
Michurina S, Goltseva Y, Ratner E, Dergilev K, Shestakova E, Minniakhmetov I, Rumyantsev S, Stafeev I, Shestakova M, Parfyonova Y. Artificial intelligence-enabled lipid droplets quantification: Comparative analysis of NIS-elements Segment.ai and ZeroCostDL4Mic StarDist networks. Methods 2025; 237:9-18. [PMID: 40023351 DOI: 10.1016/j.ymeth.2025.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/29/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
Lipid droplets (LDs) are dynamic organelles that are present in almost all cell types, with a particularly high prevalence in adipocytes. The phenotype of LDs in these cells reflects their maturity, metabolic activity and function. Although LDs quantification in adipocytes is significant for understanding the origins of obesity and associated complications, it remains challenging and requires the implementation of computer science innovations. This article outlines a practical workflow for application of Segment.ai neural network from the commercial software NIS-Elements and the open-source StarDist Jupyter notebook from the ZeroCostDL4Mic platform for the analysis of LDs number and morphology. To generate a training dataset, 3T3-L1 cells were differentiated into adipocytes and stained with lipophilic dye BODIPY493/503. Subsequently, confocal live cell images were acquired, annotated and used for training. As an example task, deep learning models were tested on their ability to detect LDs enlargement on images of adipocytes with inhibited lipolysis. We demonstrated that both Segment.ai and StarDist models are capable of accurately recognising LDs on microphotographs, thereby significantly accelerating the processing of imaging data. The advantage of the Segment.ai model is its integration into NIS-Elements General Analysis 3, which performs quantitative and statistical data interpretation. Alternatively, StarDist is a more accessible and transparent tool, enabling precise model evaluation. In conclusion, both created approaches have the potential to accelerate the exploration of LDs dynamics, thus paving the way for further insights into how these organelles regulate energy homeostasis and contribute to the development of metabolic abnormalities.
Collapse
|
Comparative Study |
1 |
1 |
5
|
Dergilev K, Zubkova E, Guseva A, Tsokolaeva Z, Goltseva Y, Beloglazova I, Ratner E, Andreev A, Partigulov S, Lepilin M, Menshikov M, Parfyonova Y. Tumor Necrosis Factor-Alpha Induces Proangiogenic Profiling of Cardiosphere-Derived Cell Secretome and Increases Its Ability to Stimulate Angiogenic Properties of Endothelial Cells. Int J Mol Sci 2023; 24:16575. [PMID: 38068898 PMCID: PMC10706276 DOI: 10.3390/ijms242316575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Ischemic heart disease and its complications, such as myocardial infarction and heart failure, are the leading causes of death in modern society. The adult heart innately lacks the capacity to regenerate the damaged myocardium after ischemic injury. Multiple lines of evidence indicated that stem-cell-based transplantation is one of the most promising treatments for damaged myocardial tissue. Different kinds of stem cells have their advantages for treating ischemic heart disease. One facet of their mechanism is the paracrine effect of the transplanted cells. Particularly promising are stem cells derived from cardiac tissue per se, referred to as cardiosphere-derived cells (CDCs), whose therapeutic effect is mediated by the paracrine mechanism through secretion of multiple bioactive molecules providing immunomodulatory, angiogenic, anti-fibrotic, and anti-inflammatory effects. Although secretome-based therapies are increasingly being used to treat various cardiac pathologies, many obstacles remain because of population heterogeneity, insufficient understanding of potential modulating compounds, and the principles of secretome regulation, which greatly limit the feasibility of this technology. In addition, components of the inflammatory microenvironment in ischemic myocardium may influence the secretome content of transplanted CDCs, thus altering the efficacy of cell therapy. In this work, we studied how Tumor necrosis factor alpha (TNFa), as a key component of the pro-inflammatory microenvironment in damaged myocardium from ischemic injury and heart failure, may affect the secretome content of CDCs and their angiogenic properties. We have shown for the first time that TNFa may act as a promising compound modulating the CDC secretome, which induces its profiling to enhance proangiogenic effects on endothelial cells. These results allow us to elucidate the underlying mechanisms of the impact of the inflammatory microenvironment on transplanted CDCs and may contribute to the optimization of CDC efficiency and the development of the technology for producing the CDC secretome with enhanced proangiogenic properties for cell-free therapy.
Collapse
|
research-article |
2 |
|
6
|
Dergilev K, Tsokolaeva Z, Beloglazova I, Zubkova E, Boldyreva M, Ratner E, Menshikov M, Parfyonova YE. P1852Epicardial delivery of cardiac mesenchymal progenitor cell micrografts promotes cardiogenesis and suppresses negative cardiac remodeling: early and long term follow-ups. Eur Heart J 2018. [DOI: 10.1093/eurheartj/ehy565.p1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
|
7 |
|
7
|
Zubkova E, Dergilev K, Beloglazova I, Kalinin A, Guseva A, Andreev A, Partigulov S, Lepilin M, Menshikov M, Parfyonova Y. Paracrine Responses of Cardiosphere-Derived Cells to Cytokines and TLR Ligands: A Comparative Analysis. Int J Mol Sci 2023; 24:17278. [PMID: 38139105 PMCID: PMC10743612 DOI: 10.3390/ijms242417278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Cardiosphere-derived cells (CDCs) are currently being evaluated in clinical trials as a potential therapeutic tool for regenerative medicine. The effectiveness of transplanted CDCs is largely attributed to their ability to release beneficial soluble factors to enhance therapeutic effects. An emerging area of research is the pretreatment of stem cells, including CDCs, with various cytokines to improve their therapeutic properties. This strategy aims to enhance their survival, proliferation, differentiation, and paracrine activities after transplantation. In our study, we investigated the differential effects of various cytokines and TLR ligands on the secretory phenotype of human CDCs. Using a magnetic bead-based immunoassay, we analyzed the CDCs-conditioned media for 41 cytokines and growth factors and detected the presence of 21 cytokines. We found that CDC incubation with lipopolysaccharide, a TLR4 ligand, and the cytokine combination of TNF/IFN significantly increased the secretion of most of the cytokines detected. Specifically, we observed an increased secretion and gene expression of IP10, MCP3, IL8, and VEGFA. In contrast, the TLR3 ligand polyinosinic-polycytidylic acid and TGF-beta had minimal effects on CDC cytokine secretion. Additionally, TNF/IFN, but not LPS, enhanced ICAM1 expression. Our findings offer new insights into the role of cytokines in potentially modulating the biology and regenerative potential of CDCs.
Collapse
|
research-article |
2 |
|
8
|
Dergilev K, Tsokolaeva Z, Kanevskaya D, Makarevich P, Beloglazova I, Zubkova E, Menshikov M, Parfyonova Y. P2548Notch signaling is involved in regulation of cardiac stem cells functions in cell sheet after epicardial implantation. Eur Heart J 2017. [DOI: 10.1093/eurheartj/ehx502.p2548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
|
8 |
|
9
|
Dergilev K, Gureenkov A, Parfyonova Y. Autophagy as a Guardian of Vascular Niche Homeostasis. Int J Mol Sci 2024; 25:10097. [PMID: 39337582 PMCID: PMC11432168 DOI: 10.3390/ijms251810097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing burden of vascular dysfunction on healthcare systems worldwide results in higher morbidity and mortality rates across pathologies, including cardiovascular diseases. Vasculopathy is suggested to be caused by the dysregulation of vascular niches, a microenvironment of vascular structures comprising anatomical structures, extracellular matrix components, and various cell populations. These elements work together to ensure accurate control of the vascular network. In recent years, autophagy has been recognized as a crucial regulator of the vascular microenvironment responsible for maintaining basic cell functions such as proliferation, differentiation, replicative senescence, and apoptosis. Experimental studies indicate that autophagy activation can be enhanced or inhibited in various pathologies associated with vascular dysfunction, suggesting that autophagy plays both beneficial and detrimental roles. Here, we review and assess the principles of autophagy organization and regulation in non-tumor vascular niches. Our analysis focuses on significant figures in the vascular microenvironment, highlighting the role of autophagy and summarizing evidence that supports the systemic or multiorgan nature of the autophagy effects. Finally, we discuss the critical organizational and functional aspects of the vasculogenic niche, specifically in relation to autophagy. The resulting dysregulation of the vascular microenvironment contributes to the development of vascular dysfunction.
Collapse
|
Review |
1 |
|
10
|
Dergilev K, Tsokolaeva Z, Goltseva Y, Beloglazova I, Ratner E, Parfyonova Y. Urokinase-Type Plasminogen Activator Receptor Regulates Prosurvival and Angiogenic Properties of Cardiac Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:15554. [PMID: 37958542 PMCID: PMC10650341 DOI: 10.3390/ijms242115554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
One of the largest challenges to the implementation of cardiac cell therapy is identifying selective reparative targets to enhance stem/progenitor cell therapeutic efficacy. In this work, we hypothesized that such a target could be an urokinase-type plasminogen activator receptor (uPAR)-a glycosyl-phosphatidyl-inositol-anchored membrane protein, interacting with urokinase. uPAR is able to form complexes with various transmembrane proteins such as integrins, activating intracellular signaling pathway and thus regulating multiple cell functions. We focused on studying the CD117+ population of cardiac mesenchymal progenitor cells (MPCs), expressing uPAR on their surface. It was found that the number of CD117+ MPCs in the heart of the uPAR-/- mice is lower, as well as their ability to proliferate in vitro compared with cells from wild-type animals. Knockdown of uPAR in CD117+ MPCs of wild-type animals was accompanied by a decrease in survival rate and Akt signaling pathway activity and by an increase in the level of caspase activity in these cells. That suggests the role of uPAR in supporting cell survival. After intramyocardial transplantation of uPAR(-) MPCs, reduced cell retention and angiogenesis stimulation were observed in mice with myocardial infarction model compared to uPAR(+) cells transplantation. Taken together, the present results appear to prove a novel mechanism of uPAR action in maintaining the survival and angiogenic properties of CD117+ MPCs. These results emphasize the importance of the uPAR as a potential pharmacological target for the regulation of reparative properties of myocardial mesenchymal progenitor cells.
Collapse
|
research-article |
2 |
|
11
|
Beloglazova I, Zubkova E, Dergilev K, Goltseva Y, Parfyonova Y. New Insight on 2D In Vitro Angiogenesis Models: All That Stretches Is Not a Tube. Cells 2022; 11:cells11203278. [PMID: 36291145 PMCID: PMC9600603 DOI: 10.3390/cells11203278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Highlights Abstract A Matrigel-based tube formation assay is a simple and widely accepted 2D angiogenesis model in vitro. Extracellular matrix (EM) proteins and growth factors (GFs) from MatrigelTM exclusively trigger endothelial cell (EC) tubular network (ETN) formation. Co-culture of ECs with mesenchymal stromal cells (MSCs) is another and more reliable in vitro angiogenesis assay. MSCs modulate ETN formation through intercellular interactions and as a supplier of EM and GFs. The aim of the present study was to compare the expression profile of ECs in both models. We revealed upregulation of the uPA, uPAR, Jagged1, and Notch2 genes in dividing/migrating ECs and for ECs in both experimental models at 19 h. The expression of endothelial–mesenchymal transition genes largely increased in co-cultured ECs whereas Notch and Hippo signaling pathway genes were upregulated in ECs on MatrigelTM. We showed that in the co-culture model, basement membrane (BM) deposition is limited only to cell-to-cell contacts in contrast to MatrigelTM, which represents by itself fully pre-assembled BM matrix. We suggest that ETN in a co-culture model is still in a dynamic process due to immature BM whereas ECs in the MatrigelTM assay seem to be at the final stage of ETN formation.
Collapse
|
|
3 |
|
12
|
Rubina K, Sysoeva V, Gmyzina A, Akchurin R, Tkachuk V, Parfyonova Y, Dergilev K. C-kit positive cells of the heart consists of mast cells and cardiac progenitor cells populations. J Stem Cells Regen Med 2010; 6:128. [PMID: 24693138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
|
15 |
|