1
|
Gale DP, de Jorge EG, Cook HT, Martinez-Barricarte R, Hadjisavvas A, McLean AG, Pusey CD, Pierides A, Kyriacou K, Athanasiou Y, Voskarides K, Deltas C, Palmer A, Frémeaux-Bacchi V, de Cordoba SR, Maxwell PH, Pickering MC. Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet 2010; 376:794-801. [PMID: 20800271 PMCID: PMC2935536 DOI: 10.1016/s0140-6736(10)60670-8] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Complement is a key component of the innate immune system, and variation in genes that regulate its activation is associated with renal and other disease. We aimed to establish the genetic basis for a familial disorder of complement regulation associated with persistent microscopic haematuria, recurrent macroscopic haematuria, glomerulonephritis, and progressive renal failure. METHODS We sought patients from the West London Renal and Transplant Centre (London, UK) with unusual renal disease and affected family members as a method of identification of new genetic causes of kidney disease. Two families of Cypriot origin were identified in which renal disease was consistent with autosomal dominant transmission and renal biopsy of at least one individual showed C3 glomerulonephritis. A mutation was identified via a genome-wide linkage study and candidate gene analysis. A PCR-based diagnostic test was then developed and used to screen for the mutation in population-based samples and in individuals and families with renal disease. FINDINGS Occurrence of familial renal disease cosegregated with the same mutation in the complement factor H-related protein 5 gene (CFHR5). In a cohort of 84 Cypriots with unexplained renal disease, four had mutation in CFHR5. Overall, we identified 26 individuals with the mutation and evidence of renal disease from 11 ostensibly unrelated kindreds, including the original two families. A mutant CFHR5 protein present in patient serum had reduced affinity for surface-bound complement. We term this renal disease CFHR5 nephropathy. INTERPRETATION CFHR5 nephropathy accounts for a substantial burden of renal disease in patients of Cypriot origin and can be diagnosed with a specific molecular test. The high risk of progressive renal disease in carriers of the CFHR5 mutation implies that isolated microscopic haematuria or recurrent macroscopic haematuria should not be regarded as a benign finding in individuals of Cypriot descent. FUNDING UK Medical Research Council and Wellcome Trust.
Collapse
|
research-article |
15 |
249 |
2
|
Voskarides K, Damianou L, Neocleous V, Zouvani I, Christodoulidou S, Hadjiconstantinou V, Ioannou K, Athanasiou Y, Patsias C, Alexopoulos E, Pierides A, Kyriacou K, Deltas C. COL4A3/COL4A4 mutations producing focal segmental glomerulosclerosis and renal failure in thin basement membrane nephropathy. J Am Soc Nephrol 2007; 18:3004-16. [PMID: 17942953 DOI: 10.1681/asn.2007040444] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mutations in the COL4A3/COL4A4 genes of type IV collagen have been found in approximately 40% of cases of thin basement membrane nephropathy, which is characterized by microscopic hematuria and is classically thought to cause proteinuria and chronic renal failure rarely. Here we report our observations of 116 subjects from 13 Cypriot families clinically affected with thin basement membrane nephropathy. These families first came to our attention because they segregated microscopic hematuria, mild proteinuria, and variable degrees of renal impairment, but a dual diagnosis of focal segmental glomerulosclerosis (FSGS) and thin basement membrane nephropathy was made in 20 biopsied cases. Molecular studies identified founder mutations in both COL4A3 and COL4A4 genes in 10 families. None of 82 heterozygous patients had any extrarenal manifestations, supporting the diagnosis of thin basement membrane nephropathy. During follow-up of up to three decades, 31 of these 82 patients (37.8%) developed chronic renal failure and 16 (19.5%) reached end-stage renal disease. Mutations G1334E and G871C were detected in seven and three families, respectively, and were probably introduced by founders. We conclude that these particular COL4A3/COL4A4 mutations either predispose some patients to FSGS and chronic renal failure, or that thin basement membrane nephropathy sometimes coexists with another genetic modifier that is responsible for FSGS and progressive renal failure. The findings presented here do not justify the labelling of thin basement membrane nephropathy as a benign condition with excellent prognosis.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
150 |
3
|
Athanasiou Y, Voskarides K, Gale DP, Damianou L, Patsias C, Zavros M, Maxwell PH, Cook HT, Demosthenous P, Hadjisavvas A, Kyriacou K, Zouvani I, Pierides A, Deltas C. Familial C3 glomerulopathy associated with CFHR5 mutations: clinical characteristics of 91 patients in 16 pedigrees. Clin J Am Soc Nephrol 2011; 6:1436-46. [PMID: 21566112 DOI: 10.2215/cjn.09541010] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Complement factor H and related proteins (CFHR) are key regulators of the alternative complement pathway, where loss of function mutations lead to a glomerulopathy with isolated mesangial C3 deposits without immunoglobulins. Gale et al. (12) reported on 26 patients with the first familial, hematuric glomerulopathy caused by a founder mutation in the CFHR5 gene in patients of Cypriot descent living in the United Kingdom. CFHR5 nephropathy is clinically characterized by continuous microscopic hematuria whereas some patients present with additional episodes of synpharyngitic macrohematuria, associated with infection and pyrexia. A subgroup of patients, particularly men, develop additional proteinuria, hypertension, and chronic renal disease or ESRD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We herewith expand significantly on the study by Gale et al., reporting on histologic, molecular, and clinical findings in 91 patients from 16 families with the same founder mutation. RESULTS Eighty-two patients (90%) exhibited microscopic hematuria; 51 (62%), exhibited only microscopic hematuria, whereas the remaining 31 additionally had proteinuria (38%); 28 proteinuric patients developed chronic renal failure (CRF). Among carriers of CFHR5 mutation aged >50 years, 80% of the men and 21% of the women developed CRF; 18 developed ESRD (14 men [78%], 4 women [22%]). CONCLUSIONS The diagnosis of CFHR5-related, isolated C3 glomerulopathy was established in 2009 using newly described mutation analysis after decades of follow-up with unclear diagnoses, occasionally confused with IgA nephropathy. This larger patient cohort establishes the clinical course, significant variable expressivity, and marked gender difference regarding the development of CRF and ESRD.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
113 |
4
|
Pierides A, Voskarides K, Athanasiou Y, Ioannou K, Damianou L, Arsali M, Zavros M, Pierides M, Vargemezis V, Patsias C, Zouvani I, Elia A, Kyriacou K, Deltas C. Clinico-pathological correlations in 127 patients in 11 large pedigrees, segregating one of three heterozygous mutations in the COL4A3/ COL4A4 genes associated with familial haematuria and significant late progression to proteinuria and chronic kidney disease from focal segmental glomerulosclerosis. Nephrol Dial Transplant 2009; 24:2721-9. [PMID: 19357112 DOI: 10.1093/ndt/gfp158] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Heterozygous mutations in the COL4A3/ COL4A4 genes are currently thought to be responsible for familial benign microscopic haematuria and maintenance of normal long-term kidney function. METHODS We report on 11 large Cypriot pedigrees with three such mutations. A total of 236 at-risk family members were genetically studied, and 127 (53.8%) carried a heterozygous mutation. Clinico-pathological correlations were available in all of these patients. Renal biopsies in 21 of these patients all showed various stages of focal, segmental glomerulosclerosis (FSGS). Thirteen of these biopsies were also studied with EM and showed thinning of the glomerular basement membrane. RESULTS Mutation G1334E (COL4A3) was found in six pedigrees, mutation G871C (COL4A3) in four and mutation 3854delG (COL4A4) in one pedigree. Clinical and laboratory correlations in all 127 mutation carriers (MC) showed that microscopic haematuria was the only urinary finding in patients under age 30. The prevalence of 'haematuria alone' fell to 66% between 31 and 50 years, to 30% between 51 and 70 and to 23% over age 71. Proteinuria with CRF developed on top of haematuria in 8% of all MC between 31 and 50 years, to 25% between 51 and 70 years and to 50% over 71 years. Altogether 18 of these 127 MC (14%) developed ESRD at a mean age of 60 years. Two members with different mutations married, and two of their children inherited both mutations and developed adolescent, autosomal recessive Alport syndrome (ATS), confirming that these mutations are pathogenic. CONCLUSIONS Our data confirm for the first time a definite association of heterozygous COL4A3/COL4A4 mutations with familial microscopic haematuria, thin basement membrane nephropathy and the late development of familial proteinuria, CRF, and ESRD, due to FSGS, indicating that the term 'benign familial haematuria' is a misnomer, at least in this cohort. A strong hypothesis for a causal relationship between these mutations and FSGS is also made. Benign familial haematuria may not be so benign as commonly thought.
Collapse
|
Journal Article |
16 |
106 |
5
|
Mizzi C, Dalabira E, Kumuthini J, Dzimiri N, Balogh I, Başak N, Böhm R, Borg J, Borgiani P, Bozina N, Bruckmueller H, Burzynska B, Carracedo A, Cascorbi I, Deltas C, Dolzan V, Fenech A, Grech G, Kasiulevicius V, Kádaši Ľ, Kučinskas V, Khusnutdinova E, Loukas YL, Macek M, Makukh H, Mathijssen R, Mitropoulos K, Mitropoulou C, Novelli G, Papantoni I, Pavlovic S, Saglio G, Setric J, Stojiljkovic M, Stubbs AP, Squassina A, Torres M, Turnovec M, van Schaik RH, Voskarides K, Wakil SM, Werk A, del Zompo M, Zukic B, Katsila T, Lee MTM, Motsinger-Rief A, Mc Leod HL, van der Spek PJ, Patrinos GP. A European Spectrum of Pharmacogenomic Biomarkers: Implications for Clinical Pharmacogenomics. PLoS One 2016; 11:e0162866. [PMID: 27636550 PMCID: PMC5026342 DOI: 10.1371/journal.pone.0162866] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/30/2016] [Indexed: 12/26/2022] Open
Abstract
Pharmacogenomics aims to correlate inter-individual differences of drug efficacy and/or toxicity with the underlying genetic composition, particularly in genes encoding for protein factors and enzymes involved in drug metabolism and transport. In several European populations, particularly in countries with lower income, information related to the prevalence of pharmacogenomic biomarkers is incomplete or lacking. Here, we have implemented the microattribution approach to assess the pharmacogenomic biomarkers allelic spectrum in 18 European populations, mostly from developing European countries, by analyzing 1,931 pharmacogenomics biomarkers in 231 genes. Our data show significant inter-population pharmacogenomic biomarker allele frequency differences, particularly in 7 clinically actionable pharmacogenomic biomarkers in 7 European populations, affecting drug efficacy and/or toxicity of 51 medication treatment modalities. These data also reflect on the differences observed in the prevalence of high-risk genotypes in these populations, as far as common markers in the CYP2C9, CYP2C19, CYP3A5, VKORC1, SLCO1B1 and TPMT pharmacogenes are concerned. Also, our data demonstrate notable differences in predicted genotype-based warfarin dosing among these populations. Our findings can be exploited not only to develop guidelines for medical prioritization, but most importantly to facilitate integration of pharmacogenomics and to support pre-emptive pharmacogenomic testing. This may subsequently contribute towards significant cost-savings in the overall healthcare expenditure in the participating countries, where pharmacogenomics implementation proves to be cost-effective.
Collapse
|
Journal Article |
9 |
80 |
6
|
Pieri M, Stefanou C, Zaravinos A, Erguler K, Stylianou K, Lapathitis G, Karaiskos C, Savva I, Paraskeva R, Dweep H, Sticht C, Anastasiadou N, Zouvani I, Goumenos D, Felekkis K, Saleem M, Voskarides K, Gretz N, Deltas C. Evidence for activation of the unfolded protein response in collagen IV nephropathies. J Am Soc Nephrol 2013; 25:260-75. [PMID: 24262798 DOI: 10.1681/asn.2012121217] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Thin-basement-membrane nephropathy (TBMN) and Alport syndrome (AS) are progressive collagen IV nephropathies caused by mutations in COL4A3/A4/A5 genes. These nephropathies invariably present with microscopic hematuria and frequently progress to proteinuria and CKD or ESRD during long-term follow-up. Nonetheless, the exact molecular mechanisms by which these mutations exert their deleterious effects on the glomerulus remain elusive. We hypothesized that defective trafficking of the COL4A3 chain causes a strong intracellular effect on the cell responsible for COL4A3 expression, the podocyte. To this end, we overexpressed normal and mutant COL4A3 chains (G1334E mutation) in human undifferentiated podocytes and tested their effects in various intracellular pathways using a microarray approach. COL4A3 overexpression in the podocyte caused chain retention in the endoplasmic reticulum (ER) that was associated with activation of unfolded protein response (UPR)-related markers of ER stress. Notably, the overexpression of normal or mutant COL4A3 chains differentially activated the UPR pathway. Similar results were observed in a novel knockin mouse carrying the Col4a3-G1332E mutation, which produced a phenotype consistent with AS, and in biopsy specimens from patients with TBMN carrying a heterozygous COL4A3-G1334E mutation. These results suggest that ER stress arising from defective localization of collagen IV chains in human podocytes contributes to the pathogenesis of TBMN and AS through activation of the UPR, a finding that may pave the way for novel therapeutic interventions for a variety of collagenopathies.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
71 |
7
|
Deltas C, Pierides A, Voskarides K. Molecular genetics of familial hematuric diseases. Nephrol Dial Transplant 2013; 28:2946-60. [PMID: 24046192 DOI: 10.1093/ndt/gft253] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The familial hematuric diseases are a genetically heterogeneous group of monogenic conditions, caused by mutations in one of several genes. The major genes involved are the following: (i) the collagen IV genes COL4A3/A4/A5 that are expressed in the glomerular basement membranes (GBM) and are responsible for the most frequent forms of microscopic hematuria, namely Alport syndrome (X-linked or autosomal recessive) and thin basement membrane nephropathy (TBMN). (ii) The FN1 gene, expressed in the glomerulus and responsible for a rare form of glomerulopathy with fibronectin deposits (GFND). (iii) CFHR5 gene, a recently recognized regulator of the complement alternative pathway and mutated in a recently revisited form of inherited C3 glomerulonephritis (C3GN), characterized by isolated C3 deposits in the absence of immune complexes. A hallmark feature of all conditions is the age-dependent penetrance and a broad phenotypic heterogeneity in the sense that subsets of patients progress to added proteinuria or proteinuria and chronic renal failure that may or may not lead to end-stage kidney disease (ESKD) anywhere between the second and seventh decade of life. In addition to other excellent laboratory tools that assist the clinician in reaching the correct diagnosis, the molecular analysis emerges as the gold standard in establishing the diagnosis in many cases of doubt due to equivocal findings that complicate the differential diagnosis. Recent work led to the description of candidate genetic modifiers which confer a variable risk for progressing to chronic renal failure when co-inherited on the background of a primary glomerulopathy. Finally, more families are still waiting to be studied and more genes to be mapped and cloned that are responsible for other forms of heritable hematuric diseases. The study of such genes and their protein products will likely shed more light on the structure and function of the glomerular filtration barrier and other important glomerular components.
Collapse
|
Review |
12 |
50 |
8
|
Papazachariou L, Demosthenous P, Pieri M, Papagregoriou G, Savva I, Stavrou C, Zavros M, Athanasiou Y, Ioannou K, Patsias C, Panagides A, Potamitis C, Demetriou K, Prikis M, Hadjigavriel M, Kkolou M, Loukaidou P, Pastelli A, Michael A, Lazarou A, Arsali M, Damianou L, Goutziamani I, Soloukides A, Yioukas L, Elia A, Zouvani I, Polycarpou P, Pierides A, Voskarides K, Deltas C. Frequency of COL4A3/COL4A4 mutations amongst families segregating glomerular microscopic hematuria and evidence for activation of the unfolded protein response. Focal and segmental glomerulosclerosis is a frequent development during ageing. PLoS One 2014; 9:e115015. [PMID: 25514610 PMCID: PMC4267773 DOI: 10.1371/journal.pone.0115015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/17/2014] [Indexed: 12/29/2022] Open
Abstract
Familial glomerular hematuria(s) comprise a genetically heterogeneous group of conditions which include Alport Syndrome (AS) and thin basement membrane nephropathy (TBMN). Here we investigated 57 Greek-Cypriot families presenting glomerular microscopic hematuria (GMH), with or without proteinuria or chronic kidney function decline, but excluded classical AS. We specifically searched the COL4A3/A4 genes and identified 8 heterozygous mutations in 16 families (28,1%). Eight non-related families featured the founder mutation COL4A3-p.(G1334E). Renal biopsies from 8 patients showed TBMN and focal segmental glomerulosclerosis (FSGS). Ten patients (11.5%) reached end-stage kidney disease (ESKD) at ages ranging from 37-69-yo (mean 50,1-yo). Next generation sequencing of the patients who progressed to ESKD failed to reveal a second mutation in any of the COL4A3/A4/A5 genes, supporting that true heterozygosity for COL4A3/A4 mutations predisposes to CRF/ESKD. Although this could be viewed as a milder and late-onset form of autosomal dominant AS, we had no evidence of ultrastructural features or extrarenal manifestations that would justify this diagnosis. Functional studies in cultured podocytes transfected with wild type or mutant COL4A3 chains showed retention of mutant collagens and differential activation of the unfolded protein response (UPR) cascade. This signifies the potential role of the UPR cascade in modulating the final phenotype in patients with collagen IV nephropathies.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
49 |
9
|
Deltas C, Savva I, Voskarides K, Papazachariou L, Pierides A. Carriers of Autosomal Recessive Alport Syndrome with Thin Basement Membrane Nephropathy Presenting as Focal Segmental Glomerulosclerosis in Later Life. Nephron Clin Pract 2015. [PMID: 26201269 DOI: 10.1159/000435789] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Collagen IV nephropathies (COL4Ns) comprise benign familial microscopic hematuria, thin basement membrane nephropathy (TBMN), X-linked Alport syndrome (AS) and also autosomal recessive and dominant AS. Apart from the X-linked form of AS, which is caused by hemizygous mutations in the COL4A5 gene, the other entities are caused by mutations in the COL4A3 or COL4A4 genes. The diagnosis of these conditions used to be based on clinical and/or histological findings of renal biopsies, but it is the new molecular genetics approach that revolutionised their investigation and proved particularly instrumental, especially, in many not so clear-cut cases. More recently, the spectrum of COL4N has expanded to include late onset focal segmental glomerulosclerosis (FSGS) that develops on top of TBMN in later life. Also, other reports showed that some patients with a primary diagnosis of familial FSGS proved to have variants in COL4 genes. In the presence of a renal biopsy picture of FSGS and in the absence of either electron microscopy studies or molecular genetic studies that point to TBMN and COL4N, the patient and his family may be mistakenly diagnosed with hereditary FSGS leading to unnecessary further investigations, erroneous family counselling and improper corticosteroid treatment. TBMN is a frequent finding in the general population, and according to several recent reports, it may be the underlying cause and the explanation for many familial and sporadic cases of late-onset FSGS with non-nephrotic proteinuria. This is an important new finding that needs widespread recognition. It is anticipated that the molecular genetic analysis with next generation sequencing will certainly offer timely correct diagnosis.
Collapse
|
Review |
10 |
47 |
10
|
Voskarides K, Arsali M, Athanasiou Y, Elia A, Pierides A, Deltas C. Evidence that NPHS2-R229Q predisposes to proteinuria and renal failure in familial hematuria. Pediatr Nephrol 2012; 27:675-9. [PMID: 22228437 DOI: 10.1007/s00467-011-2084-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND Familial hematuria (FH) is associated with at least two pathological entities: thin basement membrane nephropathy (TBMN), caused by heterozygous COL4A3/COL4A4 mutations, and C3 nephropathy caused by CFHR5 mutations. It is now known that TBMN patients develop proteinuria and changes of focal segmental glomerulosclerosis when biopsied. End-stage kidney disease (ESKD) is observed in 20% of carriers, at ages 50-70. A similar progression is observed in CFHR5 nephropathy. Recent evidence suggests that NPHS2-R229Q, a podocin polymorphism, may contribute to proteinuria in TBMN and to micro-albuminuria in the general population. CASE-DIAGNOSIS/TREATMENT NPHS2-R229Q was screened in a Cypriot FH cohort. 102 TBMN patients with three known COL4 mutations and 45 CFHR5 male patients with a single mutation were categorized as "Mild" or "Severe", based on the presence of microhematuria only, or proteinuria and chronic kidney disease. Nine R229Q carriers were found in the "Severe" category and none in the "Mild" (p=0.010 for genotypic association; p=0.043 for allelic association, adjusted for patients' relatedness), thus supporting the possible contribution of 229Q allele in disease progress. CONCLUSIONS Our results offer more evidence that in patients with FH, NPHS2-R229Q predisposes to proteinuria and ESKD. R229Q may be a good prognostic marker for young hematuric patients.
Collapse
|
|
13 |
46 |
11
|
Papagregoriou G, Erguler K, Dweep H, Voskarides K, Koupepidou P, Athanasiou Y, Pierides A, Gretz N, Felekkis KN, Deltas C. A miR-1207-5p binding site polymorphism abolishes regulation of HBEGF and is associated with disease severity in CFHR5 nephropathy. PLoS One 2012; 7:e31021. [PMID: 22319602 PMCID: PMC3271095 DOI: 10.1371/journal.pone.0031021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 12/31/2011] [Indexed: 01/08/2023] Open
Abstract
Heparin binding epidermal growth factor (HBEGF) is expressed in podocytes and was shown to play a role in glomerular physiology. MicroRNA binding sites on the 3′UTR of HBEGF were predicted using miRWalk algorithm and followed by DNA sequencing in 103 patients diagnosed with mild or severe glomerulopathy. A single nucleotide polymorphism, miRSNP C1936T (rs13385), was identified at the 3′UTR of HBEGF that corresponds to the second base of the hsa-miR-1207-5p seed region. When AB8/13 undifferentiated podocytes were transfected with miRNA mimics of hsa-miR-1207-5p, the HBEGF protein levels were reduced by about 50%. A DNA fragment containing the miRSNP allele-1936C was cloned into the pMIR-Report Luciferase vector and co-transfected with miRNA mimics of hsa-miR-1207-5p into AB8/13 podocytes. In agreement with western blot data, this resulted in reduced luciferase expression demonstrating the ability of hsa-miR-1207-5p to directly regulate HBEGF expression. On the contrary, in the presence of the miRSNP 1936T allele, this regulation was abolished. Collectively, these results demonstrate that variant 1936T of this miRSNP prevents hsa-miR-1207-5p from down-regulating HBEGF in podocytes. We hypothesized that this variant has a functional role as a genetic modifier. To this end, we showed that in a cohort of 78 patients diagnosed with CFHR5 nephropathy (also known as C3-glomerulopathy), inheritance of miRSNP 1936T allele was significantly increased in the group demonstrating progression to chronic renal failure on long follow-up. No similar association was detected in a cohort of patients with thin basement membrane nephropathy. This is the first report associating a miRSNP as genetic modifier to a monogenic renal disorder.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
43 |
12
|
Voskarides K. Combination of 247 Genome-Wide Association Studies Reveals High Cancer Risk as a Result of Evolutionary Adaptation. Mol Biol Evol 2019; 35:473-485. [PMID: 29220501 PMCID: PMC5850495 DOI: 10.1093/molbev/msx305] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Analysis of GLOBOCAN-2012 data shows clearly here that cancer incidence worldwide is highly related with low average annual temperatures and extreme low temperatures. This applies for all cancers together or separately for many frequent or rare cancer types (all cancers P = 9.49×10-18). Supporting fact is that Inuit people, living at extreme low temperatures, have the highest cancer rates today. Hypothesizing an evolutionary explanation, 240 cancer genome-wide association studies, and seven genome-wide association studies for cold and high-altitude adaptation were combined. A list of 1,377 cancer-associated genes was created to initially investigate whether cold selected genes are enriched with cancer-associated genes. Among Native Americans, Inuit and Eskimos, the highest association was observed for Native Americans (P = 6.7×10-5). An overall or a meta-analysis approach confirmed further this result. Similar approach for three populations living at extreme high altitude, revealed high association for Andeans-Tibetans (P = 1.3×10-11). Overall analysis or a meta-analysis was also significant. A separate analysis showed special selection for tumor suppressor genes. These results can be viewed along with those of previous functional studies that showed that reduced apoptosis potential due to specific p53 variants (the most important tumor suppressor gene) is beneficial in high-altitude and cold environments. In conclusion, this study shows that genetic variants selected for adaptation at extreme environmental conditions can increase cancer risk later on age. This is in accordance with antagonistic pleiotropy hypothesis.
Collapse
|
Meta-Analysis |
6 |
39 |
13
|
Lazou A, Iliodromitis EK, Cieslak D, Voskarides K, Mousikos S, Bofilis E, Kremastinos DT. Ischemic but not mechanical preconditioning attenuates ischemia/reperfusion induced myocardial apoptosis in anaesthetized rabbits: the role of Bcl-2 family proteins and ERK1/2. Apoptosis 2007; 11:2195-204. [PMID: 17051325 DOI: 10.1007/s10495-006-0292-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Recent studies suggest that ischemic preconditioning (IPC) inhibits myocardial apoptosis after ischemia and reperfusion. This study aimed first, to examine whether short mechanical stretch with acute pressure overload (MPC), which has been shown to reduce infarct size after ischemia/reperfusion, mimics IPC in attenuating myocardial apoptosis and second, to evaluate whether induced cardioprotection involves modulation of the expression of the Bcl-2 family proteins and phosphorylation of prosurvival kinases. METHODS AND RESULTS A model of anaesthetized rabbit was used and the preconditioning protocol included one cycle of short ischemia/reperfusion, or short mechanical stretch with acute pressure overload. Preconditioning stimuli were equally effective in reducing the infarct size, determined after 4 h reperfusion. However, IPC but not MPC attenuated myocardial apoptosis. IPC restored the decreased expression of Bcl-2 and Bcl-xL observed in hearts subjected to ischemia and reperfusion only. Bax levels were not different among the groups. ERK1/2 were activated during reperfusion in both IPC and MPC groups. CONCLUSIONS The data provide further evidence that apoptosis and necrosis contribute independently to infarct size after ischemia and reperfusion. Inhibition of the myocardial apoptotic processes by IPC may involve modulation of the expression of anti-apoptotic proteins, Bcl-2 and Bcl-xL. ERK1/2 may be involved in the inhibition of both apoptosis and necrosis.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
39 |
14
|
Voskarides K, Papagregoriou G, Hadjipanagi D, Petrou I, Savva I, Elia A, Athanasiou Y, Pastelli A, Kkolou M, Hadjigavriel M, Stavrou C, Pierides A, Deltas C. COL4A5 and LAMA5 variants co-inherited in familial hematuria: digenic inheritance or genetic modifier effect? BMC Nephrol 2018; 19:114. [PMID: 29764427 PMCID: PMC5954460 DOI: 10.1186/s12882-018-0906-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/25/2017] [Accepted: 01/21/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND About 40-50% of patients with familial microscopic hematuria (FMH) caused by thin basement membrane nephropathy (TBMN) inherit heterozygous mutations in collagen IV genes (COL4A3, COL4A4). On long follow-up, the full phenotypic spectrum of these patients varies a lot, ranging from isolated MH or MH plus low-grade proteinuria to chronic renal failure of variable degree, including end-stage renal disease (ESRD). METHODS Here, we performed Whole Exome Sequencing (WES) in patients of six families, presenting with autosomal dominant FMH, with or without progression to proteinuria and loss of renal function, all previously found negative for severe collagen IV mutations. Hierarchical filtering of the WES data was performed, followed by mutation prediction analysis, Sanger sequencing and genetic segregation analysis. RESULTS In one family with four patients, we found evidence for the contribution of two co-inherited variants in two crucial genes expressed in the glomerular basement membrane (GBM); LAMA5-p.Pro1243Leu and COL4A5-p.Asp654Tyr. Mutations in COL4A5 cause classical X-linked Alport Syndrome, while rare mutations in the LAMA5 have been reported in patients with focal segmental glomerulosclerosis. The phenotypic spectrum of the patients includes hematuria, proteinuria, focal segmental glomerulosclerosis, loss of kidney function and renal cortical cysts. CONCLUSIONS A modifier role of LAMA5 on the background of a hypomorphic Alport syndrome causing mutation is a possible explanation of our findings. Digenic inheritance is another scenario, following the concept that mutations at both loci more accurately explain the spectrum of symptoms, but further investigation is needed under this concept. This is the third report linking a LAMA5 variant with human renal disease and expanding the spectrum of genes involved in glomerular pathologies accompanied by familial hematurias. The cystic phenotype overlaps with that of a mouse model, which carried a Lama5 hypomorphic mutation that caused severely reduced Lama5 protein levels and produced kidney cysts.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
34 |
15
|
Demosthenous P, Voskarides K, Stylianou K, Hadjigavriel M, Arsali M, Patsias C, Georgaki E, Zirogiannis P, Stavrou C, Daphnis E, Pierides A, Deltas C. X-linked Alport syndrome in Hellenic families: phenotypic heterogeneity and mutations near interruptions of the collagen domain in COL4A5. Clin Genet 2011; 81:240-8. [PMID: 21332469 DOI: 10.1111/j.1399-0004.2011.01647.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The X-linked Alport syndrome (ATS) is caused by mutations in COL4A5 and exhibits a widely variable expression. Usually ATS is heralded with continuous microhematuria which rapidly progresses to proteinuria, hypertension and chronic or end-stage renal disease (ESRD) by adolescence, frequently accompanied by sensorineural deafness and ocular complications. Milder forms of ATS also exist. We studied 42 patients (19M, 23F) of nine Hellenic families suspected clinically of X-linked ATS who presented with marked phenotypic heterogeneity. We identified mutations in COL4A5 in six families. Two males with nonsense mutation E228X reached ESRD by ages 14 and 18. Frameshift mutation 2946delT followed the same course with early onset renal involvement and deafness. However, two males with the milder missense mutation G624D, reached ESRD after 39 years and one patient showed thin basement membrane nephropathy (TBMN). Another 5/8 affected males with missense mutation P628L also developed ESRD between 30 and 57 years, while three exhibit only mild chronic renal failure (CRF). The data support previous findings that certain mutations are associated with milder phenotypes and confirm that mutation G624D may be expressed as TBMN with familial hematuria. Similar conclusions apply for missense mutation P628L. Interestingly, mutations G624D and P628L are near the 12th natural interruption of COL4A5 triple helical domain, which may explain the milder phenotype.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
30 |
16
|
Felekkis K, Voskarides K, Dweep H, Sticht C, Gretz N, Deltas C. Increased Number of MicroRNA Target Sites in Genes Encoded in CNV Regions. Evidence for an Evolutionary Genomic Interaction. Mol Biol Evol 2011; 28:2421-4. [DOI: 10.1093/molbev/msr078] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
|
14 |
28 |
17
|
Voskarides K, Pierides A, Deltas C. COL4A3/COL4A4 mutations link familial hematuria and focal segmental glomerulosclerosis. glomerular epithelium destruction via basement membrane thinning? Connect Tissue Res 2008; 49:283-8. [PMID: 18661361 DOI: 10.1080/03008200802148280] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The recent description of multiple gene defects in hereditary podocytopathies and in hereditary glomerular basement membrane diseases has dramatically improved the current state of our knowledge on the renal glomerular filtration barrier. Recently described mutations in collagen IV and laminin in patients with hematuria and severe nephrotic syndrome add to other experimental data supporting the hypothesis that the glomerular basement membrane (GBM) may also have a significant role in protein filtration, a function previously attributed exclusively to the podocytes. Collagen IV heterozygous mutations were thought to cause only a mild form of renal disease (thin basement membrane nephropathy--TBMN). However, data from our laboratory show that many patients who carry such mutations may later on in life develop focal and segmental glomerulosclerosis, on top of the TBMN and the microscopic hematuria, a situation that frequently progresses to chronic renal failure or even end-stage renal disease. The role of unknown modifier genes may explain the heterogeneity of symptoms in TBMN and other glomerular diseases and in particular the selected development of chronic renal failure. The molecular communication between GBM and podocytes may also be a key factor in the search for these major genetic modifiers while their understanding may improve novel drug design for glomerular diseases.
Collapse
|
|
17 |
27 |
18
|
Papazachariou L, Papagregoriou G, Hadjipanagi D, Demosthenous P, Voskarides K, Koutsofti C, Stylianou K, Ioannou P, Xydakis D, Tzanakis I, Papadaki A, Kallivretakis N, Nikolakakis N, Perysinaki G, Gale DP, Diamantopoulos A, Goudas P, Goumenos D, Soloukides A, Boletis I, Melexopoulou C, Georgaki E, Frysira E, Komianou F, Grekas D, Paliouras C, Alivanis P, Vergoulas G, Pierides A, Daphnis E, Deltas C. Frequent COL4 mutations in familial microhematuria accompanied by later-onset Alport nephropathy due to focal segmental glomerulosclerosis. Clin Genet 2017. [PMID: 28632965 DOI: 10.1111/cge.13077] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Familial microscopic hematuria (FMH) is associated with a genetically heterogeneous group of conditions including the collagen-IV nephropathies, the heritable C3/CFHR5 nephropathy and the glomerulopathy with fibronectin deposits. The clinical course varies widely, ranging from isolated benign familial hematuria to end-stage renal disease (ESRD) later in life. We investigated 24 families using next generation sequencing (NGS) for 5 genes: COL4A3, COL4A4, COL4A5, CFHR5 and FN1. In 17 families (71%), we found 15 pathogenic mutations in COL4A3/A4/A5, 9 of them novel. In 5 families patients inherited classical AS with hemizygous X-linked COL4A5 mutations. Even more patients developed later-onset Alport-related nephropathy having inherited heterozygous COL4A3/A4 mutations that cause thin basement membranes. Amongst 62 heterozygous or hemizygous patients, 8 (13%) reached ESRD, while 25% of patients with heterozygous COL4A3/A4 mutations, aged >50-years, reached ESRD. In conclusion, COL4A mutations comprise a frequent cause of FMH. Heterozygous COL4A3/A4 mutations predispose to renal function impairment, supporting that thin basement membrane nephropathy is not always benign. The molecular diagnosis is essential for differentiating the X-linked from the autosomal recessive and dominant inheritance. Finally, NGS technology is established as the gold standard for the diagnosis of FMH and associated collagen-IV glomerulopathies, frequently averting the need for invasive renal biopsies.
Collapse
|
Journal Article |
8 |
27 |
19
|
Voskarides K, Giannopoulou N. The Role of TP53 in Adaptation and Evolution. Cells 2023; 12:cells12030512. [PMID: 36766853 PMCID: PMC9914165 DOI: 10.3390/cells12030512] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The TP53 gene is a major player in cancer formation, and it is considered the most important tumor suppressor gene. The p53 protein acts as a transcription factor, and it is involved in DNA repair, senescence, cell-cycle control, autophagy, and apoptosis. Beyond cancer, there is evidence that TP53 is associated with fertility, aging, and longevity. Additionally, more evidence exists that genetic variants in TP53 are associated with environmental adaptation. Special TP53 amino-acid residues or pathogenic TP53 mutations seem to be adaptive for animals living in hypoxic and cold environments or having been exposed to starvation, respectively. At the somatic level, it has recently been proven that multiple cancer genes, including TP53, are under positive selection in healthy human tissues. It is not clear why these driver mutations do not transform these tissues into cancerous ones. Other studies have shown that elephants have multiple TP53 copies, probably this being the reason for the very low cancer incidence in these large animals. This may explain the famous Peto's paradox. This review discusses in detail the multilevel role of TP53 in adaptation, according to the published evidence. This role is complicated, and it extends from cells to individuals and to populations.
Collapse
|
review-article |
2 |
21 |
20
|
Voskarides K, Patsias C, Pierides A, Deltas C. COL4A3 founder mutations in Greek-Cypriot families with thin basement membrane nephropathy and focal segmental glomerulosclerosis dating from around 18th century. ACTA ACUST UNITED AC 2008; 12:273-8. [PMID: 18439107 DOI: 10.1089/gte.2007.0110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mutations in the COL4A3/COL4A4 genes of type IV collagen account for about 40% of cases of thin basement membrane nephropathy, a condition that is estimated to affect 1% or more of the general population. We recently described 10 Cypriot families with familial hematuria and thin basement membrane nephropathy in the presence of focal segmental glomerulosclerosis, with founder mutations on COL4A3 gene. Seven of the families carried mutation G1334E on haplotype K, and another three carried mutation G871C on haplotype Ky. In this report we performed extension of the haplotypes with additional polymorphic markers, 12 for haplotype K and 22 for haplotype Ky, to estimate the linkage disequilibrium value between the mutation and flanking noncommon markers. Haplotype Ky extended to 13.71 Mb, but we did not attempt further analysis owing to the small number of chromosomes. Haplotype K extended to 3.83 Mb, thereby suggesting that it was a much older event compared to mutation G871C. Mutation G1334E was calculated to be about 5-10 generations old with a possible origin between 1693 and 1818 AD, during the Ottoman ruling of the island. Both mutations are clustered in specific geographic regions with apparently formerly isolated populations, although mutation G1334E has been detected elsewhere on the island. The identification of founder mutations in large families with microscopic hematuria greatly facilitates presymptomatic diagnosis and provides useful information on the history of the population, while it may also assist in association studies in search for disease modifier genes.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
20 |
21
|
Stefanou C, Pieri M, Savva I, Georgiou G, Pierides A, Voskarides K, Deltas C. Co-Inheritance of Functional Podocin Variants with Heterozygous Collagen IV Mutations Predisposes to Renal Failure. Nephron Clin Pract 2015; 130:200-12. [PMID: 26138234 DOI: 10.1159/000432406] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/16/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS A subset of patients who present with proteinuria and are diagnosed with focal segmental glomerulosclerosis (FSGS) have inherited heterozygous COL4A3/A4 mutations and are also diagnosed with thin basement membrane nephropathy (TBMN-OMIM: 141200). Two studies showed that co-inheritance of NPHS2-p.Arg229Gln, a podocin variant, may increase the risk for proteinuria and renal function decline. METHODS We hypothesized that additional podocin variants may exert a similar effect. We studied genetically a well-characterized Cypriot TBMN patient cohort by re-sequencing the NPHS2 coding region. We also performed functional studies in cell culture experiments, investigating the interaction of podocin variants with itself and with nephrin. RESULTS Potentially disease-modifying podocin variants were searched for by analyzing NPHS2 in 35 'severe' TBMN patients. One non-synonymous variant, p.Glu237Gln, was detected. Both variants, p.Arg229Gln and p.Glu237Gln, were tested in a larger cohort of 122 TBMN patients, who were categorized as 'mild' or 'severe' based on the presence of microscopic hematuria alone or combined with chronic renal failure and/or proteinuria. Seven 'severe' patients carried either of the 2 variants; none was present in the 'mild' patients (p = 0.05, Pearson χ(2)). The 7 carriers belong in 2 families segregating mutation COL4A3-p.Gly1334Glu. Inheritance of the wild-type (WT) and mutant alleles correlated with the phenotype (combined concordance probability 0.003). Immunofluorescence (IF) experiments after dual co-transfection of WT and mutant podocin suggested altered co-localization of mutant homodimers. IF experiments after co-transfection of WT podocin and nephrin showed normal membrane localization, while both podocin variants interfered with normal trafficking, demonstrating perinuclear staining. Immunoprecipitation experiments showed stronger binding of mutant podocin to WT podocin or nephrin. CONCLUSION The results support the hypothesis that certain hypomorphic podocin variants may act as adverse genetic modifiers when co-inherited with COL4A3/A4 mutations, thus predisposing to FSGS and severe kidney function decline.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
19 |
22
|
Voskarides K, Deltas C. Screening for mutations in kidney-related genes using SURVEYOR nuclease for cleavage at heteroduplex mismatches. J Mol Diagn 2009; 11:311-8. [PMID: 19525337 PMCID: PMC2710707 DOI: 10.2353/jmoldx.2009.080144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2009] [Indexed: 11/20/2022] Open
Abstract
SURVEYOR is a new mismatch-specific plant DNA endonuclease that is very efficient for mutation scanning in heteroduplex DNA. It is much faster, cheaper, more sensitive, and easier to perform than other "traditional" mutation detection methods such as single-strand conformation polymorphism analysis, denaturing high-performance liquid chromatography, heteroduplex analysis, and phage resolvases. This is the first comprehensive report on the use of SURVEYOR for screening genes implicated in a spectrum of inherited renal diseases. Of the 48.2 kb screened, 44 variations were identified, accounting for one variation per 1.1 kb. The re-sequencing of multiple samples did not reveal any variation that had not been identified by SURVEYOR, attesting to its high fidelity. Additionally, we tested this enzyme against 15 known variants, 14 of which it identified, thus showing a sensitivity of 93%. We showed that the genetic heterogeneity of renal diseases can be easily overcome using this enzyme with a high degree of confidence and no bias for any specific variations. We also showed for the first time that SURVEYOR does not demonstrate any preference regarding mismatch cleavage at specific positions. Disadvantages of using SURVEYOR include enhanced exonucleolytic activity for some polymerase chain reaction products and less than 100% sensitivity. We report that SURVEYOR can be used as a mutation detection method with a high degree of confidence, offering an excellent alternative for low-budget laboratories and for the rapid manipulation of multiple genes.
Collapse
|
research-article |
16 |
19 |
23
|
Voskarides K, Christaki E, Nikolopoulos GK. Influenza Virus-Host Co-evolution. A Predator-Prey Relationship? Front Immunol 2018; 9:2017. [PMID: 30245689 PMCID: PMC6137132 DOI: 10.3389/fimmu.2018.02017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/15/2018] [Indexed: 12/20/2022] Open
Abstract
Influenza virus continues to cause yearly seasonal epidemics worldwide and periodically pandemics. Although influenza virus infection and its epidemiology have been extensively studied, a new pandemic is likely. One of the reasons influenza virus causes epidemics is its ability to constantly antigenically transform through genetic diversification. However, host immune defense mechanisms also have the potential to evolve during short or longer periods of evolutionary time. In this mini-review, we describe the evolutionary procedures related with influenza viruses and their hosts, under the prism of a predator-prey relationship.
Collapse
|
Review |
7 |
17 |
24
|
Voskarides K, Mazières S, Hadjipanagi D, Di Cristofaro J, Ignatiou A, Stefanou C, King RJ, Underhill PA, Chiaroni J, Deltas C. Y-chromosome phylogeographic analysis of the Greek-Cypriot population reveals elements consistent with Neolithic and Bronze Age settlements. INVESTIGATIVE GENETICS 2016; 7:1. [PMID: 26870315 PMCID: PMC4750176 DOI: 10.1186/s13323-016-0032-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/02/2016] [Indexed: 12/15/2022]
Abstract
Background The archeological record indicates that the permanent settlement of Cyprus began with pioneering agriculturalists circa 11,000 years before present, (ca. 11,000 y BP). Subsequent colonization events followed, some recognized regionally. Here, we assess the Y-chromosome structure of Cyprus in context to regional populations and correlate it to phases of prehistoric colonization. Results Analysis of haplotypes from 574 samples showed that island-wide substructure was barely significant in a spatial analysis of molecular variance (SAMOVA). However, analyses of molecular variance (AMOVA) of haplogroups using 92 binary markers genotyped in 629 Cypriots revealed that the proportion of variance among the districts was irregularly distributed. Principal component analysis (PCA) revealed potential genetic associations of Greek-Cypriots with neighbor populations. Contrasting haplogroups in the PCA were used as surrogates of parental populations. Admixture analyses suggested that the majority of G2a-P15 and R1b-M269 components were contributed by Anatolia and Levant sources, respectively, while Greece Balkans supplied the majority of E-V13 and J2a-M67. Haplotype-based expansion times were at historical levels suggestive of recent demography. Conclusions Analyses of Cypriot haplogroup data are consistent with two stages of prehistoric settlement. E-V13 and E-M34 are widespread, and PCA suggests sourcing them to the Balkans and Levant/Anatolia, respectively. The persistent pre-Greek component is represented by elements of G2-U5(xL30) haplogroups: U5*, PF3147, and L293. J2b-M205 may contribute also to the pre-Greek strata. The majority of R1b-Z2105 lineages occur in both the westernmost and easternmost districts. Distinctively, sub-haplogroup R1b- M589 occurs only in the east. The absence of R1b- M589 lineages in Crete and the Balkans and the presence in Asia Minor are compatible with Late Bronze Age influences from Anatolia rather than from Mycenaean Greeks. Electronic supplementary material The online version of this article (doi:10.1186/s13323-016-0032-8) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
9 |
15 |
25
|
Nagara M, Voskarides K, Nouira S, Ben Halim N, Kefi R, Aloulou H, Romdhane L, Ben Abdallah R, Ben Rhouma F, Aissa K, Boughamoura L, Kammoun T, Azzouz H, Abroug S, Ben Turkia H, Ayadi A, Mrad R, Chabchoub I, Hachicha M, Chemli J, Deltas C, Abdelhak S. Molecular investigation of distal renal tubular acidosis in Tunisia, evidence for founder mutations. Genet Test Mol Biomarkers 2014; 18:741-8. [PMID: 25285676 DOI: 10.1089/gtmb.2014.0175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Distal renal tubular acidosis (dRTA) is a rare genetic disease caused by mutations in different genes involved in the secretion of H+ ions in the intercalated cells of the collecting duct. Both autosomal dominant and recessive forms have been described; the latter is also associated with sensorineural hearing loss. METHODS Twenty-two Tunisian families were analyzed for mutations in the ATP6V1B1 and ATP6V0A4 genes by direct sequencing. Dating of the founder mutations was performed. RESULTS Two founder mutations in the ATP6V1B1 gene were found in 16/27 dRTA cases. The p.Ile386Hisfs*56 founder mutation was estimated to be older than 2400 years and no correlations were found with deafness. For the remaining patients, two mutations in the ATP6V0A4 gene, one of them being novel, were found in three Tunisian cases. The presence of a heterozygous missense mutation p.T30I, of the ATP6V1B1 gene, was identified in six patients, while no mutations of the second gene were detected. No deleterious mutations of either ATP6V1B1 or ATP6V0A were found for the two probands. CONCLUSION Our study gives evidence of phenotypic and genotypic heterogeneity of dRTA in the Tunisian population. Five different mutations were found, two of them were due to a founder effect, and screening of these mutations could provide a rapid and valuable tool for diagnosis of dRTA.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
14 |