1
|
Nayır Büyükşahin H, Emiralioglu N, Simşek Kiper PÖ, Sunman B, Güzelkaş I, Alboğa D, Akgül Erdal M, Boduroglu K, Utine GE, Yalcın E, Doğru D, Kiper N, Ozcelik U. Evaluation of polysomnography findings in children with genetic skeletal disorders. J Sleep Res 2023; 32:e13914. [PMID: 37128177 DOI: 10.1111/jsr.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Children with genetic skeletal disorders have variable conditions that can lead to sleep-disordered breathing, and polysomnography is the gold standard for diagnosing this condition. We aimed to review polysomnography findings, to assess the severity of sleep apnea, and to investigate the clinical variables predictive of sleep-disordered breathing in these patients. We retrospectively collected the medical records of patients with genetic skeletal disorders who underwent polysomnography for 5 years. Twenty-seven children with various genetic skeletal disorders, including achondroplasia (14), Crouzon syndrome (3), acromesomelic dysplasia Maroteaux type (3), Apert syndrome (2), osteopetrosis (1), Jeune dysplasia (1), Desbuquois dysplasia (1), acrodysostosis (1), and spondyloepiphyseal dysplasia (1) were enrolled. The median age at the first polysomnography was 58 (1st-3rd quartile: 31-113) months. The overall sleep-disordered breathing results were: 19 (70.3%) had obstructive sleep apneas (OSA) (4 mild, 6 moderate, 9 severe), 2 (7.4%) had central apneas, 4 (14.8%) had nocturnal hypoventilation. There was a significant correlation between non-ambulatory status with both total AHI and OSA (p < 0.001, rho: -0.66/p = 0.04, rho: 0.38, respectively). Nine patients received positive airway pressure titration, and the oAHI values of all returned to the normal range. These patients were started with positive airway pressure treatment. Our cohort showed that the majority of the patients with skeletal dysplasia had sleep apnea syndrome characterised mainly by OSA, highlighting the importance of polysomnography screening for sleep disorders. Positive airway pressure therapy represents an effective treatment for sleep-disordered breathing in those patients.
Collapse
|
2
|
Batkovskyte D, McKenzie F, Taylan F, Simsek-Kiper PO, Nikkel SM, Ohashi H, Stevenson RE, Ha T, Cavalcanti DP, Miyahara H, Skinner SA, Aguirre MA, Akçören Z, Utine GE, Chiu T, Shimizu K, Hammarsjö A, Boduroglu K, Moore HW, Louie RJ, Arts P, Merrihew AN, Babic M, Jackson MR, Papadogiannakis N, Lindstrand A, Nordgren A, Barnett CP, Scott HS, Chagin AS, Nishimura G, Grigelioniene G. Al-Gazali skeletal dysplasia constitutes the lethal end of ADAMTSL2-related disorders. J Bone Miner Res 2023; 38:692-706. [PMID: 36896612 DOI: 10.1002/jbmr.4799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Lethal short-limb skeletal dysplasia Al-Gazali type (OMIM %601356) is an ultra-rare disorder previously reported in only three unrelated individuals. The genetic etiology for Al-Gazali skeletal dysplasia has up until now been unknown. Through international collaborative efforts involving seven clinical centers worldwide, a cohort of nine patients with clinical and radiographic features consistent with short-limb skeletal dysplasia Al-Gazali type was collected. The affected individuals presented with moderate intrauterine growth restriction, relative macrocephaly, hypertrichosis, large anterior fontanelle, short neck, short and stiff limbs with small hands and feet, severe brachydactyly, and generalized bone sclerosis with mild platyspondyly. Biallelic disease-causing variants in ADAMTSL2 were detected using massively parallel sequencing (MPS) and Sanger sequencing techniques. Six individuals were compound heterozygous and one individual was homozygous for pathogenic variants in ADAMTSL2. In one of the families pathogenic variants were detected in parental samples only. Overall, this study sheds light on the genetic cause of Al-Gazali skeletal dysplasia and identifies it as a semi-lethal part of the spectrum of ADAMTSL2-related disorders. Furthermore, we highlight the importance of meticulous analysis of the pseudogene region of ADAMTSL2 where disease-causing variants might be located.
Collapse
|
3
|
Simsek-Kiper PO, Jacob P, Upadhyai P, Taşkıran ZE, Guleria VS, Karaosmanoglu B, Imren G, Gocmen R, Bhavani GS, Kausthubham N, Shah H, Utine GE, Boduroglu K, Girisha KM. Biallelic loss-of-function variants in EXOC6B are associated with impaired primary ciliogenesis and cause spondylo-epi-metaphyseal dysplasia with joint laxity type 3. Hum Mutat 2022; 43:2116-2129. [PMID: 36150098 PMCID: PMC7615863 DOI: 10.1002/humu.24478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 01/25/2023]
Abstract
Spondylo-epi-metaphyseal dysplasias with joint laxity, type 3 (SEMDJL3) is a genetic skeletal disorder characterized by multiple joint dislocations, caused by biallelic pathogenic variants in the EXOC6B gene. Only four individuals from two families have been reported to have this condition to date. The molecular pathogenesis related to primary ciliogenesis has not been enumerated in subjects with SEMDJL3. In this study, we report two additional affected individuals from unrelated families with biallelic pathogenic variants, c.2122+15447_2197-59588del and c.401T>G in EXOC6B identified by exome sequencing. One of the affected individuals had an intellectual disability and central nervous system anomalies, including hydrocephalus, hypoplastic mesencephalon, and thin corpus callosum. Using the fibroblast cell lines, we demonstrate the primary evidence for the abrogation of exocytosis in an individual with SEMDLJ3 leading to impaired primary ciliogenesis. Osteogenesis differentiation and pathways related to the extracellular matrix were also found to be reduced. Additionally, we provide a review of the clinical and molecular profile of all the mutation-proven patients reported hitherto, thereby further characterizing SEMDJL3. SEMDJL3 with biallelic pathogenic variants in EXOC6B might represent yet another ciliopathy with central nervous system involvement and joint dislocations.
Collapse
|
4
|
Kahraman AB, Simsek-Kiper PO, Utine GE, Boduroglu K. Diagnostic distribution and postnatal evaluation of prenatally detected short femur: A single center experience. Am J Med Genet A 2022; 188:2367-2375. [PMID: 35535755 DOI: 10.1002/ajmg.a.62769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/11/2022]
Abstract
Genetic skeletal disorders (GSDs) are clinically and etiologically heterogeneous group of disorders caused by abnormal growth and development of bone and/or cartilaginous tissues. Timely and accurate diagnosis is essential for prevention of significant comorbidities. In this study demographic, parental, prenatal and natal characteristics, and postnatal diagnostic distribution along with follow-up processes of 104 individuals with the finding of "short femur" detected in routine prenatal ultrasonography were evaluated. Of 104 patients, 19 (18.2%) were medically terminated, 12 (11.6%) were deceased during follow-up and 73 (70.2%) were still under follow-up. Diagnostic distribution of 104 patients was as follows: 77 (74%) had GSD, eight (7.7%) had chromosomal disorder, seven (6.7%) were completely normal, and 12 (11.5%) had no definite diagnosis. Long-term follow up evaluation contributed to clinical diagnosis in four patients. When grouped according to Nosology and Classification of GSDs: 2019 revision, the most frequent (n = 30, 38.5%) group was "FGFR3 chondrodysplasia group", followed by "Type 2 collagen group" (n = 7, 9%), and "Osteogenesis imperfecta and decreased bone density group" (n = 5, 6.4%). The finding of prenatally detected "short femur" represents a group of diverse diagnosis with heterogeneous etiology. GSDs are the most common etiology among fetuses with short extremity.
Collapse
|
5
|
Hizal M, Satırer O, Polat SE, Tural DA, Ozsezen B, Sunman B, Karahan S, Emiralioglu N, Simsek-Kiper PO, Utine GE, Boduroglu K, Yalcin E, Dogru D, Kiper N, Ozcelik U. Obstructive sleep apnea in children with Down syndrome: is it possible to predict severe apnea? Eur J Pediatr 2022; 181:735-743. [PMID: 34562164 PMCID: PMC8475480 DOI: 10.1007/s00431-021-04267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 11/24/2022]
Abstract
The objectives are to explore the demographic and polysomnographic features of children with Down syndrome and to determine the predictive factors associated with severe sleep apnea. A total of 81 children with Down syndrome referred for full-night polysomnography were analyzed. In addition, parental interviews were performed for each child. Data were available for 81 children, with a mean age of 4.8 years. Severe obstructive sleep apnea was determined in 53.1%. Age, sex, exposure to second-hand smoke, clinical findings, anthropometric features, and the presence of comorbidities were not predictors of severe obstructive sleep apnea. Children who were exposed to second-hand smoke had more sleep-related symptoms. Even in children without symptoms, the prevalence of severe obstructive sleep apnea was 40%. Moreover, 86% of parents had no previous information regarding possible sleep breathing disorders in their children. Clinically significant central apnea was present in 10 patients (12.3%).Conclusion: Our results demonstrate that severe obstructive sleep apnea is common in children with Down syndrome, even in children without a history of symptoms of sleep apnea. It is not possible to predict patients with severe apnea; thus, screening of children with Down syndrome beginning from young ages is very important. Central apneas could be a part of the spectrum of sleep abnormalities in Down syndrome.
Collapse
|
6
|
Akgün-Doğan Ö, Simsek-Kiper PO, Taşkıran E, Schossig A, Utine GE, Zschocke J, Boduroglu K. Kohlschütter-Tönz Syndrome With a Novel ROGD1 Variant in 3 Individuals: A Rare Clinical Entity. J Child Neurol 2021; 36:816-822. [PMID: 33866847 DOI: 10.1177/08830738211004736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Kohlschütter-Tönz syndrome (OMIM 226750) is a rare disorder with autosomal recessive inheritance among epileptic encephalopathy syndromes. To date, only 31 Kohlschütter-Tönz syndrome families have been reported in the literature. Early-onset epilepsy, progressive global developmental delay, and amelogenesis imperfecta are the main components of the syndrome. Mutations in ROGDI (MIM 226750) and SLC13A5 (MIM 615905) are responsible for Kohlschütter-Tönz syndrome. Here, we report on the clinical and molecular characteristics of 3 individuals from 2 families, all harboring the same homozygous novel deleterious variant in ROGD1, along with a long-term follow-up and review of the literature. Although the phenotypic features are almost consistent in Kohlschütter-Tönz syndrome, overlooking dental findings and diverse degrees of variability in clinical findings makes diagnosis challenging occasionally. Because there is a limited number of reported patients, identification of new patients and delineation of clinical and molecular findings will increase the awareness of clinicians and enable establishing genotype-phenotype correlations.
Collapse
|
7
|
Kaya Akca U, Simsek Kiper PO, Urel Demir G, Sag E, Atalay E, Utine GE, Alikasifoglu M, Boduroglu K, Bilginer Y, Ozen S. Genetic disorders with symptoms mimicking rheumatologic diseases: A single-center retrospective study. Eur J Med Genet 2021; 64:104185. [PMID: 33662637 DOI: 10.1016/j.ejmg.2021.104185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022]
Abstract
Musculoskeletal symptoms may be due to noninflammatory causes, including genetic disorders. We aimed to examine the final genetic diagnosis in patients who presented with musculoskeletal complaints to the rheumatology department. Patients who presented to the Department of Pediatric Rheumatology and were referred to the pediatric genetic department between January 2015 and May 2019 were evaluated retrospectively. A total of 60 patients, 19 boys (31.66%), with a mean age of 12.46 ± 1.41 years were included in the study. The total consanguinity rate was 25%. The most common (29.5%) cause of referral to the pediatric genetic department was the presence of skeletal anomalies (such as camptodactyly, clinodactyly, and short stature) with accompanying joint findings. Approximately one-third of the patients (n: 19) were diagnosed and followed up by the pediatric genetics department. The diagnoses of patients were as follows: camptodactyly, arthropathy, coxa vara, and pericarditis (CACP) syndrome (n: 3); trichorhinophalangeal syndrome (n: 1); progressive pseudorheumatoid dysplasia (n: 2); LIG4 syndrome (n: 1); H syndrome (n: 1); spondyloenchondrodysplasia (SPENCD) (n: 3); and nonspecific connective tissue disorders (n: 8). In the differential diagnosis of patients who are referred to the Department of Pediatric Rheumatology with complaints of the musculoskeletal system, genetic disorders should also be considered.
Collapse
|
8
|
Vuralli D, Kosukcu C, Taskiran E, Simsek-Kiper PO, Utine GE, Boduroglu K, Alikasifoglu A, Alikasifoglu M. Hyperinsulinemic Hypoglycemia in a Patient with Costello Syndrome: An Etiology to Consider in Hypoglycemia. Mol Syndromol 2020; 11:207-216. [PMID: 33224014 DOI: 10.1159/000510171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/03/2020] [Indexed: 11/19/2022] Open
Abstract
Several endocrine disorders have been defined in patients with Costello syndrome (CS). In this report, we describe a patient with CS accompanied by a clinical picture of hyperinsulinemic hypoglycemia responsive to diazoxide treatment. A 41-day-old female patient with a birth weight of 3,600 g was referred for atypical facial features and swallowing dysfunction. She had a weight of 4,000 g (-0.8 SDS), a length of 50 cm (-2.4 SDS), and a head circumference of 38 cm (0.2 SDS). The clinical findings were suggestive of a genetic syndrome, mainly a RASopathy or Beckwith-Wiedemann syndrome. Whole exome sequencing revealed a de novo heterozygous missense variant in the HRAS (NM_001130442) gene in exon 2: c.35G>C; p.(Gly12Ala), establishing the molecular diagnosis of CS. The patient developed symptomatic hypoglycemia (jitteriness and sweating) at the age of 13 months. The patient's serum glucose was 38 mg/dL with simultaneous serum insulin and C-peptide levels, 2.8 μIU/mL and 1.8 ng/mL, respectively. Hyperinsulinism was suspected, and an exaggerated glucose response was detected in a glucagon test. Blood glucose monitoring indicated episodes of fasting hypoglycemia and postprandial hyperglycemia. Diazoxide of 10 mg/kg/day was initiated in 3 doses for hyperinsulinemic hypoglycemia, which resolved without new episodes of postprandial hyperglycemia. The patient deceased at the age of 17 months due to cardiorespiratory failure in the course of severe pneumonia complicated with pulmonary hypertension and hypertrophic cardiomyopathy. Several genetic syndromes including CS are associated with endocrinologic manifestations including abnormal glucose homeostasis. Although the frequency and underlying mechanisms leading to hyperinsulinemic hypoglycemia are yet unknown, hypoglycemia in CS responds well to diazoxide.
Collapse
|
9
|
Taylan Sekeroglu H, Karaosmanoglu B, Taskiran EZ, Simsek Kiper PO, Alikasifoglu M, Boduroglu K, Coskun T, Utine GE. Molecular Etiology of Isolated Congenital Cataract Using Next-Generation Sequencing: Single Center Exome Sequencing Data from Turkey. Mol Syndromol 2020; 11:302-308. [PMID: 33510601 DOI: 10.1159/000510481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/26/2020] [Indexed: 12/31/2022] Open
Abstract
Congenital cataract, which refers to lenticular opacity diagnosed at birth or more commonly during the first year of life, is one of the leading causes of childhood blindness. Molecular understanding of the disease pathogenesis has evolved thanks to many studies based on modern technologies. In this study, we aimed to identify and discuss the molecular etiology of nonsyndromic or nonmetabolic bilateral congenital cataract by whole-exome sequencing (WES). Patients with bilateral congenital cataract presumed to be isolated after metabolic and genetic evaluation were enrolled in the study. All patients underwent detailed ophthalmological examination and bilateral cataract surgery. DNA samples of the probands, parents, and available affected family members were analyzed by WES. Variants were validated and confirmed by Sanger sequencing in all probands and in available affected family members. A total of 4 patients (3 girls and 1 boy) were recruited. Two patients had nuclear, 1 patient had total, and 1 patient had combined lamellar and sutural cataract. One family had consanguinity. A heterozygous c.215+1G>A mutation in CRYBA1, heterozygous c.432C>G (p.Tyr144Ter) mutation in CRYGC, heterozygous c.70A>C (p.Pro24Thr) mutation in CRYGD, and a heterozygous c.466G>A (p.Gly156Arg) mutation in CRYBB3 were detected. All these mutations were confirmed by Sanger sequencing in selected affected individuals. The current study identified all causative mutations of congenital cataract in the crystalline genes. The results confirmed that WES is a very useful tool in the investigation of the diseases with heterogeneous genetic background.
Collapse
|
10
|
Guleray N, Kosukcu C, Taskiran ZE, Simsek Kiper PO, Utine GE, Gucer S, Tokatli A, Boduroglu K, Alikasifoglu M. Atypical Presentation of Sengers Syndrome: A Novel Mutation Revealed with Postmortem Genetic Testing. Fetal Pediatr Pathol 2020; 39:163-171. [PMID: 31303091 DOI: 10.1080/15513815.2019.1639089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Sengers syndrome is an autosomal recessive disorder characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy and lactic acidosis. The causative AGK mutations have been identified with whole exome sequencing. CLINICAL REPORT We report on a 9-month-old infant with episodic lactic acidosis who died before a definitive diagnosis could be established. Postmortem genomic autopsy revealed a novel homozygous NM_018238: c.1215dupG; p.Phe406Valfs*4 mutation in AGK (OMIM 610345) confirming the diagnosis of Sengers syndrome. CONCLUSION This report provides further evidence that reverse genetics is a useful approach in patients who do not manifest the hallmark features of known and recognizable syndromes.
Collapse
|
11
|
Guleray N, Simsek Kiper PO, Utine GE, Boduroglu K, Alikasifoglu M. Intrafamilial variability of XYLT2-related spondyloocular syndrome. Eur J Med Genet 2019; 62:103585. [PMID: 30496831 DOI: 10.1016/j.ejmg.2018.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/07/2018] [Accepted: 11/22/2018] [Indexed: 12/19/2022]
Abstract
Spondyloocular syndrome is characterized by generalized osteoporosis, multiple fractures and severe ocular findings. The causative XYLT2 mutations have recently been identified with the use of whole exome sequencing. We report on two siblings with spondyloocular syndrome who presented with varying clinical severity. A novel XYLT2 missense mutation was detected in a region evolutionary conserved across the species. This report along with the previous reports demonstrates that variable expressivity may be possible even within the same family. These two siblings with a novel mutation further expand the clinical and mutational spectrum of spondyloocular syndrome.
Collapse
|
12
|
Ceylan AC, Sahin I, Erdem HB, Kayhan G, Simsek-Kiper PO, Utine GE, Percin F, Boduroglu K, Alikasifoglu M. An eight-case 1q21 region series: novel aberrations and clinical variability with new features. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2019; 63:548-557. [PMID: 30773728 DOI: 10.1111/jir.12592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/04/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Rearrangement of the 1q21 region of chromosome 1 manifests as multiple phenotypes, including microcephaly, intellectual disability, dysmorphic facial features, eye abnormalities, cardiac defects, genitourinary anomalies, autism spectrum disorder, psychiatric conditions and seizures. Herein, we describe eight patients with 1q21 deletion and duplication syndromes, and novel deletions and findings. METHODS Chromosomal microarray analysis was performed to identify the existence of copy number variation. Quantitative polymerase chain reaction was applied using specific primers for the control and 1q21 region of chromosome 1. Mutational analysis was performed in case 5 using direct genomic sequencing for exons 1-6 in RBM8A. RESULTS Copy number variation analysis identified seven deletions and one duplication of the 1q21 region in the eight patients. In addition, four variations were de novo, and two deletions are reported here for the first time. One of the cases (case 7) presents moderate intellectual disability and dysmorphic facial findings, whereas chromosomal microarray analysis showed that case 7 had an 889-kb deletion in the 1q21 proximal region (GPR89A, PDZK1, CD160, POLR3C and NBPF12). CONCLUSION Although the deletion in case 5 did not include the thrombocytopenia-absent radius syndrome critical region or the RBM8A gene, he had pectoral muscle hypoplasia, radius and humerus hypoplasia and short curved ribs, which are indicative of a potential thrombocytopenia-absent radius region modifier. The findings in case 7 suggest that the proximal part of the 1q21 microdeletion syndrome region might be very important for the onset of clinical manifestations. Some novel findings were observed in the presented cases, such as radius and humerus hypoplasia and brain stem hypoplasia. The presented findings expand the spectrum of 1q21 aberrations and provide evidence of genotype-phenotype correlations for this region.
Collapse
|
13
|
Simsek-Kiper PO, Taskiran E, Kosukcu C, Arslan UE, Cormier-Daire V, Gonc N, Ozon A, Alikasifoglu A, Kandemir N, Utine GE, Alanay Y, Alikasifoglu M, Boduroglu K. Further expanding the mutational spectrum and investigation of genotype-phenotype correlation in 3M syndrome. Am J Med Genet A 2019; 179:1157-1172. [PMID: 30980518 DOI: 10.1002/ajmg.a.61154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/10/2019] [Accepted: 03/31/2019] [Indexed: 12/14/2022]
Abstract
3M syndrome is characterized by severe pre- and postnatal growth retardation, typical facial features, and normal intelligence. Homozygous or compound heterozygous mutations in either CUL7, OBSL1, or CCDC8 have been identified in the etiology so far. Clinical and molecular features of 24 patients (23 patients and a fetus) from 19 unrelated families with a clinical diagnosis of 3M syndrome were evaluated and genotype-phenotype correlations were investigated with the use of DNA sequencing, chromosomal microarray, and whole exome sequencing accordingly. A genetic etiology could be established in 20 patients (n = 20/24, 83%). Eleven distinct CUL7 or OBSL1 mutations, among which eight was novel, were identified in 18 patients (n = 18/24, 75%). Ten patients had CUL7 (n = 10/18, 56%) while eight had OBSL1 (n = 8/18, 44%) mutations. Birth weight and height standard deviation scores at admission were significantly (p < 0.05) lower in patients with CUL7 mutation compared to that of patients with OBSL1 mutation. Two patients with a similar phenotype had a de novo 20p13p deletion involving BMP2. No genetic etiology could be established in four patients (n = 4/28, 17%). This study yet represents the largest cohort of 3M syndrome patients from a single center in Turkey. Microdeletions involving BMP2 may cause a phenotype similar to 3M syndrome with some distinctive features. Larger cohort of patients are required to establish genotype-phenotype correlations in 3M syndrome.
Collapse
|
14
|
Simsek-Kiper PO, Taskiran EZ, Kosukcu C, Urel-Demir G, Akgun-Dogan O, Yilmaz G, Utine GE, Nishimura G, Boduroglu K, Alikasifoglu M. Further delineation of spondyloepimetaphyseal dysplasia Faden-Alkuraya type: A RSPRY1-associated spondylo-epi-metaphyseal dysplasia with cono-brachydactyly and craniosynostosis. Am J Med Genet A 2018; 176:2009-2016. [PMID: 30063090 DOI: 10.1002/ajmg.a.40427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 04/15/2018] [Accepted: 06/10/2018] [Indexed: 11/11/2022]
Abstract
Our understanding of the molecular basis of the genetic disorders of the skeleton has steadily increased, as the application of high-throughput sequencing technology has expanded. One of the newcomers is Spondyloepimetaphyseal dysplasia Faden-Alkuraya type. In this study, we aimed to further delineate the clinical, radiographic, and molecular findings of this entity in five affected individuals from two unrelated families. All patients have short stature, extremity deformities, facial dysmorphism and intellectual disability. The skeletal hallmarks include (a) mild spondylar dysplasia, (b) epimetaphyseal dysplasia of the long bones associated with coxa vara and genu valgum, (c) brachymesophalangy with cone-shaped epiphyses, and (d) craniosynostosis. Unlike the previously reported clinical findings, all patients except one are normocephalic, and all share the clinical findings including craniosynostosis, varying degrees of intellectual disability, facial dysmorphism, and skeletal findings including pes planus, prominent heels, and pectus deformity. Interestingly one of the patients presented with a cemento-ossifying fibrous lesion of the maxilla. Whole exome sequencing revealed a novel homozygous [c.377delT] [p.Ile126fs*] frameshift mutation at exon 2 in one family, while Sanger sequencing revealed a novel homozygous splice site mutation [c.516+2T>A] at exon 4/intron 4 border of RSPRY1 in the other family. In conclusion; we provide further evidence that Spondyloepimetaphyseal dysplasia Faden-Alkuraya type is a RSPRY1-associated skeletal dysplasia with a distinctive phenotype composed of spondyloepimetaphyseal dysplasia, cono-brachydactyly, and craniosynostosis along with recognizable facial features and intellectual disability.
Collapse
|
15
|
Simsek-Kiper PO, Kosukcu C, Akgun-Dogan O, Gocmen R, Utine GE, Soyer T, Korkmaz-Toygar A, Nishimura G, Alikasifoglu M, Boduroglu K. A novel NKX3-2 mutation associated with perinatal lethal phenotype of spondylo-megaepiphyseal-metaphyseal dysplasia in a neonate. Eur J Med Genet 2018; 62:21-26. [PMID: 29704686 DOI: 10.1016/j.ejmg.2018.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 04/11/2018] [Accepted: 04/22/2018] [Indexed: 11/19/2022]
Abstract
Spondylo-megaepiphyseal-metaphyseal dysplasia (SMMD) is an autosomal recessive skeletal dysplasia, characterized by disproportionate short stature with a short and stiff neck and trunk. SMMD is caused by inactivating mutations in NKX3-2, which encodes a homeobox-containing protein. Because of the rarity of the disorder, the diagnostic feature has not been fully established yet. We describe an affected newborn with dysmorphic facial features and severe short trunk. The patient required immediate intubation at the delivery room and duodenal atresia was detected during his course in neonatal intensive care unit. Skeletal survey revealed total absence of the ossification of the vertebral bodies, pubis, and ischia. Mainly the femora was short and broad with mild flaring of the metaphyses. The downward sloping or tented appearance of the ribs was distinctive. A diagnosis of SMMD was made on clinical and radiological grounds. Molecular analysis revealed homozygosity for a novel mutation, c.507-508delCA (p.Gly171Cysfs*55) in exon 2 of NKX3-2. The patient was operated on postnatal day 7 for duodenal atresia. In the post-operative period he developed sepsis and respiratory failure and he died on postnatal day 14. Although no neuroradiologic imaging could be performed, the findings of clubfoot, neuromuscular respiratory insufficiency requiring invasive mechanical ventilation and downward sloping or tented appearance of the ribs were suggestive of very early cervical cord compression leading to perinatal mortality. To our knowledge this patient yet represents one of the most severe postnatal phenotypes of SMMD.
Collapse
|
16
|
Oncel I, Haliloglu G, Utine E, Aksoy C, Boduroglu K, Topaloglu H. Arthrogryposis multiplex congenita (AMC): Spectrum and classification at a tertiary referral center. Neuromuscul Disord 2016. [DOI: 10.1016/j.nmd.2016.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Bögershausen N, Gatinois V, Riehmer V, Kayserili H, Becker J, Thoenes M, Simsek-Kiper PÖ, Barat-Houari M, Elcioglu NH, Wieczorek D, Tinschert S, Sarrabay G, Strom TM, Fabre A, Baynam G, Sanchez E, Nürnberg G, Altunoglu U, Capri Y, Isidor B, Lacombe D, Corsini C, Cormier-Daire V, Sanlaville D, Giuliano F, Le Quan Sang KH, Kayirangwa H, Nürnberg P, Meitinger T, Boduroglu K, Zoll B, Lyonnet S, Tzschach A, Verloes A, Di Donato N, Touitou I, Netzer C, Li Y, Geneviève D, Yigit G, Wollnik B. Mutation Update for Kabuki Syndrome GenesKMT2DandKDM6Aand Further Delineation of X-Linked Kabuki Syndrome Subtype 2. Hum Mutat 2016; 37:847-64. [DOI: 10.1002/humu.23026] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/26/2016] [Indexed: 12/29/2022]
|
18
|
Angius A, Uva P, Buers I, Oppo M, Puddu A, Onano S, Persico I, Loi A, Marcia L, Höhne W, Cuccuru G, Fotia G, Deiana M, Marongiu M, Atalay HT, Inan S, El Assy O, Smit LME, Okur I, Boduroglu K, Utine GE, Kılıç E, Zampino G, Crisponi G, Crisponi L, Rutsch F. Bi-allelic Mutations in KLHL7 Cause a Crisponi/CISS1-like Phenotype Associated with Early-Onset Retinitis Pigmentosa. Am J Hum Genet 2016; 99:236-45. [PMID: 27392078 PMCID: PMC5005468 DOI: 10.1016/j.ajhg.2016.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/19/2016] [Indexed: 11/29/2022] Open
Abstract
Crisponi syndrome (CS)/cold-induced sweating syndrome type 1 (CISS1) is a very rare autosomal-recessive disorder characterized by a complex phenotype with high neonatal lethality, associated with the following main clinical features: hyperthermia and feeding difficulties in the neonatal period, scoliosis, and paradoxical sweating induced by cold since early childhood. CS/CISS1 can be caused by mutations in cytokine receptor-like factor 1 (CRLF1). However, the physiopathological role of CRLF1 is still poorly understood. A subset of CS/CISS1 cases remain yet genetically unexplained after CRLF1 sequencing. In five of them, exome sequencing and targeted Sanger sequencing identified four homozygous disease-causing mutations in kelch-like family member 7 (KLHL7), affecting the Kelch domains of the protein. KLHL7 encodes a BTB-Kelch-related protein involved in the ubiquitination of target proteins for proteasome-mediated degradation. Mono-allelic substitutions in other domains of KLHL7 have been reported in three families affected by a late-onset form of autosomal-dominant retinitis pigmentosa. Retinitis pigmentosa was also present in two surviving children reported here carrying bi-allelic KLHL7 mutations. KLHL7 mutations are thus associated with a more severe phenotype in recessive than in dominant cases. Although these data further support the pathogenic role of KLHL7 mutations in a CS/CISS1-like phenotype, they do not explain all their clinical manifestations and highlight the high phenotypic heterogeneity associated with mutations in KLHL7.
Collapse
|
19
|
Kiper POS, Saito H, Gori F, Unger S, Hesse E, Yamana K, Kiviranta R, Solban N, Liu J, Brommage R, Boduroglu K, Bonafé L, Campos-Xavier B, Dikoglu E, Eastell R, Gossiel F, Harshman K, Nishimura G, Girisha KM, Stevenson BJ, Takita H, Rivolta C, Superti-Furga A, Baron R. Cortical-Bone Fragility--Insights from sFRP4 Deficiency in Pyle's Disease. N Engl J Med 2016; 374:2553-2562. [PMID: 27355534 PMCID: PMC5070790 DOI: 10.1056/nejmoa1509342] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cortical-bone fragility is a common feature in osteoporosis that is linked to nonvertebral fractures. Regulation of cortical-bone homeostasis has proved elusive. The study of genetic disorders of the skeleton can yield insights that fuel experimental therapeutic approaches to the treatment of rare disorders and common skeletal ailments. METHODS We evaluated four patients with Pyle's disease, a genetic disorder that is characterized by cortical-bone thinning, limb deformity, and fractures; two patients were examined by means of exome sequencing, and two were examined by means of Sanger sequencing. After a candidate gene was identified, we generated a knockout mouse model that manifested the phenotype and studied the mechanisms responsible for altered bone architecture. RESULTS In all affected patients, we found biallelic truncating mutations in SFRP4, the gene encoding secreted frizzled-related protein 4, a soluble Wnt inhibitor. Mice deficient in Sfrp4, like persons with Pyle's disease, have increased amounts of trabecular bone and unusually thin cortical bone, as a result of differential regulation of Wnt and bone morphogenetic protein (BMP) signaling in these two bone compartments. Treatment of Sfrp4-deficient mice with a soluble Bmp2 receptor (RAP-661) or with antibodies to sclerostin corrected the cortical-bone defect. CONCLUSIONS Our study showed that Pyle's disease was caused by a deficiency of sFRP4, that cortical-bone and trabecular-bone homeostasis were governed by different mechanisms, and that sFRP4-mediated cross-regulation between Wnt and BMP signaling was critical for achieving proper cortical-bone thickness and stability. (Funded by the Swiss National Foundation and the National Institutes of Health.).
Collapse
|
20
|
Bögershausen N, Tsai IC, Pohl E, Kiper PÖS, Beleggia F, Percin EF, Keupp K, Matchan A, Milz E, Alanay Y, Kayserili H, Liu Y, Banka S, Kranz A, Zenker M, Wieczorek D, Elcioglu N, Prontera P, Lyonnet S, Meitinger T, Stewart AF, Donnai D, Strom TM, Boduroglu K, Yigit G, Li Y, Katsanis N, Wollnik B. RAP1-mediated MEK/ERK pathway defects in Kabuki syndrome. J Clin Invest 2015; 125:3585-99. [PMID: 26280580 PMCID: PMC4588287 DOI: 10.1172/jci80102] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 07/09/2015] [Indexed: 02/06/2023] Open
Abstract
The genetic disorder Kabuki syndrome (KS) is characterized by developmental delay and congenital anomalies. Dominant mutations in the chromatin regulators lysine (K)-specific methyltransferase 2D (KMT2D) (also known as MLL2) and lysine (K)-specific demethylase 6A (KDM6A) underlie the majority of cases. Although the functions of these chromatin-modifying proteins have been studied extensively, the physiological systems regulated by them are largely unknown. Using whole-exome sequencing, we identified a mutation in RAP1A that was converted to homozygosity as the result of uniparental isodisomy (UPD) in a patient with KS and a de novo, dominant mutation in RAP1B in a second individual with a KS-like phenotype. We elucidated a genetic and functional interaction between the respective KS-associated genes and their products in zebrafish models and patient cell lines. Specifically, we determined that dysfunction of known KS genes and the genes identified in this study results in aberrant MEK/ERK signaling as well as disruption of F-actin polymerization and cell intercalation. Moreover, these phenotypes could be rescued in zebrafish models by rebalancing MEK/ERK signaling via administration of small molecule inhibitors of MEK. Taken together, our studies suggest that the KS pathophysiology overlaps with the RASopathies and provide a potential direction for treatment design.
Collapse
|
21
|
Kurt-Sukur ED, Simsek-Kiper PO, Utine GE, Boduroglu K, Alanay Y. Experience of a skeletal dysplasia registry in Turkey: A five-years retrospective analysis. Am J Med Genet A 2015; 167A:2065-74. [DOI: 10.1002/ajmg.a.37122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/04/2015] [Indexed: 02/01/2023]
|
22
|
Kilic E, Yigit G, Utine GE, Wollnik B, Mihci E, Nur BG, Boduroglu K. A novel mutation in RNU4ATAC in a patient with microcephalic osteodysplastic primordial dwarfism type I. Am J Med Genet A 2015; 167A:919-21. [PMID: 25735804 DOI: 10.1002/ajmg.a.36955] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/21/2014] [Indexed: 11/11/2022]
|
23
|
Naot D, Choi A, Musson DS, Simsek Kiper PÖ, Utine GE, Boduroglu K, Peacock M, DiMeglio LA, Cundy T. Novel homozygous mutations in the osteoprotegerin gene TNFRSF11B in two unrelated patients with juvenile Paget's disease. Bone 2014; 68:6-10. [PMID: 25108083 DOI: 10.1016/j.bone.2014.07.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
Abstract
Most patients with juvenile Paget's disease (JPD) are homozygous for mutations in the gene TNFRSF11B that result in deficiency of osteoprotegerin (OPG) - a key regulator of bone turnover. So far, about 10 different OPG mutations have been described. The current study presents two novel OPG mutations in JPD patients. Patient 1 was diagnosed at the age of 9months when he presented with inability to sit up, slow growth, marked bone pain and very high levels of serum alkaline phosphatase. Patient 2 presented a milder phenotype. He was initially diagnosed with osteogenesis imperfecta, and although he had numerous fractures and bone deformity, he was still independently mobile at the age of 19years, when a diagnosis of JPD was confirmed. Sequence analysis of DNA samples from the patients determined two novel homozygous mutations in TNFSRF11B. Patient 1 (severe phenotype) had a large (245-251kbp) homozygous deletion beginning in intron 1 that resulted in loss of 4 of the 5 exons of TNFSRF11B, including the whole ligand-binding domain. Patient 2 had a homozygous missense mutation resulting in a Thr>Pro change in exon 2 of TNFSRF11B that is predicted to disrupt the OPG ligand-binding domain. Taken in conjunction with other published cases, these results are consistent with the hypothesis that the most severe phenotypes in JPD are seen in patients with major gene deletions or mutations affecting cysteine residues in the ligand-binding domain.
Collapse
|
24
|
Simsek-Kiper PO, Dikoglu E, Campos-Xavier B, Utine GE, Bonafe L, Unger S, Boduroglu K, Superti-Furga A. Positive effects of an angiotensin II type 1 receptor antagonist in Camurati-Engelmann disease: A single case observation. Am J Med Genet A 2014; 164A:2667-71. [DOI: 10.1002/ajmg.a.36692] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/20/2014] [Indexed: 11/10/2022]
|
25
|
Simsek-Kiper PO, Roach E, Utine GE, Boduroglu K. Barraquer-Simons syndrome: a rare clinical entity. Am J Med Genet A 2014; 164A:1756-60. [PMID: 24788242 DOI: 10.1002/ajmg.a.36491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 01/05/2014] [Indexed: 11/07/2022]
Abstract
The Barraquer-Simons syndrome or acquired parital lipodystrophy is a rare form of partial lipodystrophy characterized by gradual onset of bilaterally symmetrical subcutaneous fat loss from the face, neck, upper extremities, thorax, and abdomen but sparing the lower extremities. The patients gradually loose their subcutaneous fat in clearly demarcated, generally symmetric areas of the body over several years. Nephropathy, myopathy, deafness, epilepsy, and intellectual disability have also been described. Although the etiology is unknown, heterozygous mutations in the gene encoding one of the nuclear lamina proteins, lamin B2, have been reported in several patients. We here report on a young female patient affected by Barraquer-Simons syndrome, without accompanying renal or central nervous system involvement in whom DNA sequencing did not reveal any mutations in the genes LMNB2, LMNA, PPARG, AGPAT2, BSCL2, CAV1, PTRF, PLIN1, and CIDEC.
Collapse
|