1
|
Dungrawala H, Rose KL, Bhat KP, Mohni KN, Glick GG, Couch FB, Cortez D. The Replication Checkpoint Prevents Two Types of Fork Collapse without Regulating Replisome Stability. Mol Cell 2015; 59:998-1010. [PMID: 26365379 DOI: 10.1016/j.molcel.2015.07.030] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/17/2015] [Accepted: 07/28/2015] [Indexed: 02/06/2023]
Abstract
The ATR replication checkpoint ensures that stalled forks remain stable when replisome movement is impeded. Using an improved iPOND protocol combined with SILAC mass spectrometry, we characterized human replisome dynamics in response to fork stalling. Our data provide a quantitative picture of the replisome and replication stress response proteomes in 32 experimental conditions. Importantly, rather than stabilize the replisome, the checkpoint prevents two distinct types of fork collapse. Unsupervised hierarchical clustering of protein abundance on nascent DNA is sufficient to identify protein complexes and place newly identified replisome-associated proteins into functional pathways. As an example, we demonstrate that ZNF644 complexes with the G9a/GLP methyltransferase at replication forks and is needed to prevent replication-associated DNA damage. Our data reveal how the replication checkpoint preserves genome integrity, provide insights into the mechanism of action of ATR inhibitors, and will be a useful resource for replication, DNA repair, and chromatin investigators.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
289 |
2
|
Hall DH, Winfrey VP, Blaeuer G, Hoffman LH, Furuta T, Rose KL, Hobert O, Greenstein D. Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma. Dev Biol 1999; 212:101-23. [PMID: 10419689 DOI: 10.1006/dbio.1999.9356] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetic and embryological experiments have established the Caenorhabditis elegans adult hermaphrodite gonad as a paradigm for studying the control of germline development and the role of soma-germline interactions. We describe ultrastructural features relating to essential germline events and the soma-germline interactions upon which they depend, as revealed by electron and fluorescence microscopy. Gap junctions were observed between oocytes and proximal gonadal sheath cells that contract to ovulate the oocyte. These gap junctions must be evanescent since individual oocytes lose contact with sheath cells when they are ovulated. In addition, proximal sheath cells are coupled to each other by gap junctions. Within proximal sheath cells, actin/myosin bundles are anchored to the plasma membrane at plaque-like structures we have termed hemi-adherens junctions, which in turn are closely associated with the gonadal basal lamina. Gap junctions and hemi-adherens junctions are likely to function in the coordinated series of contractions required to ovulate the mature oocyte. Proximal sheath cells are fenestrated with multiple small pores forming conduits from the gonadal basal lamina to the surface of the oocyte, passing through the sheath cell. In most instances where pores occur, extracellular yolk particles penetrate the gonadal basal lamina to directly touch the underlying oocytes. Membrane-bounded yolk granules were generally not found in the sheath cytoplasm by either electron microscopy or fluorescence microscopy. Electron microscopic immunocytochemistry was used to confirm and characterize the appearance of yolk protein in cytoplasmic organelles within the oocyte and in free particles in the pseudocoelom. The primary route of yolk transport apparently proceeds from the intestine into the pseudocoelom, then through sheath pores to the surface of the oocyte, where endocytosis occurs. Scanning electron microscopy was used to directly visualize the distal tip cell which extends tentacle-like processes that directly contact distal germ cells. These distal tip cell processes are likely to play a critical role in promoting germline mitosis. Scanning electron microscopy also revealed thin filopodia extending from the distal sheath cells. Distal sheath filopodia were also visualized using a green fluorescent protein reporter gene fusion and confocal microscopy. Distal sheath filopodia may function to stretch the sheath over the distal arm.
Collapse
|
|
26 |
254 |
3
|
Joo JH, Dorsey FC, Joshi A, Hennessy-Walters KM, Rose KL, McCastlain K, Zhang J, Iyengar R, Jung CH, Suen DF, Steeves MA, Yang CY, Prater SM, Kim DH, Thompson CB, Youle RJ, Ney PA, Cleveland JL, Kundu M. Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Mol Cell 2011; 43:572-85. [PMID: 21855797 DOI: 10.1016/j.molcel.2011.06.018] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 04/21/2011] [Accepted: 06/24/2011] [Indexed: 12/26/2022]
Abstract
Autophagy, the primary recycling pathway of cells, plays a critical role in mitochondrial quality control under normal growth conditions and in the response to cellular stress. The Hsp90-Cdc37 chaperone complex coordinately regulates the activity of select kinases to orchestrate many facets of the stress response. Although both maintain mitochondrial integrity, the relationship between Hsp90-Cdc37 and autophagy has not been well characterized. Ulk1, one of the mammalian homologs of yeast Atg1, is a serine-threonine kinase required for mitophagy. Here we show that the interaction between Ulk1 and Hsp90-Cdc37 stabilizes and activates Ulk1, which in turn is required for the phosphorylation and release of Atg13 from Ulk1, and for the recruitment of Atg13 to damaged mitochondria. Hsp90-Cdc37, Ulk1, and Atg13 phosphorylation are all required for efficient mitochondrial clearance. These findings establish a direct pathway that integrates Ulk1- and Atg13-directed mitophagy with the stress response coordinated by Hsp90 and Cdc37.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
196 |
4
|
Pickering MC, Warren J, Rose KL, Carlucci F, Wang Y, Walport MJ, Cook HT, Botto M. Prevention of C5 activation ameliorates spontaneous and experimental glomerulonephritis in factor H-deficient mice. Proc Natl Acad Sci U S A 2006; 103:9649-54. [PMID: 16769899 PMCID: PMC1476693 DOI: 10.1073/pnas.0601094103] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membranoproliferative glomerulonephritis (MPGN) type II (dense deposit disease) is an inflammatory renal disease characterized by electron-dense deposits and complement C3 on the glomerular basement membrane. There is no effective therapy. We investigated the role of C5 activation in a model of MPGN that develops spontaneously in complement factor H-deficient mice (Cfh(-/-)). At 12 months there was a significant reduction in mortality, glomerular cellularity, neutrophil numbers, and serum creatinine levels in Cfh(-/-) mice deficient in C5. Excessive glomerular neutrophil numbers, frequently seen in patients with MPGN during disease flares, were also observed in Cfh(-/-) mice after the administration of an antiglomerular basement membrane antibody. This exaggerated injurious phenotype was absent in Cfh(-/-) mice deficient in C5 but not in Cfh(-/-) mice deficient in C6, indicating a key role for C5 activation in the induction of renal lesions. Importantly, the renal injury was completely reversed in Cfh(-/-) mice pretreated with an anti-murine C5 antibody. These results demonstrate an important role for C5 in both spontaneous MPGN and experimentally induced nephritis in factor H-deficient mice and provide preliminary evidence that C5 inhibition therapy might be useful in human MPGN type II.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
115 |
5
|
Spraggins JM, Rizzo DG, Moore JL, Rose KL, Hammer ND, Skaar EP, Caprioli RM. MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy to Link Protein Images with Proteomics Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:974-85. [PMID: 25904064 PMCID: PMC4442642 DOI: 10.1007/s13361-015-1147-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 05/11/2023]
Abstract
MALDI imaging mass spectrometry is a highly sensitive and selective tool used to visualize biomolecules in tissue. However, identification of detected proteins remains a difficult task. Indirect identification strategies have been limited by insufficient mass accuracy to confidently link ion images to proteomics data. Here, we demonstrate the capabilities of MALDI FTICR MS for imaging intact proteins. MALDI FTICR IMS provides an unprecedented combination of mass resolving power (~75,000 at m/z 5000) and accuracy (<5ppm) for proteins up to ~12kDa, enabling identification based on correlation with LC-MS/MS proteomics data. Analysis of rat brain tissue was performed as a proof-of-concept highlighting the capabilities of this approach by imaging and identifying a number of proteins including N-terminally acetylated thymosin β(4) (m/z 4,963.502, 0.6ppm) and ATP synthase subunit ε (m/z 5,636.074, -2.3ppm). MALDI FTICR IMS was also used to differentiate a series of oxidation products of S100A8 (m/z 10,164.03, -2.1ppm), a subunit of the heterodimer calprotectin, in kidney tissue from mice infected with Staphylococcus aureus. S100A8 - M37O/C42O(3) (m/z 10228.00, -2.6ppm) was found to co-localize with bacterial microcolonies at the center of infectious foci. The ability of MALDI FTICR IMS to distinguish S100A8 modifications is critical to understanding calprotectin's roll in nutritional immunity.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
91 |
6
|
Galligan JJ, Rose KL, Beavers WN, Hill S, Tallman KA, Tansey WP, Marnett LJ. Stable histone adduction by 4-oxo-2-nonenal: a potential link between oxidative stress and epigenetics. J Am Chem Soc 2014; 136:11864-6. [PMID: 25099620 PMCID: PMC4151707 DOI: 10.1021/ja503604t] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Lipid
electrophiles modify cellular targets, altering their function.
Here, we describe histones as major targets for modification by 4-oxo-2-nonenal,
resulting in a stable Lys modification structurally analogous to other
histone Lys acylations. Seven adducts were identified in chromatin
isolated from intact cells: four 4-ketoamides to Lys and three Michael
adducts to His. A 4-ketoamide adduct residing at H3K27 was identified
in stimulated macrophages. Modification of histones H3 and H4 prevented
nucleosome assembly.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
90 |
7
|
Udeshi ND, Compton PD, Shabanowitz J, Hunt DF, Rose KL. Methods for analyzing peptides and proteins on a chromatographic timescale by electron-transfer dissociation mass spectrometry. Nat Protoc 2008; 3:1709-17. [PMID: 18927556 PMCID: PMC2860270 DOI: 10.1038/nprot.2008.159] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Advancement in proteomics research relies on the development of new, innovative tools for identifying and characterizing proteins. Here, we describe a protocol for analyzing peptides and proteins on a chromatographic timescale by coupling nanoflow reverse-phase (RP) liquid chromatography (LC) to electron-transfer dissociation (ETD) mass spectrometry. For this protocol, proteins can be proteolytically digested before ETD analysis, although digestion is not necessary for all applications. Proteins
Collapse
|
Research Support, N.I.H., Extramural |
17 |
82 |
8
|
Dryhurst D, Ishibashi T, Rose KL, Eirín-López JM, McDonald D, Silva-Moreno B, Veldhoen N, Helbing CC, Hendzel MJ, Shabanowitz J, Hunt DF, Ausió J. Characterization of the histone H2A.Z-1 and H2A.Z-2 isoforms in vertebrates. BMC Biol 2009; 7:86. [PMID: 20003410 PMCID: PMC2805615 DOI: 10.1186/1741-7007-7-86] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 12/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Within chromatin, the histone variant H2A.Z plays a role in many diverse nuclear processes including transcription, preventing the spread of heterochromatin and epigenetic transcriptional memory. The molecular mechanisms of how H2A.Z mediates its effects are not entirely understood. However, it is now known that H2A.Z has two protein isoforms in vertebrates, H2A.Z-1 and H2A.Z-2, which are encoded by separate genes and differ by 3 amino acid residues. RESULTS We report that H2A.Z-1 and H2A.Z-2 are expressed across a wide range of human tissues, they are both acetylated at lysine residues within the N-terminal region and they exhibit similar, but nonidentical, distributions within chromatin. Our results suggest that H2A.Z-2 preferentially associates with H3 trimethylated at lysine 4 compared to H2A.Z-1. The phylogenetic analysis of the promoter regions of H2A.Z-1 and H2A.Z-2 indicate that they have evolved separately during vertebrate evolution. CONCLUSIONS Our biochemical, gene expression, and phylogenetic data suggest that the H2A.Z-1 and H2A.Z-2 variants function similarly yet they may have acquired a degree of functional independence.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
80 |
9
|
Rose KL, Winfrey VP, Hoffman LH, Hall DH, Furuta T, Greenstein D. The POU gene ceh-18 promotes gonadal sheath cell differentiation and function required for meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol 1997; 192:59-77. [PMID: 9405097 DOI: 10.1006/dbio.1997.8728] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Caenorhabditis elegans, specialized contractile myoepithelial cells of the somatic gonad, the gonadal sheath cells, are closely apposed to oocytes and are required for normal meiotic maturation and ovulation. Previously we found that mutations in the ceh-18 gene, which encodes a POU-class homeoprotein expressed in sheath cells, result in oocyte defects. To determine the basis for these oocyte defects, we have used time-lapse video Nomarski microscopy to observe meiotic maturation, ovulation, and early embryogenesis in ceh-18 mutants. In ceh-18 mutants sheath cell contractions are weaker, less frequent, and uncoordinated throughout the sequence of ovulation events, and ovulation is defective. Defective ovulation can result in the formation of endomitotic oocytes in the gonad, the formation of haploid embryos, and reversals in embryonic polarity. ceh-18 mutant oocytes exhibit defects prior to nuclear envelope breakdown, suggesting that they are physiologically different from the wild type. We observed delays in meiotic maturation, as well as maturation out of the normal spatial and temporal sequence, suggesting that proximal sheath cells directly or indirectly promote and spatially restrict meiotic maturation. Analysis of sheath cell differentiation in ceh-18 mutants using antibodies to proteins of the contractile apparatus reveals that although contractile proteins are expressed, the sheath cells appear disorganized. Transmission electron microscopy reveals that ceh-18 mutant sheath cells are morphologically irregular and only loosely cover oocytes. Taken together, these observations indicate that ceh-18 is a crucial determinant of sheath cell differentiation, a function required for normal meiotic maturation and ovulation.
Collapse
|
|
28 |
78 |
10
|
Ishibashi T, Dryhurst D, Rose KL, Shabanowitz J, Hunt DF, Ausió J. Acetylation of vertebrate H2A.Z and its effect on the structure of the nucleosome. Biochemistry 2009; 48:5007-17. [PMID: 19385636 DOI: 10.1021/bi900196c] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Purified histone H2A.Z from chicken erythrocytes and a sodium butyrate-treated chicken erythroleukemic cell line was used as a model system to identify the acetylation sites (K4, K7, K11, K13, and K15) and quantify their distribution in this vertebrate histone variant. To understand the role played by acetylation in the modulation of the H2A.Z nucleosome core particle (NCP) stability and conformation, an extensive analysis was conducted on NCPs reconstituted from acetylated forms of histones, including H2A.Z and recombinant H2A.Z (K/Q) acetylation mimic mutants. Although the overall global acetylation of core histones destabilizes the NCP, we found that H2A.Z stabilizes the NCP regardless of its state of acetylation. Interestingly and quite unexpectedly, we found that the change in NCP conformation induced by global histone acetylation is dependent on H2A/H2A.Z acetylation. This suggests that acetylated H2A variants act synergistically with the acetylated forms of the core histone complement to alter the particle conformation. Furthermore, the simultaneous occurrence of H2A.Z and H2A in heteromorphic NCPs that most likely occurs in vivo slightly destabilizes the NCP, but only in the presence of acetylation.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
74 |
11
|
Kim B, Arcos S, Rothamel K, Jian J, Rose KL, McDonald WH, Bian Y, Reasoner S, Barrows NJ, Bradrick S, Garcia-Blanco MA, Ascano M. Discovery of Widespread Host Protein Interactions with the Pre-replicated Genome of CHIKV Using VIR-CLASP. Mol Cell 2020; 78:624-640.e7. [PMID: 32380061 PMCID: PMC7263428 DOI: 10.1016/j.molcel.2020.04.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022]
Abstract
The primary interactions between incoming viral RNA genomes and host proteins are crucial to infection and immunity. Until now, the ability to study these events was lacking. We developed viral cross-linking and solid-phase purification (VIR-CLASP) to characterize the earliest interactions between viral RNA and cellular proteins. We investigated the infection of human cells using Chikungunya virus (CHIKV) and influenza A virus and identified hundreds of direct RNA-protein interactions. Here, we explore the biological impact of three protein classes that bind CHIKV RNA within minutes of infection. We find CHIKV RNA binds and hijacks the lipid-modifying enzyme fatty acid synthase (FASN) for pro-viral activity. We show that CHIKV genomes are N6-methyladenosine modified, and YTHDF1 binds and suppresses CHIKV replication. Finally, we find that the innate immune DNA sensor IFI16 associates with CHIKV RNA, reducing viral replication and maturation. Our findings have direct applicability to the investigation of potentially all RNA viruses.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
73 |
12
|
Chaturvedi R, Asim M, Piazuelo MB, Yan F, Barry DP, Sierra JC, Delgado AG, Hill S, Casero RA, Bravo LE, Dominguez RL, Correa P, Polk DB, Washington MK, Rose KL, Schey KL, Morgan DR, Peek RM, Wilson KT. Activation of EGFR and ERBB2 by Helicobacter pylori results in survival of gastric epithelial cells with DNA damage. Gastroenterology 2014; 146:1739-51.e14. [PMID: 24530706 PMCID: PMC4035375 DOI: 10.1053/j.gastro.2014.02.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/06/2014] [Accepted: 02/09/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The gastric cancer-causing pathogen Helicobacter pylori up-regulates spermine oxidase (SMOX) in gastric epithelial cells, causing oxidative stress-induced apoptosis and DNA damage. A subpopulation of SMOX(high) cells are resistant to apoptosis, despite their high levels of DNA damage. Because epidermal growth factor receptor (EGFR) activation can regulate apoptosis, we determined its role in SMOX-mediated effects. METHODS SMOX, apoptosis, and DNA damage were measured in gastric epithelial cells from H. pylori-infected Egfr(wa5) mice (which have attenuated EGFR activity), Egfr wild-type mice, or in infected cells incubated with EGFR inhibitors or deficient in EGFR. A phosphoproteomic analysis was performed. Two independent tissue microarrays containing each stage of disease, from gastritis to carcinoma, and gastric biopsy specimens from Colombian and Honduran cohorts were analyzed by immunohistochemistry. RESULTS SMOX expression and DNA damage were decreased, and apoptosis increased in H. pylori-infected Egfr(wa5) mice. H. pylori-infected cells with deletion or inhibition of EGFR had reduced levels of SMOX, DNA damage, and DNA damage(high) apoptosis(low) cells. Phosphoproteomic analysis showed increased EGFR and erythroblastic leukemia-associated viral oncogene B (ERBB)2 signaling. Immunoblot analysis showed the presence of a phosphorylated (p)EGFR-ERBB2 heterodimer and pERBB2; knockdown of ErbB2 facilitated apoptosis of DNA damage(high) apoptosis(low) cells. SMOX was increased in all stages of gastric disease, peaking in tissues with intestinal metaplasia, whereas pEGFR, pEGFR-ERBB2, and pERBB2 were increased predominantly in tissues showing gastritis or atrophic gastritis. Principal component analysis separated gastritis tissues from patients with cancer vs those without cancer. pEGFR, pEGFR-ERBB2, pERBB2, and SMOX were increased in gastric samples from patients whose disease progressed to intestinal metaplasia or dysplasia, compared with patients whose disease did not progress. CONCLUSIONS In an analysis of gastric tissues from mice and patients, we identified a molecular signature (based on levels of pEGFR, pERBB2, and SMOX) for the initiation of gastric carcinogenesis.
Collapse
|
Multicenter Study |
11 |
70 |
13
|
Dorsey FC, Rose KL, Coenen S, Prater SM, Cavett V, Cleveland JL, Caldwell-Busby J. Mapping the phosphorylation sites of Ulk1. J Proteome Res 2010; 8:5253-63. [PMID: 19807128 DOI: 10.1021/pr900583m] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ulk1 is a serine/threonine kinase that controls macroautophagy, an essential homeostatic recycling pathway that degrades bulk cytoplasmic material and directs the turnover of organelles such as peroxisomes and mitochondria. Further, macroautophagy is potently induced by signals that trigger metabolic stress, such as hypoxia and amino acid starvation, where its recycling functions provide macromolecules necessary to maintain catabolic metabolism and cell survival. Substrates for Ulk1 have not been identified, and little is known regarding post-translational control of Ulk1 kinase activity and function. To gain insights into the regulatory mechanisms of Ulk1, we developed a robust purification protocol for Ulk1 and demonstrated that Ulk1 is highly phosphorylated and requires autophosphorylation for stability. Importantly, high-resolution, tandem mass spectrometry identified multiple sites of phosphorylation on Ulk1, including several within domains known to regulate macroautophagy. Differential phosphorylation analyses also identified sites of phosphorylation in the C-terminal domain that depend upon or require Ulk1 autophosphorylation.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
61 |
14
|
Schey KL, Anderson DM, Rose KL. Spatially-directed protein identification from tissue sections by top-down LC-MS/MS with electron transfer dissociation. Anal Chem 2013; 85:6767-74. [PMID: 23718750 DOI: 10.1021/ac400832w] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
MALDI imaging mass spectrometry (MALDI-IMS) has become a powerful tool for localizing both small molecules and intact proteins in a wide variety of tissue samples in both normal and diseased states. Identification of imaged signals in MALDI-IMS remains a bottleneck in the analysis and limits the interpretation of underlying biology of tissue specimens. In this work, spatially directed tissue microextraction of intact proteins followed by LC-MS/MS with electron transfer dissociation (ETD) was used to identify proteins from specific locations in three tissue types; ocular lens, brain, and kidney. Detection limits were such that a 1 μL extraction volume was sufficient to deliver proteins to the LC-MS/MS instrumentation with sufficient sensitivity to detect 50-100 proteins in a single experiment. Additionally, multiple modified proteins were identified; including truncated lens proteins that would be difficult to assign to an imaged mass using a bottom-up approach. Protein separation and identification are expected to improve with advances in intact protein fractionation/chromatography and advances in interpretation algorithms leading to increased depth of proteome coverage from distinct tissue locations.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
58 |
15
|
Shonesy BC, Wang X, Rose KL, Ramikie TS, Cavener VS, Rentz T, Baucum AJ, Jalan-Sakrikar N, Mackie K, Winder DG, Patel S, Colbran RJ. CaMKII regulates diacylglycerol lipase-α and striatal endocannabinoid signaling. Nat Neurosci 2013; 16:456-63. [PMID: 23502535 PMCID: PMC3636998 DOI: 10.1038/nn.3353] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/13/2013] [Indexed: 12/15/2022]
Abstract
The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates activity-dependent depression of excitatory neurotransmission at central synapses; however, the molecular regulation of 2-AG synthesis is not well understood. Here we identify a novel functional interaction between the 2-AG synthetic enzyme diacylglycerol lipase-α (DGLα) and calcium/calmodulin dependent protein kinase II (CaMKII). Activated CaMKII interacts with the C-terminal domain of DGLα, phosphorylates two serine residues, and inhibits DGLα activity. Moreover, CaMKII inhibition augments short-term retrograde eCB signaling at striatal glutamatergic synapses. Consistent with an inhibitory role for CaMKII in synaptic 2-AG synthesis, in vivo genetic inhibition of CaMKII increases striatal DGL activity and basal 2-AG levels. Moreover, blockade of 2-AG breakdown using concentrations of JZL-184 that have no significant effect in wild type mice produces a hypo-locomotor response in mice with reduced CaMKII activity. These findings provide novel mechanistic insight into the molecular regulation of striatal eCB signaling with implications for physiological control of motor function.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
57 |
16
|
Attia AS, Schroeder KA, Seeley EH, Wilson KJ, Hammer ND, Colvin DC, Manier ML, Nicklay JJ, Rose KL, Gore JC, Caprioli RM, Skaar EP. Monitoring the inflammatory response to infection through the integration of MALDI IMS and MRI. Cell Host Microbe 2012; 11:664-73. [PMID: 22704626 DOI: 10.1016/j.chom.2012.04.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/30/2012] [Accepted: 04/20/2012] [Indexed: 11/26/2022]
Abstract
Systemic bacterial infection is characterized by a robust whole-organism inflammatory response. Analysis of the immune response to infection involves technologies that typically focus on single organ systems and lack spatial information. Additionally, the analysis of individual inflammatory proteins requires antibodies specific to the protein of interest, limiting the panel of proteins that can be analyzed. Herein we describe the application of matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) to mice systemically infected with Staphylococcus aureus to identify inflammatory protein masses that respond to infection throughout an entire infected animal. Integrating the resolution afforded by magnetic resonance imaging (MRI) with the sensitivity of MALDI IMS provides three-dimensional spatially resolved information regarding the distribution of innate immune proteins during systemic infection, allowing comparisons to in vivo structural information and soft-tissue contrast via MRI. Thus, integrating MALDI IMS with MRI provides a systems-biology approach to study inflammation during infection.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
52 |
17
|
Sierra JC, Piazuelo MB, Luis PB, Barry DP, Allaman MM, Asim M, Sebrell TA, Finley JL, Rose KL, Hill S, Holshouser SL, Casero RA, Cleveland JL, Woster PM, Schey KL, Bimczok D, Schneider C, Gobert AP, Wilson KT. Spermine oxidase mediates Helicobacter pylori-induced gastric inflammation, DNA damage, and carcinogenic signaling. Oncogene 2020; 39:4465-4474. [PMID: 32350444 PMCID: PMC7260102 DOI: 10.1038/s41388-020-1304-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 01/05/2023]
Abstract
Helicobacter pylori infection is the main risk factor for the development of gastric cancer, the third leading cause of cancer death worldwide. H. pylori colonizes the human gastric mucosa and persists for decades. The inflammatory response is ineffective in clearing the infection, leading to disease progression that may result in gastric adenocarcinoma. We have shown that polyamines are regulators of the host response to H. pylori, and that spermine oxidase (SMOX), which metabolizes the polyamine spermine into spermidine plus H2O2, is associated with increased human gastric cancer risk. We now used a molecular approach to directly address the role of SMOX, and demonstrate that Smox-deficient mice exhibit significant reductions of gastric spermidine levels and H. pylori-induced inflammation. Proteomic analysis revealed that cancer was the most significantly altered functional pathway in Smox-/- gastric organoids. Moreover, there was also less DNA damage and β-catenin activation in H. pylori-infected Smox-/- mice or gastric organoids, compared to infected wild-type animals or gastroids. The link between SMOX and β-catenin activation was confirmed in human gastric organoids that were treated with a novel SMOX inhibitor. These findings indicate that SMOX promotes H. pylori-induced carcinogenesis by causing inflammation, DNA damage, and activation of β-catenin signaling.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
51 |
18
|
Cassat JE, Moore JL, Wilson KJ, Stark Z, Prentice BM, Van de Plas R, Perry WJ, Zhang Y, Virostko J, Colvin DC, Rose KL, Judd AM, Reyzer ML, Spraggins JM, Grunenwald CM, Gore JC, Caprioli RM, Skaar EP. Integrated molecular imaging reveals tissue heterogeneity driving host-pathogen interactions. Sci Transl Med 2019. [PMID: 29540616 DOI: 10.1126/scitranslmed.aan6361] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diseases are characterized by distinct changes in tissue molecular distribution. Molecular analysis of intact tissues traditionally requires preexisting knowledge of, and reagents for, the targets of interest. Conversely, label-free discovery of disease-associated tissue analytes requires destructive processing for downstream identification platforms. Tissue-based analyses therefore sacrifice discovery to gain spatial distribution of known targets or sacrifice tissue architecture for discovery of unknown targets. To overcome these obstacles, we developed a multimodality imaging platform for discovery-based molecular histology. We apply this platform to a model of disseminated infection triggered by the pathogen Staphylococcus aureus, leading to the discovery of infection-associated alterations in the distribution and abundance of proteins and elements in tissue in mice. These data provide an unbiased, three-dimensional analysis of how disease affects the molecular architecture of complex tissues, enable culture-free diagnosis of infection through imaging-based detection of bacterial and host analytes, and reveal molecular heterogeneity at the host-pathogen interface.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
51 |
19
|
Baucum AJ, Shonesy BC, Rose KL, Colbran RJ. Quantitative proteomics analysis of CaMKII phosphorylation and the CaMKII interactome in the mouse forebrain. ACS Chem Neurosci 2015; 6:615-31. [PMID: 25650780 PMCID: PMC4609176 DOI: 10.1021/cn500337u] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) autophosphorylation at Thr286 and Thr305/Thr306 regulates kinase activity and modulates subcellular targeting and is critical for normal synaptic plasticity and learning and memory. Here, a mass spectrometry-based approach was used to identify Ca(2+)-dependent and -independent in vitro autophosphorylation sites in recombinant CaMKIIα and CaMKIIβ. CaMKII holoenzymes were then immunoprecipitated from subcellular fractions of forebrains isolated from either wild-type (WT) mice or mice with a Thr286 to Ala knock-in mutation of CaMKIIα (T286A-KI mice) and analyzed using the same approach in order to characterize in vivo phosphorylation sites in both CaMKII isoforms and identify CaMKII-associated proteins (CaMKAPs). A total of six and seven autophosphorylation sites in CaMKIIα and CaMKIIβ, respectively, were detected in WT mice. Thr286-phosphorylated CaMKIIα and Thr287-phosphorylated CaMKIIβ were selectively enriched in WT Triton-insoluble (synaptic) fractions compared to Triton-soluble (membrane) and cytosolic fractions. In contrast, Thr306-phosphorylated CaMKIIα and Ser315- and Thr320/Thr321-phosphorylated CaMKIIβ were selectively enriched in WT cytosolic fractions. The T286A-KI mutation significantly reduced levels of phosphorylation of CaMKIIα at Ser275 across all subcellular fractions and of cytosolic CaMKIIβ at Ser315 and Thr320/Thr321. Significantly more CaMKAPs coprecipitated with WT CaMKII holoenzymes in the synaptic fraction compared to that in the membrane fraction, with functions including scaffolding, microtubule organization, actin organization, ribosomal function, vesicle trafficking, and others. The T286A-KI mutation altered the interactions of multiple CaMKAPs with CaMKII, including several proteins linked to autism spectrum disorders. These data identify CaMKII isoform phosphorylation sites and a network of synaptic protein interactions that are sensitive to the abrogation of Thr286 autophosphorylation of CaMKIIα, likely contributing to the diverse synaptic and behavioral deficits of T286A-KI mice.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
49 |
20
|
Qi Y, Wang X, Rose KL, MacDonald WH, Zhang B, Schey KL, Luther JM. Activation of the Endogenous Renin-Angiotensin-Aldosterone System or Aldosterone Administration Increases Urinary Exosomal Sodium Channel Excretion. J Am Soc Nephrol 2015; 27:646-56. [PMID: 26113616 DOI: 10.1681/asn.2014111137] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/22/2015] [Indexed: 01/01/2023] Open
Abstract
Urinary exosomes secreted by multiple cell types in the kidney may participate in intercellular signaling and provide an enriched source of kidney-specific proteins for biomarker discovery. Factors that alter the exosomal protein content remain unknown. To determine whether endogenous and exogenous hormones modify urinary exosomal protein content, we analyzed samples from 14 mildly hypertensive patients in a crossover study during a high-sodium (HS, 160 mmol/d) diet and low-sodium (LS, 20 mmol/d) diet to activate the endogenous renin-angiotensin-aldosterone system. We further analyzed selected exosomal protein content in a separate cohort of healthy persons receiving intravenous aldosterone (0.7 μg/kg per hour for 10 hours) versus vehicle infusion. The LS diet increased plasma renin activity and aldosterone concentration, whereas aldosterone infusion increased only aldosterone concentration. Protein analysis of paired urine exosome samples by liquid chromatography-tandem mass spectrometry-based multidimensional protein identification technology detected 2775 unique proteins, of which 316 exhibited significantly altered abundance during LS diet. Sodium chloride cotransporter (NCC) and α- and γ-epithelial sodium channel (ENaC) subunits from the discovery set were verified using targeted multiple reaction monitoring mass spectrometry quantified with isotope-labeled peptide standards. Dietary sodium restriction or acute aldosterone infusion similarly increased urine exosomal γENaC[112-122] peptide concentrations nearly 20-fold, which correlated with plasma aldosterone concentration and urinary Na/K ratio. Urine exosomal NCC and αENaC concentrations were relatively unchanged during these interventions. We conclude that urinary exosome content is altered by renin-angiotensin-aldosterone system activation. Urinary measurement of exosomal γENaC[112-122] concentration may provide a useful biomarker of ENaC activation in future clinical studies.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
47 |
21
|
Heidari Y, Bygrave AE, Rigby RJ, Rose KL, Walport MJ, Cook HT, Vyse TJ, Botto M. Identification of chromosome intervals from 129 and C57BL/6 mouse strains linked to the development of systemic lupus erythematosus. Genes Immun 2006; 7:592-9. [PMID: 16943797 DOI: 10.1038/sj.gene.6364335] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Systemic lupus erythematosus is an autoimmune disease in which complex interactions between genes and environmental factors determine the disease phenotype. We have shown that genes from the non-autoimmune strains 129 and C57BL/6 (B6), commonly used for generating gene-targeted animals, can induce a lupus-like disease. Here, we conducted a genome-wide scan analysis of a cohort of (129 x B6)F2 C1q-deficient mice to identify loci outside the C1qa locus contributing to the autoimmune phenotype described in these mice. The results were then confirmed in a larger dataset obtained by combining the data from the C1q-deficient mice with data from previously reported wild-type mice. Both analyses showed that a 129-derived interval on distal chromosome 1 is strongly linked to autoantibody production. The B6 genome contributed to anti-nuclear autoantibody production with an interval on chromosome 3. Two regions were linked to glomerulonephritis: a 129 interval on proximal chromosome 7 and a B6 interval on chromosome 13. These findings demonstrate that interacting loci between 129 and B6 mice can cause the expression of an autoimmune phenotype in gene-targeted animals in the absence of any disrupted gene. They also indicate that some susceptibility genes can be inherited from the genome of non-autoimmune parental strains.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
36 |
22
|
Wenke JL, Rose KL, Spraggins JM, Schey KL. MALDI Imaging Mass Spectrometry Spatially Maps Age-Related Deamidation and Truncation of Human Lens Aquaporin-0. Invest Ophthalmol Vis Sci 2016; 56:7398-405. [PMID: 26574799 DOI: 10.1167/iovs.15-18117] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To spatially map human lens Aquaporin-0 (AQP0) protein modifications, including lipidation, truncation, and deamidation, from birth through middle age using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). METHODS Human lens sections were water-washed to facilitate detection of membrane protein AQP0. We acquired MALDI images from eight human lenses ranging in age from 2 months to 63 years. In situ tryptic digestion was used to generate peptides of AQP0 and peptide images were acquired on a 15T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Peptide extracts were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and database searched to identify peptides observed in MALDI imaging experiments. RESULTS Unmodified, truncated, and fatty acid-acylated forms of AQP0 were detected in protein imaging experiments. Full-length AQP0 was fatty acid acylated in the core and cortex of young (2- and 4-month) lenses. Acylated and unmodified AQP0 were C-terminally truncated in older lens cores. Deamidated tryptic peptides (+0.9847 Da) were mass resolved from unmodified peptides by FTICR MS. Peptide images revealed differential localization of un-, singly-, and doubly-deamidated AQP0 C-terminal peptide (239-263). Deamidation was present at 4 months and increases with age. Liquid chromatography-MS/MS results indicated N246 undergoes deamidation more rapidly than N259. CONCLUSIONS Results indicated AQP0 fatty acid acylation and deamidation occur during early development. Progressive age-related AQP0 processing, including deamidation and truncation, was mapped in human lenses as a function of age. The localization of these modified AQP0 forms suggests where AQP0 functions may change throughout lens development and aging.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
35 |
23
|
Udeshi ND, Shabanowitz J, Hunt DF, Rose KL. Analysis of proteins and peptides on a chromatographic timescale by electron-transfer dissociation MS. FEBS J 2007; 274:6269-76. [PMID: 18021239 DOI: 10.1111/j.1742-4658.2007.06148.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide and protein sequence analysis using a combination of gas-phase ion-ion chemistry and tandem MS is described. Samples are converted to multiply charged ions by ESI and then allowed to react with fluoranthene radical anions in a quadrupole linear ion trap mass spectrometer. Electron transfer from the radical anion to the multiply charged peptide or protein promotes random fragmentation along the amide backbone that is independent of peptide or protein size, sequence, or the presence of post-translational modifications. Examples are provided that demonstrate the utility of electron-transfer dissociation for characterizing post-translational modifications and for identifying proteins in mixtures on a chromatographic timescale (500 ms/protein).
Collapse
|
Review |
18 |
34 |
24
|
Carter MD, Calcutt MW, Malow BA, Rose KL, Hachey DL. Quantitation of melatonin and n-acetylserotonin in human plasma by nanoflow LC-MS/MS and electrospray LC-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:277-285. [PMID: 22431453 PMCID: PMC3319463 DOI: 10.1002/jms.2051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Melatonin (MEL) and its chemical precursor N-acetylserotonin (NAS) are believed to be potential biomarkers for sleep-related disorders. Measurement of these compounds, however, has proven to be difficult due to their low circulating levels, especially that of NAS. Few methods offer the sensitivity, specificity and dynamic range needed to monitor MEL and its precursors and metabolites in small blood samples, such as those obtained from pediatric patients. In support of our ongoing study to determine the safety, tolerability and PK dosing strategies for MEL in treating insomnia in children with autism spectrum disorder, two highly sensitive LC-MS/MS assays were developed for the quantitation of MEL and precursor NAS at pg/mL levels in small volumes of human plasma. A validated electrospray ionization (ESI) method was used to quantitate high levels of MEL in PK studies, and a validated nanospray (nESI) method was developed for quantitation of MEL and NAS at endogenous levels. In both assays, plasma samples were processed by centrifugal membrane dialysis after addition of stable isotopic internal standards, and the components were separated by either conventional LC using a Waters SymmetryShield RP18 column (2.1 × 100 mm, 3.5 µm) or on a polyimide-coated, fused-silica capillary self-packed with 17 cm AquaC18 (3 µm, 125 Å). Quantitation was done using the SRM transitions m/z 233 → 174 and m/z 219 → 160 for MEL and NAS, respectively. The analytical response ratio versus concentration curves were linear for MEL (nanoflow LC: 11.7-1165 pg/mL, LC: 1165-116,500 pg/mL) and for NAS (nanoflow LC: 11.0-1095 pg/mL).
Collapse
|
Research Support, N.I.H., Extramural |
13 |
32 |
25
|
Voss BJ, Loh JT, Hill S, Rose KL, McDonald WH, Cover TL. Alteration of the Helicobacter pylori membrane proteome in response to changes in environmental salt concentration. Proteomics Clin Appl 2015; 9:1021-34. [PMID: 26109032 DOI: 10.1002/prca.201400176] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/18/2015] [Accepted: 06/22/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE Helicobacter pylori infection and a high dietary salt intake are each risk factors for the development of gastric cancer. We hypothesize that changes in environmental salt concentrations lead to alterations in the H. pylori membrane proteome. EXPERIMENTAL DESIGN Label-free and iTRAQ methods were used to identify H. pylori proteins that change in abundance in response to alterations in environmental salt concentrations. In addition, we biotinylated intact bacteria that were grown under high- or low-salt conditions, and thereby analyzed salt-induced changes in the abundance of surface-exposed proteins. RESULTS Proteins with increased abundance in response to high salt conditions included CagA, the outer membrane protein HopQ, and fibronectin domain-containing protein HP0746. Proteins with increased abundance in response to low salt conditions included VacA, two VacA-like proteins (ImaA and FaaA), outer-membrane iron transporter FecA3, and several proteins involved in flagellar activity. Consistent with the proteomic data, bacteria grown in high salt conditions exhibited decreased motility compared to bacteria grown in lower salt conditions. CONCLUSION AND CLINICAL RELEVANCE Alterations in the H. pylori membrane proteome in response to high salt conditions may contribute to the increased risk of gastric cancer associated with a high salt diet.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
30 |