1
|
Xi D, Xiao M, Cao J, Zhao L, Xu N, Long S, Fan J, Shao K, Sun W, Yan X, Peng X. NIR Light-Driving Barrier-Free Group Rotation in Nanoparticles with an 88.3% Photothermal Conversion Efficiency for Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907855. [PMID: 32022978 DOI: 10.1002/adma.201907855] [Citation(s) in RCA: 335] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/31/2019] [Indexed: 05/14/2023]
Abstract
Traditional photothermal therapy requires high-intensity laser excitation for cancer treatments due to the low photothermal conversion efficiency (PCE) of photothermal agents (PTAs). PTAs with ultra-high PCEs can decrease the required excited light intensity, which allows safe and efficient therapy in deep tissues. In this work, a PTA is synthesized with high PCE of 88.3% based on a BODIPY scaffold, by introducing a CF3 "barrier-free" rotor on the meso-position (tfm-BDP). In both the ground and excited state, the CF3 moiety in tfm-BDP has no energy barrier to rotation, allowing it to efficiently dissipate absorbed (NIR) photons as heat. Importantly, the barrier-free rotation of CF3 can be maintained after encapsulating tfm-BDP into polymeric nanoparticles (NPs). Thus, laser irradiation with safe intensity (0.3 W cm-2 , 808 nm) can lead to complete tumor ablation in tumor-bearing mice after intravenous injection of tfm-BDP NPs. This strategy of "barrier-free rotation" provides a new platform for future design of PTT agents for clinical cancer treatment.
Collapse
|
|
5 |
335 |
2
|
Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P. Nanoparticle-based immunotherapy for cancer. ACS NANO 2015; 9:16-30. [PMID: 25469470 DOI: 10.1021/nn5062029] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The design of nanovaccines capable of triggering effective antitumor immunity requires an understanding of how the immune system senses and responds to threats, including pathogens and tumors. Equally important is an understanding of the mechanisms employed by tumor cells to evade immunity and an appreciation of the deleterious effects that antitumor immune responses can have on tumor growth, such as by skewing tumor cell composition toward immunologically silent tumor cell variants. The immune system and tumors engage in a tug-of-war driven by competition where promoting antitumor immunity or tumor cell death alone may be therapeutically insufficient. Nanotechnology affords a unique opportunity to develop therapeutic compounds than can simultaneously tackle both aspects, favoring tumor eradication. Here, we review the current status of nanoparticle-based immunotherapeutic strategies for the treatment of cancer, ranging from antigen/adjuvant delivery vehicles (to professional antigen-presenting cell types of the immune system) to direct tumor antigen-specific T-lymphocyte-targeting compounds and their combinations thereof.
Collapse
|
Review |
10 |
333 |
3
|
Li M, Shao Y, Kim JH, Pu Z, Zhao X, Huang H, Xiong T, Kang Y, Li G, Shao K, Fan J, Foley JW, Kim JS, Peng X. Unimolecular Photodynamic O 2-Economizer To Overcome Hypoxia Resistance in Phototherapeutics. J Am Chem Soc 2020; 142:5380-5388. [PMID: 32105455 DOI: 10.1021/jacs.0c00734] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor hypoxia has proven to be the major bottleneck of photodynamic therapy (PDT) to clinical transformation. Different from traditional O2 delivery approaches, here we describe an innovative binary photodynamic O2-economizer (PDOE) tactic to reverse hypoxia-driven resistance by designing a superoxide radical (O2•-) generator targeting mitochondria respiration, termed SORgenTAM. This PDOE system is able to block intracellular O2 consumption and down-regulate HIF-1α expression, which successfully rescues cancer cells from becoming hypoxic and relieves the intrinsic hypoxia burden of tumors in vivo, thereby sparing sufficient endogenous O2 for the PDT process. Photosensitization mechanism studies demonstrate that SORgenTAM has an ideal intersystem crossing rate and triplet excited state lifetime for generating O2•- through type-I photochemistry, and the generated O2•- can further trigger a biocascade to reduce the PDT's demand for O2 in an O2-recycble manner. Furthermore, SORgenTAM also serves to activate the AMPK metabolism signaling pathway to inhibit cell repair and promote cell death. Consequently, using this two-step O2-economical strategy, under relatively low light dose irradiation, excellent therapeutic responses toward hypoxic tumors are achieved. This study offers a conceptual while practical paradigm for overcoming the pitfalls of phototherapeutics.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
229 |
4
|
Liu Y, Huang R, Han L, Ke W, Shao K, Ye L, Lou J, Jiang C. Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials 2009; 30:4195-202. [PMID: 19467700 DOI: 10.1016/j.biomaterials.2009.02.051] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 04/22/2009] [Indexed: 01/06/2023]
Abstract
A 29 amino-acid peptide derived from the rabies virus glycoprotein (RVG29) was exploited as a ligand for efficient brain-targeting gene delivery. RVG29 was modified on polyamidoamine dendrimers (PAMAM) through bifunctional PEG, then complexed with DNA, yielding PAMAM-PEG-RVG29/DNA nanoparticles (NPs). The NPs were observed to be uptaken by brain capillary endothelial cells (BCECs) through a clathrin and caveolae mediated energy-depending endocytosis. The specific cellular uptake can be inhibited by free RVG29 and GABA but not by nicotinic acetylcholine receptor (nAchR) agonists/antagonists, indicating RVG29 probably relates to the GABA(B) receptor besides nAchR reported previously. PAMAM-PEG-RVG29/DNA NPs showed higher blood-brain barrier (BBB)-crossing efficiency than PAMAM/DNA NPs in an in vitro BBB model. In vivo imaging showed that the NPs were preferably accumulated in brain. The report gene expression of the PAMAM-PEG-RVG29/DNA NPs was observed in brain, and significantly higher than unmodified NPs. Thus, PAMAM-PEG-RVG29 provides a safe and noninvasive approach for the gene delivery across the BBB.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
188 |
5
|
Huang S, Shao K, Liu Y, Kuang Y, Li J, An S, Guo Y, Ma H, Jiang C. Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis. ACS NANO 2013; 7:2860-2871. [PMID: 23451830 DOI: 10.1021/nn400548g] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Tumor microenvironment, such as the lowered tumor extracellular pH (pHe) and matrix metalloproteinase 2 (MMP2), has been extensively explored, which promotes the development of the microenvironment-responsive drug delivery system. Utilizing these unique features, an activatable cell-penetrating peptide (designated as dtACPP) that is dual-triggered by the lowered pHe and MMP2 has been constructed, and a smart nanoparticle system decorating with dtACPP has been successfully developed, which could dual-load gene drug and chemotherapeutics simultaneously. After systemic administration, dtACPP-modified nanoparticles possess passive tumor targetability via the enhanced permeability and retention effect. Then dtACPP would be activated to expose cell-penetrating peptide to drive the nanoparticles' internalization into the intratumoral cells. As angiogenesis and tumor cells might be mutually improved in tumor growth, so combining antiangiogenesis and apoptosis is meaningful for oncotherapy. Vascular endothelial growth factor (VEGF) is significant in angiogenesis, and anti-VEGF therapy could decrease blood vessel density and delay tumor growth obviously. Chemotherapy using doxorubicin (DOX) could kill off tumor cells efficiently. Here, utilizing dtACPP-modified nanoparticles to co-deliver plasmid expressing interfering RNA targeting VEGF (shVEGF) and DOX (designated as dtACPPD/shVEGF-DOX) results in effective shutdown of blood vessels and cell apoptosis within the tumor. On the premise of effective drug delivery, dtACPPD/shVEGF-DOX has demonstrated good tumor targetability, little side effects after systemic administration, and ideal antitumor efficacy.
Collapse
|
|
12 |
162 |
6
|
Li M, Xiong T, Du J, Tian R, Xiao M, Guo L, Long S, Fan J, Sun W, Shao K, Song X, Foley JW, Peng X. Superoxide Radical Photogenerator with Amplification Effect: Surmounting the Achilles’ Heels of Photodynamic Oncotherapy. J Am Chem Soc 2019; 141:2695-2702. [DOI: 10.1021/jacs.8b13141] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
|
6 |
155 |
7
|
Shao K, Huang R, Li J, Han L, Ye L, Lou J, Jiang C. Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J Control Release 2010; 147:118-26. [PMID: 20609375 DOI: 10.1016/j.jconrel.2010.06.018] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/18/2010] [Accepted: 06/20/2010] [Indexed: 11/28/2022]
Abstract
Amphotericin B (AmB) is a poorly water soluble antibiotic and is used to treat fungal infections of the central nervous system (CNS). However, AmB shows poor penetration into the CNS. Angiopep-2, the ligand of low-density lipoprotein receptor-related protein (LRP) present on the BBB, exhibits higher transcytosis capacity and parenchymal accumulation, which allowed us to consider the selectivity of it for receptor-mediated drug targeting to the brain. With this in mind, we prepared angiopep-2 modified PE-PEG based micellar drug delivery system loaded with the antifungal drug AmB to evaluate the efficiency of AmB accumulating into the brain. PE-PEG based micelles as nano-scaled drug carriers were investigated by incorporating AmB with high drug entrapping efficiency, improving solubilization of AmB and reducing its toxicity to mammalian cells. The AmB-incorporated angiopep-2 modified micelles showed highest efficiency in penetrating across the blood-brain barrier (BBB) than unmodified micelles and Fungizone (deoxycholate amphotericin B) in vitro and in vivo. Meanwhile, contrary to the free Rho 123, the enhancement of Rho 123-incorporated angiopep-2 modified micelles across the BBB can be explained by angiopep-2 modified polymeric micelles that have a potential to overcome the activity of efflux proteins expressed on the BBB such as P-glycoprotein. In conclusion, angiopep-2 modified polymeric micelles could be developed as a novel drug delivery system for brain targeting.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
131 |
8
|
Shi C, Li M, Zhang Z, Yao Q, Shao K, Xu F, Xu N, Li H, Fan J, Sun W, Du J, Long S, Wang J, Peng X. Catalase-based liposomal for reversing immunosuppressive tumor microenvironment and enhanced cancer chemo-photodynamic therapy. Biomaterials 2020; 233:119755. [PMID: 31927233 DOI: 10.1016/j.biomaterials.2020.119755] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/28/2019] [Accepted: 01/01/2020] [Indexed: 01/16/2023]
Abstract
Photodynamic therapy (PDT) and chemotherapy has been applied as a prospective approach in tumor therapeutics. However, suffering from the inherent hypoxia status in tumor microenvironment (TME), the anticancer efficiency is enormously restricted, especially PDT. Herein, we develop a unique liposomal encapsulated catalase (CAT), lyso-targeted NIR photosensitizer (MBDP) and doxorubicin (Dox), forming FA-L@MD@CAT, to increase tumor oxygenation by catalyzing intratumoral high-expressed H2O2 for enhancing the combination of chemo-PDT. Moreover, the enhanced tumoral oxygenation not only facilitates singlet oxygen (1O2) production but also reverses immunosuppressive TME by modulating immune cytokines to favor antitumor immunities, which significantly induce tumor death. Notably, this system also realizes specific tumor recognition to folate receptor upregulated tumors and improves intratumoral accumulation. This work provides an effective strategy to promote tumor therapeutic index, which may possess a promising future in clinical application.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
124 |
9
|
Li H, Yao Q, Sun W, Shao K, Lu Y, Chung J, Kim D, Fan J, Long S, Du J, Li Y, Wang J, Yoon J, Peng X. Aminopeptidase N Activatable Fluorescent Probe for Tracking Metastatic Cancer and Image-Guided Surgery via in Situ Spraying. J Am Chem Soc 2020; 142:6381-6389. [DOI: 10.1021/jacs.0c01365] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
|
5 |
112 |
10
|
Singha S, Shao K, Yang Y, Clemente-Casares X, Solé P, Clemente A, Blanco J, Dai Q, Song F, Liu SW, Yamanouchi J, Umeshappa CS, Nanjundappa RH, Detampel P, Amrein M, Fandos C, Tanguay R, Newbigging S, Serra P, Khadra A, Chan WCW, Santamaria P. Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices. NATURE NANOTECHNOLOGY 2017; 12:701-710. [PMID: 28436959 DOI: 10.1038/nnano.2017.56] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 03/06/2017] [Indexed: 05/23/2023]
Abstract
We have shown that nanoparticles (NPs) can be used as ligand-multimerization platforms to activate specific cellular receptors in vivo. Nanoparticles coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHC) blunted autoimmune responses by triggering the differentiation and expansion of antigen-specific regulatory T cells in vivo. Here, we define the engineering principles impacting biological activity, detail a synthesis process yielding safe and stable compounds, and visualize how these nanomedicines interact with cognate T cells. We find that the triggering properties of pMHC-NPs are a function of pMHC intermolecular distance and involve the sustained assembly of large antigen receptor microclusters on murine and human cognate T cells. These compounds show no off-target toxicity in zebrafish embryos, do not cause haematological, biochemical or histological abnormalities, and are rapidly captured by phagocytes or processed by the hepatobiliary system. This work lays the groundwork for the design of ligand-based NP formulations to re-program in vivo cellular responses using nanotechnology.
Collapse
|
|
8 |
108 |
11
|
Kuang Y, An S, Guo Y, Huang S, Shao K, Liu Y, Li J, Ma H, Jiang C. T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting. Int J Pharm 2013; 454:11-20. [PMID: 23867728 DOI: 10.1016/j.ijpharm.2013.07.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/24/2013] [Accepted: 07/09/2013] [Indexed: 01/10/2023]
Abstract
Among all the malignant brain tumors, glioma is the deadliest and most common form with poor prognosis. Gene therapy is regarded as a promising way to halt the progress of the disease or even cure the tumor and RNA interference (RNAi) stands out. However, the existence of the blood-brain barrier (BBB) and blood tumor barrier (BTB) limits the delivery of these therapeutic genes. In this work, the delivery system targeting to the transferrin (Tf) receptor highly expressed on both BBB and glioma was successfully synthesized and would not compete with endogenous Tf. U87 cells stably express luciferase were employed here to simulate tumor and the RNAi experiments in vitro and in vivo validated that the gene silencing activity was 2.17-fold higher with the targeting ligand modification. The dual-targeting gene delivery system exhibits a series of advantages, such as high efficiency, low toxicity, stability and high transaction efficiency, which may provide new opportunities in RNAi therapeutics and nanomedicine of brain tumors.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
104 |
12
|
Huang S, Shao K, Kuang Y, Liu Y, Li J, An S, Guo Y, Ma H, He X, Jiang C. Tumor targeting and microenvironment-responsive nanoparticles for gene delivery. Biomaterials 2013; 34:5294-302. [DOI: 10.1016/j.biomaterials.2013.03.043] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/15/2013] [Indexed: 02/07/2023]
|
|
12 |
99 |
13
|
Zhou X, Li H, Shi C, Xu F, Zhang Z, Yao Q, Ma H, Sun W, Shao K, Du J, Long S, Fan J, Wang J, Peng X. An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging. Biomaterials 2020; 253:120089. [PMID: 32447103 PMCID: PMC7196320 DOI: 10.1016/j.biomaterials.2020.120089] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/18/2020] [Accepted: 05/01/2020] [Indexed: 12/28/2022]
Abstract
Photodynamic therapy has been developed as a prospective cancer treatment in recent years. Nevertheless, conventional photosensitizers suffer from lacking recognition and specificity to tumors, which causing severe side effects to normal tissues, while the enzyme-activated photosensitizers are capable of solving these conundrums due to high selectivity towards tumors. APN (Aminopeptidase N, APN/CD13), a tumor marker, has become a crucial targeting substance owing to its highly expressed on the cell membrane surface in various tumors, which has become a key point in the research of anti-tumor drug and fluorescence probe. Based on it, herein an APN-activated near-infrared (NIR) photosensitizer (APN-CyI) for tumor imaging and photodynamic therapy has been firstly developed and successfully applied in vitro and in vivo. Studies showed that APN-CyI could be activated by APN in tumor cells, hydrolyzed to fluorescent CyI-OH, which specifically located in mitochondria in cancer cells and exhibited a high singlet oxygen yield under NIR irradiation, and efficiently induced cancer cell apoptosis. Dramatically, the in vivo assays on Balb/c mice showed that APN-CyI could achieve NIR fluorescence imaging (λem = 717 nm) for endogenous APN in tumors and possessed an efficient tumor suppression effect under NIR irradiation.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
88 |
14
|
Li H, Li Y, Yao Q, Fan J, Sun W, Long S, Shao K, Du J, Wang J, Peng X. In situ imaging of aminopeptidase N activity in hepatocellular carcinoma: a migration model for tumour using an activatable two-photon NIR fluorescent probe. Chem Sci 2019; 10:1619-1625. [PMID: 30842824 PMCID: PMC6368242 DOI: 10.1039/c8sc04685a] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/25/2018] [Indexed: 12/28/2022] Open
Abstract
CD13/aminopeptidase N (APN), which is a zinc-dependent metalloproteinase, plays a vital role in the growth, migration, angiogenesis, and metastasis of tumours. Thus, in situ molecular imaging of endogenous APN levels is considerably significant for investigating APN and its different functions. In this study, a novel two-photon near-infrared (NIR) fluorescence probe DCM-APN was prepared to perform in vitro and in vivo tracking of APN. The N-terminal alanyl site of probe DCM-APN was accurately hydrolysed to the amino group, thereby liberating strong fluorescence owing to the recovery of the Intramolecular Charge Transfer (ICT) effect. By considering its outstanding selectivity, ultra-sensitivity (DL 0.25 ng mL-1) and favourable biocompatibility, the probe DCM-APN was used to distinguish between normal cells (LO2 cells) and cancer cells (HepG-2 and B16/BL6 cells). Furthermore, migration of hepatocellular carcinoma cells was apparently inhibited by ensuring that the APN catalytic cavity was occupied by bestatin. The identification of three-dimensional (3D) fluorescence in cancer tissues was completed under two-photon excitation coupled with lighting up hepatocellular carcinoma tumours in situ; this revealed that probe DCM-APN is an effective tool for detecting APN, thereby assisting in the early diagnosis of tumour in clinical medicine.
Collapse
|
research-article |
6 |
80 |
15
|
Qin L, Cao J, Shao K, Tong F, Yang Z, Lei T, Wang Y, Hu C, Umeshappa CS, Gao H, Peppas NA. A tumor-to-lymph procedure navigated versatile gel system for combinatorial therapy against tumor recurrence and metastasis. SCIENCE ADVANCES 2020; 6:6/36/eabb3116. [PMID: 32917616 PMCID: PMC7473750 DOI: 10.1126/sciadv.abb3116] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/17/2020] [Indexed: 05/08/2023]
Abstract
Application of cancer vaccines is limited due to their systemic immunotoxicity and inability to satisfy all the steps, including loading of tumor antigens, draining of antigens to lymph nodes (LNs), internalization of antigens by dendritic cells (DCs), DC maturation, and cross-presentation of antigens for T cell activation. Here, we present a combinatorial therapy, based on a α-cyclodextrin (CD)-based gel system, DOX/ICG/CpG-P-ss-M/CD, fabricated by encapsulating doxorubicin (DOX) and the photothermal agent indocyanine green (ICG). Upon irradiation, the gel system exhibited heat-responsive release of DOX and vaccine-like nanoparticles, CpG-P-ss-M, along with chemotherapy- and phototherapy-generated abundant tumor-specific antigen storage in situ. The released CpG-P-ss-M acted as a carrier adsorbed and delivered antigens to LNs, promoting the uptake of antigens by DCs and DC maturation. Notably, combined with PD-L1 blocking, the therapy effectively inhibited primary tumor growth and induced tumor-specific immune response against tumor recurrence and metastasis.
Collapse
|
research-article |
5 |
80 |
16
|
Huang R, Ke W, Han L, Liu Y, Shao K, Ye L, Lou J, Jiang C, Pei Y. Brain-targeting mechanisms of lactoferrin-modified DNA-loaded nanoparticles. J Cereb Blood Flow Metab 2009; 29:1914-23. [PMID: 19654588 DOI: 10.1038/jcbfm.2009.104] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ligand-mediated brain-targeting drug delivery is one of the focuses at present. Elucidation of exact targeting mechanisms serves to efficiently design these drug delivery systems. In our previous studies, lactoferrin (Lf) was successfully exploited as a brain-targeting ligand to modify cationic dendrimer-based nanoparticles (NPs). The mechanisms of Lf-modified NPs to the brain were systematically investigated in this study for the first time. The uptake of Lf-modified vectors and NPs by brain capillary endothelial cells (BCECs) was related to clathrin-dependent endocytosis, caveolae-mediated endocytosis, and macropinocytosis. The intracellular trafficking results showed that Lf-modified NPs could rapidly enter the acidic endolysosomal compartments within 5 mins and then partly escape within 30 mins. Both Lf-modified vectors and NPs showed higher blood-brain barrier-crossing efficiency than unmodified counterparts. All the results suggest that both receptor- and adsorptive-mediated mechanisms contribute to the cellular uptake of Lf-modified vectors and NPs. Enhanced brain-targeting delivery could be achieved through the synergistic effect of the macromolecular polymers and the ligand.
Collapse
|
|
16 |
71 |
17
|
Singha S, Shao K, Ellestad KK, Yang Y, Santamaria P. Nanoparticles for Immune Stimulation Against Infection, Cancer, and Autoimmunity. ACS NANO 2018; 12:10621-10635. [PMID: 30481968 DOI: 10.1021/acsnano.8b05950] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Vaccination using nanocarrier-based delivery systems has recently emerged as a promising approach for meeting the continued challenge posed by infectious diseases and cancer. A diverse portfolio of nanocarriers of various sizes, compositions, and physical parameters have now been developed, and this diversity provides an opportunity for the rational design of vaccines that can mediate targeted delivery of various antigens and adjuvants or immune regulatory agents in ways unachievable with classical vaccination approaches. This flexibility allows control over the characteristics of vaccine-elicited immune responses such that they can be tailored to be effective in circumstances where classical vaccines have failed. Furthermore, the utility of nanocarrier-based immune modulation extends to the treatment of autoimmune disease where precisely targeted inhibition of immune responses is desirable. Clearly, the selection of appropriate nanocarriers, antigens, adjuvants, and other components underpins the efficacy of these nanoimmune interventions. Herein, we provide an overview of currently available nanocarriers of various types and their physical and pharmacological properties with the goal of providing a resource for researchers exploring nanomaterial-based approaches for immune modulation and identify some information gaps and unexplored questions to help guide future investigation.
Collapse
|
Review |
7 |
67 |
18
|
Shao K, Zhu Y, Zhao D. StarCraft Micromanagement With Reinforcement Learning and Curriculum Transfer Learning. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2019. [DOI: 10.1109/tetci.2018.2823329] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
6 |
64 |
19
|
Lu Y, Xu F, Wang Y, Shi C, Sha Y, He G, Yao Q, Shao K, Sun W, Du J, Fan J, Peng X. Cancer immunogenic cell death via photo-pyroptosis with light-sensitive Indoleamine 2,3-dioxygenase inhibitor conjugate. Biomaterials 2021; 278:121167. [PMID: 34624752 DOI: 10.1016/j.biomaterials.2021.121167] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 01/21/2023]
Abstract
Immune checkpoint blockade (ICB) therapy currently considered as to be effective way to cure cancer in clinic. However, the insufficient tumor immunogenicity and the immunosuppressive tumor microenvironment always result in diminished efficacy of immunotherapy. Herein, we report the synthesis of an organic photo-immune activator NBS-1MT, the combination of photosensitizer and Indoleamine 2,3-dioxygenase (IDO) inhibitor effectively stimulates lysosomes oxidative stress the releases inflammatory cytokines. This process triggers pyroptosis for the considerable immunogenic cell death (ICD) while reversing suppressive tumor microenvironment. The photo-immune drug shows outstanding potential to activate caspase-1and then remove gasdermin-D (GSDMD), which could stimulate pyroptosis and also inhibit the tumor growth successfully in both primary and distant tumor. Furthermore, pyroptosis activated by photodynamic therapy (PDT) promotes the immune related factors release, and enhance the intratumoral infiltration of cytotoxic T lymphocytes (CTLs) with the induction of ICD of tumor cells and the cascaded synergize with IDO inhibitor, so the general antitumor immune response could be strengthened effectively. Our research confirms that the use of NBS-1MT is a promising strategy to boost the immune response and eventually to inhibit tumor growth.
Collapse
|
|
4 |
58 |
20
|
Huang R, Han L, Li J, Liu S, Shao K, Kuang Y, Hu X, Wang X, Lei H, Jiang C. Chlorotoxin-modified macromolecular contrast agent for MRI tumor diagnosis. Biomaterials 2011; 32:5177-86. [DOI: 10.1016/j.biomaterials.2011.03.075] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 03/29/2011] [Indexed: 01/21/2023]
|
|
14 |
57 |
21
|
Shao K, Ding N, Huang S, Ren S, Zhang Y, Kuang Y, Guo Y, Ma H, An S, Li Y, Jiang C. Smart nanodevice combined tumor-specific vector with cellular microenvironment-triggered property for highly effective antiglioma therapy. ACS NANO 2014; 8:1191-1203. [PMID: 24397286 DOI: 10.1021/nn406285x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Malignant glioma, a highly aggressive tumor, is one of the deadliest types of cancer associated with dismal outcome despite optimal chemotherapeutic regimens. One explanation for this is the failure of most chemotherapeutics to accumulate in the tumors, additionally causing serious side effects in periphery. To solve these problems, we sought to develop a smart therapeutic nanodevice with cooperative dual characteristics of high tumor-targeting ability and selectively controlling drug deposition in tumor cells. This nanodevice was fabricated with a cross-linker, containing disulfide linkage to form an inner cellular microenvironment-responsive "-S-S-" barrier, which could shield the entrapped drug leaking in blood circulation. In addition, dehydroascorbic acid (DHA), a novel small molecular tumor-specific vector, was decorated on the nanodevice for tumor-specific recognition via GLUT1, a glucose transporter highly expressed on tumor cells. The drug-loaded nanodevice was supposed to maintain high integrity in the bloodstream and increasingly to specifically bind with tumor cells through the association of DHA with GLUT1. Once within the tumor cells, the drug release was triggered by a high level of intracellular glutathione. When these two features were combined, the smart nanodevice could markedly improve the drug tumor-targeting delivery efficiency, meanwhile decreasing systemic toxicity. Herein, this smart nanodevice showed promising potential as a powerful platform for highly effective antiglioma treatment.
Collapse
|
|
11 |
53 |
22
|
Shao K, Wu J, Chen Z, Huang S, Li J, Ye L, Lou J, Zhu L, Jiang C. A brain-vectored angiopep-2 based polymeric micelles for the treatment of intracranial fungal infection. Biomaterials 2012; 33:6898-907. [PMID: 22789719 DOI: 10.1016/j.biomaterials.2012.06.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/22/2012] [Indexed: 11/28/2022]
Abstract
One of the most common life-threatening infections in immunosuppressive patients, like AIDs patients, is cryptococcal meningitis or meningoencephalitis. Current therapeutic options are mostly ineffective and mortality rates remain high. Hydrophobic antifungal drug Amphotericin B (AmB), has become a golden standard in severe systemic fungal infection therapy. However, most AmB commercial formulations, including deoxycholate AmB and lipid formulations of AmB, show poor penetration into the CNS and difficulty to reach the therapeutic levels. To improve the CNS permeability of AmB, we have successfully developed an effective brain-targeting polymeric micellar system with angiopep-2 modified, named Angiopep-PEG-PE/AmB polymeric micelles. An immunosuppressive murine model with Cryptococcus neoformans meningoencephalitis (CNME) was established to evaluate the CNS penetration efficiency and antifungal treatment efficacy of the AmB-incorporated brain-vectored polymeric micellar formulation, compared with the AmB commercial formulations. After three consecutive days of i.v. administration, the results showed that the group treated with Angiopep-PEG-PE/AmB achieved the greatest treatment efficacy, which reached the highest AmB level in brain, reduced the brain fungal burden significantly, decreased histopathological severity and prolonged the median survival time. The increased treatment efficacy could be attributed to the brain-targeting delivery system promoted AmB crossing the BBB and penetrating into the brain to reach the therapeutic concentration. The underlying mechanism was also explored in this work. Therefore, the brain-targeting delivery system could have potential and promising implications for treatment of intracerebral fungal infection.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
45 |
23
|
Liao J, Wang X, Bi Y, Shen B, Shao K, Yang H, Lu Y, Zhang Z, Chen X, Liu H, Wang J, Chu Y, Xue L, Wang X, Liu G. Dexamethasone potentiates myeloid-derived suppressor cell function in prolonging allograft survival through nitric oxide. J Leukoc Biol 2014; 96:675-84. [PMID: 24948701 DOI: 10.1189/jlb.2hi1113-611rr] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Whereas GCs have been demonstrated to be beneficial for transplantation patients, the pharmacological mechanisms remain unknown. Herein, the role of GR signaling was investigated via a pharmacological approach in a murine allogeneic skin transplantation model. The GC Dex, a representative GC, significantly relieved allograft rejection. In Dex-treated allograft recipient mice, CD11b(+)Gr1(+) MDSCs prolonged graft survival and acted as functional suppressive immune modulators that resulted in fewer IFN-γ-producing Th1 cells and a greater number of IL-4-producing Th2 cells. In agreement, Dex-treated MDSCs promoted reciprocal differentiation between Th1 and Th2 in vivo. Importantly, the GR is required in the Dex-induced MDSC effects. The blocking of GR with RU486 significantly diminished the expression of CXCR2 and the recruitment of CD11b(+)Gr1(+) MDSCs, thereby recovering the increased MDSC-suppressive activity induced by Dex. Mechanistically, Dex treatment induced MDSC iNOS expression and NO production. Pharmacologic inhibition of iNOS completely eliminated the MDSC-suppressive function and the effects on T cell differentiation. This study shows MDSCs to be an essential component in the prolongation of allograft survival following Dex or RU486 treatment, validating the GC-GR-NO signaling axis as a potential therapeutic target in transplantation.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
44 |
24
|
Li J, Zhou L, Ye D, Huang S, Shao K, Huang R, Han L, Liu Y, Liu S, Ye L, Lou J, Jiang C. Choline-derivate-modified nanoparticles for brain-targeting gene delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:4516-4520. [PMID: 21898606 DOI: 10.1002/adma.201101899] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Indexed: 05/31/2023]
|
|
14 |
44 |
25
|
Huang R, Liu S, Shao K, Han L, Ke W, Liu Y, Li J, Huang S, Jiang C. Evaluation and mechanism studies of PEGylated dendrigraft poly-L-lysines as novel gene delivery vectors. NANOTECHNOLOGY 2010; 21:265101. [PMID: 20522929 DOI: 10.1088/0957-4484/21/26/265101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Dendrimers have attracted great interest in the field of gene delivery due to their synthetic controllability and excellent gene transfection efficiency. In this work, dendrigraft poly-L-lysines (DGLs) were evaluated as a novel gene vector for the first time. Derivatives of DGLs (generation 2 and 3) with different extents of PEGylation were successfully synthesized and used to compact pDNA as complexes. The result of gel retardation assay showed that pDNA could be effectively packed by all the vectors at a DGLs to pDNA weight ratio greater than 2. An increase in the PEGylation extent of vectors resulted in a decrease in the incorporation efficiency and cytotoxicity of complexes in 293 cells, which also decreased the zeta potential a little but did not affect the mean diameter of complexes. Higher generation of DGLs could mediate higher gene transfection in vitro. Confocal microscopy and cellular uptake inhibition studies demonstrated that caveolae-mediated process and macropinocytosis were involved in the cellular uptake of DGLs-based complexes. Also the results indicate that proper PEGylated DGLs could mediate efficient gene transfection, showing their potential as an alternate biodegradable vector in the field of nonviral gene delivery.
Collapse
|
Evaluation Study |
15 |
41 |