1
|
Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 1995; 378:88-91. [PMID: 7477296 DOI: 10.1038/378088a0] [Citation(s) in RCA: 2060] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mechanism underlying the differentiation of CD4+ T cells into functionally distinct subsets (Th1 and Th2) is incompletely understood, and hitherto unidentified cytokines may be required for the functional maturation of these cells. Here we report the cloning of a recently identified IFN-gamma-inducing factor (IGIF) that augments natural killer (NK) activity in spleen cells. The gene encodes a precursor protein of 192 amino acids and a mature protein of 157 amino acids, which have no obvious similarities to any peptide in the databases. Messenger RNAs for IGIF and interleukin-12 (IL-12) are readily detected in Kupffer cells and activated macrophages. Recombinant IGIF induces IFN-gamma more potently than does IL-12, apparently through a separate pathway. Administration of anti-IGIF antibodies prevents liver damage in mice inoculated with Propionibacterium acnes and challenged with lipopolysaccharide, which induces toxic shock. IGIF may be involved in the development of Th1 cells and also in mechanisms of tissue injury in inflammatory reactions.
Collapse
|
|
30 |
2060 |
2
|
Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001; 7:1194-201. [PMID: 11689883 DOI: 10.1038/nm1101-1194] [Citation(s) in RCA: 1511] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of bone marrow (BM)-derived precursor cells in tumor angiogenesis is not known. We demonstrate here that tumor angiogenesis is associated with recruitment of hematopoietic and circulating endothelial precursor cells (CEPs). We used the angiogenic defective, tumor resistant Id-mutant mice to show that transplantation of wild-type BM or vascular endothelial growth factor (VEGF)-mobilized stem cells restore tumor angiogenesis and growth. We detected donor-derived CEPs throughout the neovessels of tumors and Matrigel-plugs in an Id1+/-Id3-/- host, which were associated with VEGF-receptor-1-positive (VEGFR1+) myeloid cells. The angiogenic defect in Id-mutant mice was due to impaired VEGF-driven mobilization of VEGFR2+ CEPs and impaired proliferation and incorporation of VEGFR1+ cells. Although targeting of either VEGFR1 or VEGFR2 alone partially blocks the growth of tumors, inhibition of both VEGFR1 and VEGFR2 was necessary to completely ablate tumor growth. These data demonstrate that recruitment of VEGF-responsive BM-derived precursors is necessary and sufficient for tumor angiogenesis and suggest new clinical strategies to block tumor growth.
Collapse
|
|
24 |
1511 |
3
|
Angel P, Hattori K, Smeal T, Karin M. The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell 1988; 55:875-85. [PMID: 3142689 DOI: 10.1016/0092-8674(88)90143-2] [Citation(s) in RCA: 1012] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Binding of the human transcription factor Jun/AP-1 to a conserved 8 bp nucleotide sequence (TRE) is responsible for increased transcription of different cellular genes in response to tumor promoters, such as TPA, and serum factors. Enhanced Jun/AP-1 activity in TPA-stimulated cells is regulated by two different mechanisms: a posttranslational event acting on pre-existing Jun/AP-1 molecules, and transcriptional activation of jun gene expression leading to an increase in the total amount of Jun/AP-1. Induction of jun transcription in response to TPA is mediated by binding of Jun/AP-1 to a high-affinity AP-1 binding site in the jun promoter region. Site-specific mutagenesis of this binding site prevents TPA induction and trans-activation by Jun/AP-1. These results clearly demonstrate that jun transcription is directly stimulated by its own gene product. This positive regulatory loop is likely to be responsible for prolonging the transient signals generated by activation of protein kinase C.
Collapse
|
|
37 |
1012 |
4
|
Angel P, Allegretto EA, Okino ST, Hattori K, Boyle WJ, Hunter T, Karin M. Oncogene jun encodes a sequence-specific trans-activator similar to AP-1. Nature 1988; 332:166-71. [PMID: 3347253 DOI: 10.1038/332166a0] [Citation(s) in RCA: 780] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proto-oncogenes encode proteins with three main sites of action: the cell-surface membrane, the cytoplasm and the nucleus. Although the exact biochemical function of most proto-oncogene products is not understood, several of them are known to be involved in signal transduction. A role in gene regulation through DNA binding has been suggested for a recently isolated member of the group of oncogenes acting at the nucleus, v-jun. The C-terminus of the putative v-jun-encoded protein is similar in sequence to the C-terminus of the yeast transcriptional activator GCN4 (refs 8, 9), which forms its minimal DNA-binding domain. GCN4 binds to specific sites whose consensus sequence is highly similar to the recognition sequence of the mammalian transcriptional activator AP-1 (refs 12, 13). Like GCN4, AP-1 binds to promoter elements of specific genes and activates their transcription. Because of the similarity between the recognition sites for GCN4 and AP-1, we examined the possibility that AP-1 could be the product of the c-jun proto-oncogene. The experimental results reported here indicate that the JUN oncoprotein is a sequence-specific transcriptional activator similar to AP-1.
Collapse
|
|
37 |
780 |
5
|
Gill M, Dias S, Hattori K, Rivera ML, Hicklin D, Witte L, Girardi L, Yurt R, Himel H, Rafii S. Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res 2001; 88:167-74. [PMID: 11157668 DOI: 10.1161/01.res.88.2.167] [Citation(s) in RCA: 554] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone marrow (BM)-derived circulating endothelial precursor cells (CEPs) are thought to play a role in postnatal angiogenesis. Emerging evidence suggests that angiogenic stress of vascular trauma may induce mobilization of CEPs to the peripheral circulation. In this regard, we studied the kinetics of CEP mobilization in two groups of patients who experienced acute vascular insult secondary to burns or coronary artery bypass grafting (CABG). In both burn and CABG patients, there was a consistent, rapid increase in the number of CEPs, determined by their surface expression pattern of vascular endothelial growth factor receptor 2 (VEGFR2), vascular endothelial cadherin (VE-cadherin), and AC133. Within the first 6 to 12 hours after injury, the percentage of CEPs in the peripheral blood of burn or CABG patients increased almost 50-fold, returning to basal levels within 48 to 72 hours. Mobilized cells also formed late-outgrowth endothelial colonies (CFU-ECs) in culture, indicating that a small, but significant, number of circulating endothelial cells were BM-derived CEPs. In parallel to the mobilization of CEPs, there was also a rapid elevation of VEGF plasma levels. Maximum VEGF levels were detected within 6 to 12 hours of vascular trauma and decreased to baseline levels after 48 to 72 hours. Acute elevation of VEGF in the mice plasma resulted in a similar kinetics of mobilization of VEGFR2(+) cells. On the basis of these results, we propose that vascular trauma may induce release of chemokines, such as VEGF, that promotes rapid mobilization of CEPs to the peripheral circulation. Strategies to improve the mobilization and incorporation of CEPs may contribute to the acceleration of vascularization of the injured vascular tissue.
Collapse
MESH Headings
- AC133 Antigen
- Animals
- Antigens, CD
- Blood Vessels/metabolism
- Burns/blood
- Cadherins/genetics
- Cadherins/metabolism
- Cell Count
- Cells, Cultured
- Colony-Forming Units Assay
- Coronary Artery Bypass
- Endothelial Growth Factors/blood
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Flow Cytometry
- Glycoproteins/metabolism
- Humans
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Lewis X Antigen/metabolism
- Lymphokines/blood
- Macrophage-1 Antigen/metabolism
- Mice
- Peptides/metabolism
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/metabolism
- Receptors, Vascular Endothelial Growth Factor
- Reverse Transcriptase Polymerase Chain Reaction
- Stem Cells/cytology
- Stem Cells/metabolism
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
- von Willebrand Factor/metabolism
Collapse
|
Clinical Trial |
24 |
554 |
6
|
Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K, Nakamichi I, Kikuchi A, Nakayama K, Nakayama K. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J 1999; 18:2401-10. [PMID: 10228155 PMCID: PMC1171323 DOI: 10.1093/emboj/18.9.2401] [Citation(s) in RCA: 442] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
beta-catenin plays an essential role in the Wingless/Wnt signaling cascade and is a component of the cadherin cell adhesion complex. Deregulation of beta-catenin accumulation as a result of mutations in adenomatous polyposis coli (APC) tumor suppressor protein is believed to initiate colorectal neoplasia. beta-catenin levels are regulated by the ubiquitin-dependent proteolysis system and beta-catenin ubiquitination is preceded by phosphorylation of its N-terminal region by the glycogen synthase kinase-3beta (GSK-3beta)/Axin kinase complex. Here we show that FWD1 (the mouse homologue of Slimb/betaTrCP), an F-box/WD40-repeat protein, specifically formed a multi-molecular complex with beta-catenin, Axin, GSK-3beta and APC. Mutations at the signal-induced phosphorylation site of beta-catenin inhibited its association with FWD1. FWD1 facilitated ubiquitination and promoted degradation of beta-catenin, resulting in reduced cytoplasmic beta-catenin levels. In contrast, a dominant-negative mutant form of FWD1 inhibited the ubiquitination process and stabilized beta-catenin. These results suggest that the Skp1/Cullin/F-box protein FWD1 (SCFFWD1)-ubiquitin ligase complex is involved in beta-catenin ubiquitination and that FWD1 serves as an intracellular receptor for phosphorylated beta-catenin. FWD1 also links the phosphorylation machinery to the ubiquitin-proteasome pathway to ensure prompt and efficient proteolysis of beta-catenin in response to external signals. SCFFWD1 may be critical for tumor development and suppression through regulation of beta-catenin protein stability.
Collapse
|
research-article |
26 |
442 |
7
|
Hattori K, Heissig B, Tashiro K, Honjo T, Tateno M, Shieh JH, Hackett NR, Quitoriano MS, Crystal RG, Rafii S, Moore MA. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 2001; 97:3354-60. [PMID: 11369624 DOI: 10.1182/blood.v97.11.3354] [Citation(s) in RCA: 384] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The chemokine, stromal cell-derived factor-1 (SDF1), is produced in the bone marrow and has been shown to modulate the homing of stem cells to this site by mediating chemokinesis and chemotaxis. Therefore, it was hypothesized that elevation of SDF1 level in the peripheral circulation would result in mobilization of primitive hematopoietic stem and progenitor cells. SDF1 plasma level was increased by intravenous injection of an adenoviral vector expressing SDF1alpha (AdSDF1) into severe combined immunodeficient mice. This resulted in a 10-fold increase in leukocyte count, a 3-fold increase in platelets, and mobilization of progenitors, including colony-forming units-granulocyte-macrophage to the peripheral circulation. In addition, AdSDF1 induced mobilization of cells with stem cell potential, including colony-forming units in spleen and long-term reconstituting cells. These data demonstrate that overexpression of SDF1 in the peripheral circulation results in the mobilization of hematopoietic cells with repopulating capacity, progenitor cells, and precursor cells. These studies lay the foundation for using SDF1 to induce mobilization of hematopoietic stem and progenitor cells in in vivo studies. (Blood. 2001;97:3354-3360)
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
24 |
384 |
8
|
Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W, Wu Y, Chadburn A, Hyjek E, Gill M, Hicklin DJ, Witte L, Moore MA, Rafii S. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 2000; 106:511-21. [PMID: 10953026 PMCID: PMC380247 DOI: 10.1172/jci8978] [Citation(s) in RCA: 335] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Emerging data suggest that VEGF receptors are expressed by endothelial cells as well as hematopoietic stem cells. Therefore, we hypothesized that functional VEGF receptors may also be expressed in malignant counterparts of hematopoietic stem cells such as leukemias. We demonstrate that certain leukemias not only produce VEGF but also express functional VEGFR-2 in vivo and in vitro, resulting in the generation of an autocrine loop that may support leukemic cell survival and proliferation. Approximately 50% of freshly isolated leukemias expressed mRNA and protein for VEGFR-2. VEGF(165) induced phosphorylation of VEGFR-2 and increased proliferation of leukemic cells, demonstrating these receptors were functional. VEGF(165) also induced the expression of MMP-9 by leukemic cells and promoted their migration through reconstituted basement membrane. The neutralizing mAb IMC-1C11, specific to human VEGFR-2, inhibited leukemic cell survival in vitro and blocked VEGF(165)-mediated proliferation of leukemic cells and VEGF-induced leukemic cell migration. Xenotransplantation of primary leukemias and leukemic cell lines into immunocompromised nonobese diabetic mice resulted in significant elevation of human, but not murine, VEGF in plasma and death of inoculated mice within 3 weeks. Injection of IMC-1C11 inhibited proliferation of xenotransplanted human leukemias and significantly increased the survival of inoculated mice. Interruption of signaling by VEGFRs, particularly VEGFR-2, may provide a novel strategy for inhibiting leukemic cell proliferation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Base Sequence
- Cell Division/physiology
- Cell Movement/drug effects
- Cell Movement/physiology
- DNA Primers/genetics
- Endothelial Growth Factors/genetics
- Endothelial Growth Factors/metabolism
- Endothelial Growth Factors/pharmacology
- Gene Expression
- Graft Survival
- Humans
- Leukemia/genetics
- Leukemia/metabolism
- Leukemia/pathology
- Lymphokines/genetics
- Lymphokines/metabolism
- Lymphokines/pharmacology
- Matrix Metalloproteinase 9/biosynthesis
- Mice
- Mice, Inbred NOD
- Neoplasm Transplantation
- Neoplastic Cells, Circulating
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/metabolism
- Receptors, Vascular Endothelial Growth Factor
- Signal Transduction
- Transplantation, Heterologous
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
|
research-article |
25 |
335 |
9
|
Ikebe S, Tanaka M, Ohno K, Sato W, Hattori K, Kondo T, Mizuno Y, Ozawa T. Increase of deleted mitochondrial DNA in the striatum in Parkinson's disease and senescence. Biochem Biophys Res Commun 1990; 170:1044-8. [PMID: 2390073 DOI: 10.1016/0006-291x(90)90497-b] [Citation(s) in RCA: 285] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A mutant mitochondrial DNA (mtDNA) with a 4,977-bp deletion was detected in the parkinsonian brain by using the polymerase chain reaction. Although the deleted mtDNA was detectable even in the brain of aged controls, the proportion of deleted mtDNA to normal mtDNA in the striatum was higher in the parkinsonian patients than in the controls. In both the parkinsonian patients and the aged controls, the proportion was higher in the striatum than in the cerebral cortex. These results indicate that age-related accumulation of deleted mtDNA is accelerated in the parkinsonian striatum and suggest that the deletion contributes to pathophysiological processes underlying Parkinson's disease.
Collapse
|
|
35 |
285 |
10
|
Kamizono S, Hanada T, Yasukawa H, Minoguchi S, Kato R, Minoguchi M, Hattori K, Hatakeyama S, Yada M, Morita S, Kitamura T, Kato H, Yoshimura A. The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J Biol Chem 2001; 276:12530-8. [PMID: 11278610 DOI: 10.1074/jbc.m010074200] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fusion of the TEL gene on 12p13 to the JAK2 tyrosine kinase gene on 9p24 has been found in human leukemia. TEL-mediated oligomerization of JAK2 results in constitutive activation of the tyrosine kinase (JH1) domain and confers cytokine-independent proliferation on interleukin-3-dependent Ba/F3 cells. Forced expression of the JAK inhibitor gene SOCS1/JAB/SSI-1 induced apoptosis of TEL-JAK2-transformed Ba/F3 cells. This suppression of TEL-JAK2 activity was dependent on SOCS box-mediated proteasomal degradation of TEL-JAK2 rather than on kinase inhibition. Degradation of JAK2 depended on its phosphorylation and its high affinity binding with SOCS1 through the kinase inhibitory region and the SH2 domain. It has been demonstrated that von Hippel-Lindau disease (VHL) tumor-suppressor gene product possesses the SOCS box that forms a complex with Elongin B and C and Cullin-2, and it functions as a ubiquitin ligase. The SOCS box of SOCS1/JAB has also been shown to interact with Elongins; however, ubiquitin ligase activity has not been demonstrated. We found that the SOCS box interacted with Cullin-2 and promoted ubiquitination of TEL-JAK2. Furthermore, overexpression of dominant negative Cullin-2 suppressed SOCS1-dependent TEL-JAK2 degradation. Our study demonstrates the substrate-specific E3 ubiquitin-ligase-like activity of SOCS1 for activated JAK2 and may provide a novel strategy for the suppression of oncogenic tyrosine kinases.
Collapse
|
|
24 |
277 |
11
|
Sampei Z, Igawa T, Soeda T, Okuyama-Nishida Y, Moriyama C, Wakabayashi T, Tanaka E, Muto A, Kojima T, Kitazawa T, Yoshihashi K, Harada A, Funaki M, Haraya K, Tachibana T, Suzuki S, Esaki K, Nabuchi Y, Hattori K. Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PLoS One 2013; 8:e57479. [PMID: 23468998 PMCID: PMC3585358 DOI: 10.1371/journal.pone.0057479] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
In hemophilia A, routine prophylaxis with exogenous factor VIII (FVIII) requires frequent intravenous injections and can lead to the development of anti-FVIII alloantibodies (FVIII inhibitors). To overcome these drawbacks, we screened asymmetric bispecific IgG antibodies to factor IXa (FIXa) and factor X (FX), mimicking the FVIII cofactor function. Since the therapeutic potential of the lead bispecific antibody was marginal, FVIII-mimetic activity was improved by modifying its binding properties to FIXa and FX, and the pharmacokinetics was improved by engineering the charge properties of the variable region. Difficulties in manufacturing the bispecific antibody were overcome by identifying a common light chain for the anti-FIXa and anti-FX heavy chains through framework/complementarity determining region shuffling, and by pI engineering of the two heavy chains to facilitate ion exchange chromatographic purification of the bispecific antibody from the mixture of byproducts. Engineering to overcome low solubility and deamidation was also performed. The multidimensionally optimized bispecific antibody hBS910 exhibited potent FVIII-mimetic activity in human FVIII-deficient plasma, and had a half-life of 3 weeks and high subcutaneous bioavailability in cynomolgus monkeys. Importantly, the activity of hBS910 was not affected by FVIII inhibitors, while anti-hBS910 antibodies did not inhibit FVIII activity, allowing the use of hBS910 without considering the development or presence of FVIII inhibitors. Furthermore, hBS910 could be purified on a large manufacturing scale and formulated into a subcutaneously injectable liquid formulation for clinical use. These features of hBS910 enable routine prophylaxis by subcutaneous delivery at a long dosing interval without considering the development or presence of FVIII inhibitors. We expect that hBS910 (investigational drug name: ACE910) will provide significant benefit for severe hemophilia A patients.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
243 |
12
|
Sive HL, Hattori K, Weintraub H. Progressive determination during formation of the anteroposterior axis in Xenopus laevis. Cell 1989; 58:171-80. [PMID: 2752418 DOI: 10.1016/0092-8674(89)90413-3] [Citation(s) in RCA: 239] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cement gland is an ectodermal organ in the head of frog embryos, lying anterior to any neural tissue. As analyzed by specific RNA expression, cement gland, like neural tissue, was induced by the dorsal mesoderm. Interestingly, mesoderm with the highest cement gland-inducing potential lay posterior to the ectoderm fated to form this organ, indicating that its induction occurred at a distance from the inducer source. Cement gland induction first occurred during early gastrulation. However, most initially induced cells did not contribute to the mature cement gland, but instead formed part of the neural plate. This change in fate could be reconstituted in vitro. These results suggest that determination of part of the anteroposterior axis occurs progressively, where future neural ectoderm is first induced to a cement glandlike state. As gastrulation proceeds, further induction by mesoderm may override this state, which persists only in the extreme anterior of the embryo.
Collapse
|
|
36 |
239 |
13
|
Hayakawa M, Hattori K, Sugiyama S, Ozawa T. Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts. Biochem Biophys Res Commun 1992; 189:979-85. [PMID: 1472070 DOI: 10.1016/0006-291x(92)92300-m] [Citation(s) in RCA: 222] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Some mutations in mitochondrial DNA (mtDNA) causing a number of neuromuscular diseases are suggested to arise spontaneously during the life of an individual. To substantiate the extent and the rate of these somatic mutations, mtDNA specimens from post-mortem human heart muscles of subjects in differing age groups were hydrolyzed. 8-Hydroxy-deoxyguanosine (8-OH-dG), a hydroxyl-radical adduct of deoxyguanosine, in mtDNA, was quantitatively determined using a micro high-performance liquid chromatography/mass spectrometry system. In each specimen, the mtDNA with a 7.4 kilo base-pair deletion was quantified by the kinetic polymerase chain reaction method. In association with age, the 8-OH-dG content accumulated exponentially up to 1.5% with a correlative increase in the content of the deleted mtDNA up to 7%. Clear correlation between the 8-OH-dG content in mtDNA and the population of mtDNA with a deletion (r = 0.93, P < 0.01) gives insight into the mechanism for the generation of a large deletion. These results indicate that accumulation of somatically acquired oxygen damage together with age-associated mutations in mtDNA which lead to bioenergetic deficiency and the heart muscle weakness are inevitable in human life.
Collapse
|
|
33 |
222 |
14
|
Dias S, Hattori K, Heissig B, Zhu Z, Wu Y, Witte L, Hicklin DJ, Tateno M, Bohlen P, Moore MA, Rafii S. Inhibition of both paracrine and autocrine VEGF/ VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci U S A 2001; 98:10857-62. [PMID: 11553814 PMCID: PMC58564 DOI: 10.1073/pnas.191117498] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antiangiogenic agents block the effects of tumor-derived angiogenic factors (paracrine factors), such as vascular endothelial growth factor (VEGF), on endothelial cells (EC), inhibiting the growth of solid tumors. However, whether inhibition of angiogenesis also may play a role in liquid tumors is not well established. We recently have shown that certain leukemias not only produce VEGF but also selectively express functional VEGF receptors (VEGFRs), such as VEGFR-2 (Flk-1, KDR) and VEGFR1 (Flt1), resulting in the generation of an autocrine loop. Here, we examined the relative contribution of paracrine (EC-dependent) and autocrine (EC-independent) VEGF/VEGFR signaling pathways, by using a human leukemia model, where autocrine and paracrine VEGF/VEGFR loops could be selectively inhibited by neutralizing mAbs specific for murine EC (paracrine pathway) or human tumor (autocrine) VEGFRs. Blocking either the paracrine or the autocrine VEGF/VEGFR-2 pathway delayed leukemic growth and engraftment in vivo, but failed to cure inoculated mice. Long-term remission with no evidence of disease was achieved only if mice were treated with mAbs against both murine and human VEGFR-2, whereas mAbs against human or murine VEGFR-1 had no effect on mice survival. Therefore, effective antiangiogenic therapies to treat VEGF-producing, VEGFR-expressing leukemias may require blocking both paracrine and autocrine VEGF/VEGFR-2 angiogenic loops to achieve remission and long-term cure.
Collapse
MESH Headings
- Animals
- Autocrine Communication
- Cell Division
- Cells, Cultured
- Coculture Techniques
- Endothelial Growth Factors/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- HL-60 Cells
- Humans
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/physiopathology
- Lymphokines/metabolism
- Mice
- Neoplasm Invasiveness
- Neoplasm Transplantation
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/physiopathology
- Neovascularization, Pathologic/physiopathology
- Paracrine Communication
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Growth Factor/metabolism
- Receptors, Vascular Endothelial Growth Factor
- Signal Transduction
- Time Factors
- Transplantation, Heterologous
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
|
research-article |
24 |
216 |
15
|
Shibata S, Oomura Y, Kita H, Hattori K. Circadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice. Brain Res 1982; 247:154-8. [PMID: 7127113 DOI: 10.1016/0006-8993(82)91041-1] [Citation(s) in RCA: 216] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
|
43 |
216 |
16
|
P. A. R. Ade TPC, Akiba Y, Anthony AE, Arnold K, Atlas M, Barron D, Boettger D, Borrill J, Chapman S, Chinone Y, Dobbs M, Elleflot T, Errard J, Fabbian G, Feng C, Flanigan D, Gilbert A, Grainger W, Halverson NW, Hasegawa M, Hattori K, Hazumi M, Holzapfel WL, Hori Y, Howard J, Hyland P, Inoue Y, Jaehnig GC, Jaffe AH, Keating B, Kermish Z, Keskitalo R, Kisner T, Le Jeune M, Lee AT, Leitch EM, Linder E, Lungu M, Matsuda F, Matsumura T, Meng X, Miller NJ, Morii H, Moyerman S, Myers MJ, Navaroli M, Nishino H, Orlando A, Paar H, Peloton J, Poletti D, Quealy E, Rebeiz G, Reichardt CL, Richards PL, Ross C, Schanning I, Schenck DE, Sherwin BD, Shimizu A, Shimmin C, Shimon M, Siritanasak P, Smecher G, Spieler H, Stebor N, Steinbach B, Stompor R, Suzuki A, Takakura S, Tomaru T, Wilson B, Yadav A, Zahn O. A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUNDB-MODE POLARIZATION POWER SPECTRUM AT SUB-DEGREE SCALES WITH POLARBEAR. ACTA ACUST UNITED AC 2014. [DOI: 10.1088/0004-637x/794/2/171] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
11 |
211 |
17
|
Moore MA, Hattori K, Heissig B, Shieh JH, Dias S, Crystal RG, Rafii S. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann N Y Acad Sci 2001; 938:36-45; discussion 45-7. [PMID: 11458524 DOI: 10.1111/j.1749-6632.2001.tb03572.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemokine stroma-derived factor-1 (SDF-1) is produced within the bone marrow and mediates chemokinesis and chemotaxis on a variety of cell types that express the CXCR4 receptor. SDF-1-responsive cell types include monocytes and macrophages, B and T lymphocytes, platelets and megakaryocytes, and CD34+ cells, including both hematopoietic progenitors and stem cells. We have used intravenous injection of a replication-incompetent adenovector expressing the SDF-1 gene to elevate serum levels of SDF-1 in Balb/c and SCID mice. Within 3 to 5 days there was a marked leukocytosis, predominantly involving monocytes, and a three-fold increase in platelets. In addition, AdSDF-1 mobilized CFU-GM, CFU-s, and cells with long-term repopulating potential. We have identified a bone marrow-derived, circulating endothelial stem cell characterized by expression of the VEGFR2 (Flk-1/KDR). This cell exhibits a chemotactic and chemokinetic response to SDF-1 and VEGF. We have elevated serum levels of VEGF165 using intravenous adenovector gene delivery and compared this to an adenovector expressing angiopoietin-1 alone or in combination with VEGF. VEGF elevation was associated with rapid mobilization of hematopoietic stem and progenitor cells and a population of Flk-1-positive endothelial progenitors. In contrast angiopoietin induced a delayed mobilization of endothelial and hematopoietic progenitors. The combination of VEGF and angiopoietin produced a more prolonged elevation of these progenitors in the circulation with increased proliferation of capillaries and expansion of sinusoidal spaces in the marrow.
Collapse
|
|
24 |
207 |
18
|
Igawa T, Tsunoda H, Tachibana T, Maeda A, Mimoto F, Moriyama C, Nanami M, Sekimori Y, Nabuchi Y, Aso Y, Hattori K. Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng Des Sel 2010; 23:385-92. [DOI: 10.1093/protein/gzq009] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
15 |
194 |
19
|
Liu JY, Chen YI, Chen CH, Liu CY, Chen CY, Nishihashi M, Li JZ, Xia YQ, Oyama KI, Hattori K, Lin CH. Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008Mw7.9 Wenchuan earthquake. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008ja013698] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
16 |
187 |
20
|
Hattori K, Angel P, Le Beau MM, Karin M. Structure and chromosomal localization of the functional intronless human JUN protooncogene. Proc Natl Acad Sci U S A 1988; 85:9148-52. [PMID: 3194415 PMCID: PMC282681 DOI: 10.1073/pnas.85.23.9148] [Citation(s) in RCA: 168] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The JUN protooncogene encodes a protein that is functionally and biochemically identical to the transcription factor AP-1 (activator protein 1). To understand the structure and regulation of this important gene, a genomic clone of human JUN was isolated and its primary structure and transcription pattern were determined. Most surprisingly, the sequence of the genomic clone was found to be contiguous with the sequence of the JUN cDNA, suggesting that it lacks introns. RNase protection experiments confirm that JUN is an intronless gene that yields several transcripts due to 5' and 3' heterogeneities. Transfection experiments show that the cloned gene is functional, as it encodes a trans-acting factor that stimulates transcription of AP-1-dependent reporter gene. In situ hybridization was used to map JUN to chromosomal region 1p31-32. Interestingly, this region is frequently deleted in neuroblastomas, suggesting that elimination of AP-1 may play an important role in the pathogenesis of this disease.
Collapse
|
research-article |
37 |
168 |
21
|
Hatakeyama S, Kitagawa M, Nakayama K, Shirane M, Matsumoto M, Hattori K, Higashi H, Nakano H, Okumura K, Onoé K, Good RA, Nakayama K. Ubiquitin-dependent degradation of IkappaBalpha is mediated by a ubiquitin ligase Skp1/Cul 1/F-box protein FWD1. Proc Natl Acad Sci U S A 1999; 96:3859-63. [PMID: 10097128 PMCID: PMC22385 DOI: 10.1073/pnas.96.7.3859] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of the transcription factor nuclear factor kappa B (NF-kappaB) is controlled by proteolysis of its inhibitory subunit (IkappaB) via the ubiquitin-proteasome pathway. Signal-induced phosphorylation of IkappaBalpha by a large multisubunit complex containing IkappaB kinases is a prerequisite for ubiquitination. Here, we show that FWD1 (a mouse homologue of Slimb/betaTrCP), a member of the F-box/WD40-repeat proteins, is associated specifically with IkappaBalpha only when IkappaBalpha is phosphorylated. The introduction of FWD1 into cells significantly promotes ubiquitination and degradation of IkappaBalpha in concert with IkappaB kinases, resulting in nuclear translocation of NF-kappaB. In addition, FWD1 strikingly evoked the ubiquitination of IkappaBalpha in the in vitro system. In contrast, a dominant-negative form of FWD1 inhibits the ubiquitination, leading to stabilization of IkappaBalpha. These results suggest that the substrate-specific degradation of IkappaBalpha is mediated by a Skp1/Cull 1/F-box protein (SCF) FWD1 ubiquitin-ligase complex and that FWD1 serves as an intracellular receptor for phosphorylated IkappaBalpha. Skp1/Cullin/F-box protein FWD1 might play a critical role in transcriptional regulation of NF-kappaB through control of IkappaB protein stability.
Collapse
|
research-article |
26 |
166 |
22
|
Hattori K, Tanaka M, Sugiyama S, Obayashi T, Ito T, Satake T, Hanaki Y, Asai J, Nagano M, Ozawa T. Age-dependent increase in deleted mitochondrial DNA in the human heart: possible contributory factor to presbycardia. Am Heart J 1991; 121:1735-42. [PMID: 2035386 DOI: 10.1016/0002-8703(91)90020-i] [Citation(s) in RCA: 164] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cardiac function deteriorates with age, and endogenous damage to mitochondrial DNA (mt DNA) is believed to be a major contributory factor to aging. Mitochondria occupy a pivotal position in energy metabolism, and mitochondria have their own DNA, which encodes 13 subunits of the mitochondrial energy transducing system. Other subunits are encoded by nuclear DNA. DNA has been shown to have a high mutation rate, and genetic mutation might primarily be ascribed to mtDNA mutation in the energy transducing system. Recent advances in gene technology, especially in polymerase chain reactions (PCR), permit us to analyze mtDNA mutations in a small quantity of tissue. We devised rapid and accurate methods to detect mitochondrial mutations--the primer shift PCR method, PCR-Southern method, the modified primer shift PCR method, and the asymmetric PCR method. With these methods, we analyzed myocardia mtDNA in human cadavers of various ages (from 3 years old to 97 years old, mean 57 years old). The 7.4 kb deletion of mtDNA was commonly detected in elderly subjects, and the proportion of deleted mtDNA to normal mtDNA increased with age. Deleted mtDNA was observed in all subjects that were over 70 years old. The mutation was based on the directly repeated sequence: 5'-CATCAA-CAACCG-3', which exists in both the adenosine triphosphatase 6 gene and the displacement loop (D-loop) region. Replication impairment occurred at that directly repeated sequence, which caused the elimination of genomes between the adenosine triphosphatase 6 gene and the D-loop region and resulted in a 7.4 kb deletion.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
34 |
164 |
23
|
Uyeda S, Hayakawa M, Nagao T, Molchanov O, Hattori K, Orihara Y, Gotoh K, Akinaga Y, Tanaka H. Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan. Proc Natl Acad Sci U S A 2002; 99:7352-5. [PMID: 12032286 PMCID: PMC124234 DOI: 10.1073/pnas.072208499] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significant anomalous changes in the ultra low frequency range (approximately 0.01 Hz) were observed in both geoelectric and geomagnetic fields before the major volcano-seismic activity in the Izu Island region, Japan. The spectral intensity of the geoelectric potential difference between some electrodes on Niijima Island and the third principal component of geomagnetic field variations at an array network in Izu Peninsula started to increase from a few months before the onset of the volcano-seismic activity, culminating immediately before nearby magnitude 6 class earthquakes. Appearance of similar changes in two different measurements conducted at two far apart sites seems to provide information supporting the reality of preseismic electromagnetic signals.
Collapse
|
research-article |
23 |
146 |
24
|
Gerstenfeld EP, Guerra P, Sparks PB, Hattori K, Lesh MD. Clinical outcome after radiofrequency catheter ablation of focal atrial fibrillation triggers. J Cardiovasc Electrophysiol 2001; 12:900-8. [PMID: 11513440 DOI: 10.1046/j.1540-8167.2001.00900.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Ablative therapy for atrial fibrillation (AF) by targeting initiating triggers, usually in or around the pulmonary veins, has been reported by several centers. Evidence for an overall improvement in quality of life (QOL) and amelioration of symptoms is lacking. METHODS AND RESULTS Seventy-one patients undergoing attempted ablation of focal AF were followed for 60+/-33 weeks. QOL and symptom questionnaires were completed 1 month before and 6 months after electrophysiologic study. Twenty-three patients (32%) underwent electrophysiologic mapping but no ablation because of either insufficient or multifocal ectopy; the other 48 patients (68%) underwent attempted ablation. Sixteen of 48 patients (33%) undergoing ablation, or 16 (23%) of 71 on an intention-to-treat basis, were found at last follow-up to have persistent sinus rhythm without antiarrhythmic drugs. Patients who underwent mapping without ablation reported no improvements in any QOL or symptom score, whereas patients who had long-term successful ablation had significant improvements in all six QOL measures. Interestingly, patients who developed AF recurrence after ablation still reported significant improvements in 4 of 6 QOL measures. Four of 48 patients (8.3%) undergoing ablation developed pulmonary vein stenosis. CONCLUSION Paroxysmal AF can be treated successfully in some patients by ablating initiating triggers in the pulmonary veins; however, in our experience the recurrence rate (32/48 [68%]) and risk of pulmonary vein stenosis (8%) after ablation are high. Patients with recurrent AF after ablation of focal AF triggers have significant improvement in QOL and symptoms compared with before ablation. Patients and their physicians should carefully balance the risks and benefits before considering ablation.
Collapse
|
Comparative Study |
24 |
141 |
25
|
Kitazawa T, Esaki K, Tachibana T, Ishii S, Soeda T, Muto A, Kawabe Y, Igawa T, Tsunoda H, Nogami K, Shima M, Hattori K. Factor VIIIa-mimetic cofactor activity of a bispecific antibody to factors IX/IXa and X/Xa, emicizumab, depends on its ability to bridge the antigens. Thromb Haemost 2017; 117:1348-1357. [PMID: 28451690 PMCID: PMC6292136 DOI: 10.1160/th17-01-0030] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/25/2017] [Indexed: 11/16/2022]
Abstract
Emicizumab, a humanised bispecific antibody recognising factors (F) IX/IXa and X/Xa, can accelerate FIXa-catalysed FX activation by bridging FIXa and FX in a manner similar to FVIIIa. However, details of the emicizumab–antigen interactions have not been reported so far. In this study, we first showed by surface plasmon resonance analysis that emicizumab bound FIX, FIXa, FX, and FXa with moderate affinities (
KD
= 1.58, 1.52, 1.85, and 0.978 μM, respectively). We next showed by immunoblotting analysis that emicizumab recognised the antigens’ epidermal growth factor (EGF)-like domains. We then performed
KD
-based simulation of equilibrium states in plasma for quantitatively predicting the ways that emicizumab would interact with the antigens. The simulation predicted that only a small part of plasma FIX, FX, and emicizumab would form antigen-bridging FIX–emicizumab–FX ternary complex, of which concentration would form a bell-shaped relationship with emicizumab concentration. The bell-shaped concentration dependency was reproduced by plasma thrombin generation assays, suggesting that the plasma concentration of the ternary complex would correlate with emicizumab’s cofactor activity. The simulation also predicted that at 10.0–100 μg/ml of emicizumab–levels shown in a previous study to be clinically effective–the majority of plasma FIX, FX, and emicizumab would exist as monomers. In conclusion, emicizumab binds FIX/FIXa and FX/FXa with micromolar affinities at their EGF-like domains. The
KD
-based simulation predicted that the antigen-bridging ternary complex formed in circulating plasma would correlate with emicizumab’s cofactor activity, and the majority of FIX and FX would be free and available for other coagulation reactions.
Institution where the work was carried out: Research Division, Chugai Pharmaceutical Co., Ltd. Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
|
Journal Article |
8 |
140 |