1
|
Dong S, Yan PF, Manz KE, Abriola LM, Pennell KD, Cápiro NL. Fate and Transformation of 15 Classes of Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foam (AFFF)-Amended Soil Microcosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22777-22789. [PMID: 39654523 DOI: 10.1021/acs.est.4c08665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The environmental fate of per- and polyfluoroalkyl substances (PFAS) in aqueous film-forming foams (AFFFs), especially those synthesized by electrochemical fluorination (ECF) processes, remains largely unknown. This study evaluated the transformation of AFFF-derived ECF-based precursors in aerobic soil microcosms amended with a historically used AFFF formulation (3M Light WaterTM). Fifteen classes of PFAS, including AFFF components and transformation products, were identified or tentatively identified by suspect screening/nontargeted analysis (SSA/NTA) throughout a 308-day incubation. This study demonstrates that AFFF-derived ECF-based precursors serve as sources of perfluoroalkane sulfonamides (FASAs) and perfluoroalkyl acids (PFAAs), which are commonly detected at AFFF-impacted sites. Temporal sampling provided evidence for biotransformation of multiple precursors including tri- or dimethyl ammonio propyl perfluoroalkane sulfonamides. Additionally, the environmental stability (i.e., resistance to transformation) of ECF-based precursors was found to depend upon structural characteristics, including perfluoroalkyl chain length, presence of sulfonamide or carboxamide groups, and functional groups (e.g., a branch of carboxyalkyl group) attached to the nitrogen atoms. These findings provide insights into the transformation pathways of AFFF-derived PFAS and other structurally similar ECF-based PFAS, which will support the management and remediation of PFAS contamination at legacy AFFF-impacted sites.
Collapse
|
2
|
Chen X, Zhang Z, Zhong H, Ahmed M, Heydari G, Park R, Keller E, Liao S, Park T, Ahmadian M, Abriola LM, Pennell KD, Johnston KP. Covalently Cross-Linked Polyelectrolyte Complex Nanoparticles with Enhanced Stability against Dissociation at High Ionic Strength. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39716026 DOI: 10.1021/acs.langmuir.4c02921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Polyelectrolyte complex nanoparticles (PECNPs) often fully dissociate into individual polycations (PC) and polyanions (PA) at high salinities. Herein, we introduce a novel type of colloidally stable PECNP in which the PC is cross-linked, in this case branched polyethylenimine (PEI) to limit this dissociation, even in solutions up to 5.2 M NaCl or 5.4 M CaCl2. For cross-linked PECNPs at specified conditions, the size and the PC (poly(vinylsulfonate)) partition coefficient reach equilibrium within the first 24 h and change very little for 7 weeks. From the determination of the released polyanion concentration over a wide range in PEI protonation degree (f), it was found that strong nonelectrostatic (hydrophobic) as well as electrostatic interactions between the PC and PA control the degree of dissociation. The electrostatic repulsion from the PEI chains on the surface provided long-term colloidal stability with PECNP hydrodynamic diameters on the order of 200 to 300 nm. The ability to achieve partial dissociation of a PECNP up to ultrahigh salinity creates new opportunities in fundamental experimental and theoretical studies of PECNP with relevance to controlled release in subsurface energy and environmental applications.
Collapse
|
3
|
Garza-Rubalcava U, Klevan C, Pennell KD, Abriola LM. Transport and competitive interfacial adsorption of PFOA and PFOS in unsaturated porous media: Experiments and modeling. WATER RESEARCH 2024; 268:122728. [PMID: 39522483 DOI: 10.1016/j.watres.2024.122728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Among emerging contaminants, per- and polyfluoroalkyl substances (PFAS) have captured public attention based upon their environmental ubiquity and potential risks to human health. Due to their typical surface release conditions and amphiphilic properties, PFAS tend to sorb to soil and accumulate at the air-water interface within the vadose zone. These processes can result in substantial plume attenuation. Although there is a growing body of literature on vadose zone transport, few studies have explored PFAS mixture transport, particularly under conditions where nonlinear sorption processes are important. The present study aims to advance our understanding of PFAS transport in variably saturated porous media through integration of experiments and mathematical modeling. Experiments include batch studies to quantify sorption to the solid phase, interfacial tension (IFT) measurements to estimate adsorption at the air-water interface (AWI), and column studies with F-70 Ottawa sand at 100 % and ca. 50 % water saturation to explore transport mechanisms. Employed PFAS solutions encompass individual solutes and binary mixtures of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at concentration levels spanning four orders of magnitude to assess competitive and nonlinear sorption at the AWI. Observations demonstrate that concentration levels and competitive effects substantially influence PFAS transport in unsaturated systems. In the presence of PFOS, PFOA experienced less retention than would be anticipated based on single-solute behavior, and effluent breakthrough curves exhibited chromatographic peaking. The presented mathematical model for simultaneous flow and transport of PFAS was able to capture experimental observations with a consistent set of parameters and minimal curve fitting. These results demonstrate the robustness of the model formulation that included rate-limited interfacial mass transfer, an extended Langmuir-Szyszkowski model for adsorption at the AWI, and a scaled Leverett thermodynamic model to predict the AWI specific area. Overall, the results of this work underscore the importance of the AWI in PFAS transport and highlight the relevance of competition effects in adsorption formulations.
Collapse
|
4
|
Liao S, Garza-Rubalcava U, Abriola LM, Preisendanz HE, Lee LS, Pennell KD. Simulating PFAS transport in effluent-irrigated farmland using PRZM5, LEACHM, and HYDRUS-1D models. JOURNAL OF ENVIRONMENTAL QUALITY 2024. [PMID: 39417335 DOI: 10.1002/jeq2.20639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Application of wastewater effluent to agricultural lands can serve as a sustainable approach to meet irrigation and nutrient needs for crop production. While nitrogen and phosphorous loadings can be effectively managed, concerns have been raised regarding the fate of emerging contaminants, including per- and polyfluoroalkyl substances (PFAS), which are widely detected in wastewater effluent. The objective of this paper was to evaluate the ability of three unsaturated flow and transport models, Pesticide Root Zone Model 5 (PRZM5), LEACHM, and HYDRUS-1D, to predict the distribution of PFAS in the soil profile at the Pennsylvania State University Living Filter site, which has received daily wastewater effluent applications for several decades. The models were modified to include adsorption at the air-water interface (AWI), which has been shown to be an important factor governing PFAS transport and phase distribution in the vadose zone. Simulations showed that PRZM5 did not accurately reproduce the observed perfluorooctanesulfonic acid (PFOS) behavior, which was attributed to the "tipping bucket" approach used for water flow that results in the disappearance of AWI during water flow. In contrast, both LEACHM and HYDRUS-1D captured the observed retention of PFOS and perfluorooctanoic acid (PFOA) over a 50-year simulation period. Due to differences in the approach used to calculate the AWI area, LEACHM predicted greater accumulation of PFOS and PFOA at the AWI compared to HYDRUS-1D. These findings indicate that mathematical models that directly account for unsaturated water flow and adsorption at the AWI are able to provide reasonable predictions of long-term PFAS leaching resulting from land application of wastewater effluent.
Collapse
|
5
|
Meservey A, Külaots I, Bryant JD, Gray C, Wahl J, Manz KE, Pennell KD. Adsorption of per- and polyfluoroalkyl substances on biochar derived from municipal sewage sludge. CHEMOSPHERE 2024; 365:143331. [PMID: 39278324 DOI: 10.1016/j.chemosphere.2024.143331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Granular activated carbon (GAC) and ion exchange resin (IXR) are widely used as adsorbents to remove PFAS from drinking water sources and effluent waste streams. However, the high cost associated with GAC and IXR generation has motivated the development of less expensive adsorbents for treatment of PFAS-impacted water. Thus, the objective of this research was to create an economically viable and sustainable PFAS adsorbent from sewage sludge. Stepwise pyrolysis at temperatures from 300 °C to 1000 °C yielded biochars whose specific surface area (SSA) and porosity increased from 41 to 148 m2/g, and from 0.062 to 0.193 cm3/g, respectively. On a per organic char basis, the SSA of the biochar was as high as 1183 m2/g, which is comparable to commercially-available activated carbons. The adsorption of perfluorooctane sulfonic acid (PFOS) on sludge biochar increased with increasing pyrolysis temperature, which was positively correlated with increasing porosity and SSA. When 1000 °C processed biochar was tested with a mixture of eight PFAS, preferential adsorption of longer carbon chain-length species was observed, indicating the importance of PFAS hydrophobic interactions with the biochar and the availability of a wide range of mesopores. The adsorption of each PFAS was dependent upon both chain length and head group, with longer chain-length species exhibiting greater adsorption than shorter chain-length species, along with greater adsorption of species with sulfonic acid head groups compared to their chain length counterparts with carboxylic acid head groups. These findings demonstrate that biochar derived from municipal solid waste can serve as a cost-effective and sustainable adsorbent for the removal of PFOS and PFAS mixtures from source waters. The circular economy benefits and waste reduction potential associated with the use of sewage sludge-derived biochar supports the development of a viable sludge-derived biochar for the removal of PFAS from water.
Collapse
|
6
|
Fossa AJ, Manz KE, Papandonatos GD, Chen A, La Guardia MJ, Lanphear BP, C Hale R, Pagano A, Pennell KD, Yolton K, Braun JM. A randomized controlled trial of a housing intervention to reduce endocrine disrupting chemical exposures in children. ENVIRONMENT INTERNATIONAL 2024; 191:108994. [PMID: 39226767 PMCID: PMC11500672 DOI: 10.1016/j.envint.2024.108994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/17/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Few studies have considered household interventions for reducing endocrine disrupting chemical (EDC) exposures. We conducted a secondary analysis of a randomized controlled trial, originally designed to reduce lead exposure, to evaluate if the intervention lowered EDC exposures in young children. Study participants were children from the Cincinnati, Ohio area (n = 250, HOME Study). Prenatally, families received a housing intervention that included paint stabilization and dust mitigation, or as a control, injury prevention measures. At 24-months, we measured organophosphate esters (OPEs) and phthalates or their metabolites in dust and urine. We measured perfluoroalkyl substances (PFAS) in dust and serum at 24- and 36-months, respectively. We assessed associations between dust and biomarker EDCs using Spearman correlations, characterized EDC mixtures via principal components analysis, and investigated treatment effects using linear regression. To mitigate selection bias, we fit statistical models using inverse probability of retention weights. Correlations between dust EDCs and analogous biomarkers were weak-to-moderate (ρ's ≤ 0.3). The intervention was associated with 23 % (95 % CI: -38, -3) lower urinary DEHP metabolites and, in a per-protocol analysis, 34 % lower (95 % CI: -55, -2) urinary MBZP. Additionally, among Black or African American children, the intervention was associated with lower serum concentrations of several PFAS (e.g., -42 %; 95 % CI: -63, -8 for PFNA). Household interventions that include paint stabilization and dust mitigation may reduce childhood exposures to some phthalates and PFAS in Blacks/African Americans. These findings highlight the need for larger studies with tailored and sustained housing interventions.
Collapse
|
7
|
Jimenez-Macias JL, Vaughn-Beaucaire P, Bharati A, Xu Z, Forrest M, Hong J, Sun M, Schmidt A, Clark J, Hawkins W, Mercado N, Real J, Huntington K, Zdioruk M, Nowicki MO, Cho CF, Wu B, Li W, Logan T, Manz KE, Pennell KD, Fedeles BI, Brodsky AS, Lawler SE. Modulation of blood-tumor barrier transcriptional programs improves intra-tumoral drug delivery and potentiates chemotherapy in GBM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609797. [PMID: 39253453 PMCID: PMC11382996 DOI: 10.1101/2024.08.26.609797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor. GBM has an extremely poor prognosis and new treatments are badly needed. Efficient drug delivery to GBM is a major obstacle as the blood-brain barrier (BBB) prevents passage of the majority of cancer drugs into the brain. It is also recognized that the blood-brain tumor barrier (BTB) in the growing tumor represents a challenge. The BTB is heterogeneous and poorly characterized, but similar to the BBB it can prevent therapeutics from reaching effective intra-tumoral doses, dramatically hindering their potential. Here, we identified a 12-gene signature associated with the BTB, with functions related to vasculature development, morphogenesis and cell migration. We identified CDH5 as a core molecule in this set and confirmed its over-expression in GBM vasculature using spatial transcriptomics of GBM patient specimens. We found that the indirubin-derivative, 6-bromoindirubin acetoxime (BIA), could downregulate CDH5 and other BTB signature genes, causing endothelial barrier disruption in endothelial monolayers and BBB 3D spheroids in vitro. Treatment of tumor-bearing mice with BIA enabled increased intra-tumoral accumulation of the BBB non-penetrant chemotherapeutic drug cisplatin and potentiated cisplatin-mediated DNA damage by targeting DNA repair pathways. Finally, using an injectable BIA nanoparticle formulation, PPRX-1701, we significantly improved the efficacy of cisplatin in patient-derived GBM xenograms and prolonged their survival. Overall, our work reveals potential targets at the BTB for improved chemotherapy delivery and the bifunctional properties of BIA as a BTB modulator and potentiator of chemotherapy, supporting its further development.
Collapse
|
8
|
Wu H, Kalia V, Manz KE, Chillrud L, Dishon NH, Jackson GL, Dye CK, Orvieto R, Aizer A, Levine H, Kioumourtzoglou MA, Pennell KD, Baccarelli AA, Machtinger R. Exposome Profiling of Environmental Pollutants in Seminal Plasma and Novel Associations with Semen Parameters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13594-13604. [PMID: 39053901 PMCID: PMC11308511 DOI: 10.1021/acs.est.3c10314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Indicators of male fertility are in decline globally, but the underlying causes, including the role of environmental exposures, are unclear. This study aimed to examine organic chemical pollutants in seminal plasma, including both known priority environmental chemicals and less studied chemicals, to identify uncharacterized male reproductive environmental toxicants. Semen samples were collected from 100 individuals and assessed for sperm concentration, percent motility, and total motile sperm. Targeted and nontargeted organic pollutant exposures were measured from seminal plasma using gas chromatography, which showed widespread detection of organic pollutants in seminal plasma across all exposure classes. We used principal component pursuit (PCP) on our targeted panel and derived one component (driven by etriadizole) associated with total motile sperm (p < 0.001) and concentration (p = 0.03). This was confirmed by the exposome-wide association models using individual chemicals, where etriadizole was negatively associated with total motile sperm (FDR q = 0.01) and concentration (q = 0.07). Using PCP on 814 nontargeted spectral peaks identified a component that was associated with total motile sperm (p = 0.001). Bayesian kernel machine regression identified one principal driver of this association, which was analytically confirmed to be N-nitrosodiethylamine. These findings are promising and consistent with experimental evidence showing that etridiazole and N-nitrosodiethylamine may be reproductive toxicants.
Collapse
|
9
|
Lai Y, Koelmel JP, Walker DI, Price EJ, Papazian S, Manz KE, Castilla-Fernández D, Bowden JA, Nikiforov V, David A, Bessonneau V, Amer B, Seethapathy S, Hu X, Lin EZ, Jbebli A, McNeil BR, Barupal D, Cerasa M, Xie H, Kalia V, Nandakumar R, Singh R, Tian Z, Gao P, Zhao Y, Froment J, Rostkowski P, Dubey S, Coufalíková K, Seličová H, Hecht H, Liu S, Udhani HH, Restituito S, Tchou-Wong KM, Lu K, Martin JW, Warth B, Godri Pollitt KJ, Klánová J, Fiehn O, Metz TO, Pennell KD, Jones DP, Miller GW. High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12784-12822. [PMID: 38984754 PMCID: PMC11271014 DOI: 10.1021/acs.est.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.
Collapse
|
10
|
Dunn F, Paquette SE, Pennell KD, Plavicki JS, Manz KE. Metabolomic changes following GenX and PFBS exposure in developing zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106908. [PMID: 38608566 PMCID: PMC11209921 DOI: 10.1016/j.aquatox.2024.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Short chain per- and polyfluoroalkyl substances (PFAS), including hexafluoropropylene oxide dimer acid (GenX) and perfluorobutane sulfonate (PFBS), are replacement chemicals for environmentally persistent, long-chain PFAS. Although GenX and PFBS have been detected in surface and ground water worldwide, few studies provide information on the metabolic alterations or risks associated with their exposures. In this study, larval zebrafish were used to investigate the toxicity of early-life exposure to GenX or PFBS. Zebrafish were chronically exposed from 4 h post-fertilization (hpf) to 6 days post-fertilization (dpf) to 150 µM GenX or 95.0 µM PFBS. Ultra-high-performance liquid chromatography paired with high-resolution mass spectrometry was used to quantify uptake of GenX and PFBS into zebrafish larvae and perform targeted and untargeted metabolomics. Our results indicate that PFBS was 20.4 % more readily absorbed into the zebrafish larvae compared to GenX. Additionally, PFBS exposure significantly altered 13 targeted metabolites and 21 metabolic pathways, while GenX exposure significantly altered 1 targeted metabolite and 17 metabolic pathways. Exposure to GenX, and to an even greater extent PFBS, resulted in a number of altered metabolic pathways in the amino acid metabolism, with other significant alterations in the carbohydrate, lipid, cofactors and vitamins, nucleotide, and xenobiotics metabolisms. Our results indicate that GenX and PFBS impact the zebrafish metabolome, with implications of global metabolic dysregulation, particularly in metabolic pathways relating to growth and development.
Collapse
|
11
|
Yan PF, Dong S, Pennell KD, Cápiro NL. A review of the occurrence and microbial transformation of per- and polyfluoroalkyl substances (PFAS) in aqueous film-forming foam (AFFF)-impacted environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171883. [PMID: 38531439 DOI: 10.1016/j.scitotenv.2024.171883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Aqueous film-forming foams (AFFFs) have been extensively used for extinguishing hydrocarbon-fuel fires at military sites, airports, and fire-training areas. Despite being a significant source of per- and polyfluoroalkyl substances (PFAS), our understanding of PFAS occurrence in AFFF formulations and AFFF-impacted environments is limited, as is the impact of microbial transformation on the environment fate of AFFF-derived PFAS. This literature review compiles PFAS concentrations in electrochemical fluorination (ECF)- and fluorotelomer (FT)-based AFFFs and provides an overview of PFAS occurrence in AFFF-impacted environments. Our analysis reveals that AFFF use is a predominant point source of PFAS contamination, including primary precursors (polyfluoroalkyl substances as AFFF components), secondary precursors (polyfluoroalkyl transformation products of primary precursors), and perfluoroalkyl acids (PFAAs). Moreover, there are discrepancies between PFAS concentration profiles in AFFFs and those measured in AFFF-impacted media. For example, primary precursors constitute 52.6 % and 99.5 % of PFAS mass in ECF- and FT-based AFFFs, respectively, whereas they represent only 0.7 % total mass in AFFF-impacted groundwater. Conversely, secondary precursors, which constitute <1 % of PFAS in AFFFs, represent 4.0-27.8 % of PFAS in AFFF-impacted environments. The observed differences in PFAS levels between AFFFs and environmental samples are likely due to in-situ biotransformation processes. Biotransformation rates and pathways reported for AFFF-derived primary and secondary precursors varied among different classes of precursors, consistent with the PFAS occurrence in AFFF-impacted environments. For example, readily biodegradable primary precursors, N-dimethyl ammonio propyl perfluoroalkane sulfonamide (AmPr-FASA) and n:2 fluorotelomer thioether amido sulfonate (n:2 FtTAoS), were rarely detected in AFFF-impacted environments. In contrast, key secondary precursors, perfluoroalkane sulfonamides (FASAs) and n:2 fluorotelomer sulfonate (n:2 FTS), were widely detected, which was attributed to their resistance to biotransformation. Key knowledge gaps and future research priorities are presented to better understand the occurrence, fate, and transport of AFFF-derived PFAS in the environment and to design more effective remediation strategies.
Collapse
|
12
|
Gumus S, Biechele-Speziale D, Manz KE, Pennell KD, Rubenstein BM, Rosenstein JK. Repurposing Waste Chemicals for Sustainable and Durable Molecular Data Storage. ACS OMEGA 2024; 9:19904-19910. [PMID: 38737050 PMCID: PMC11079871 DOI: 10.1021/acsomega.3c09234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Molecular data storage offers the intriguing possibility of higher theoretical density and longer lifetimes than today's electronic memory devices. Some demonstrations have used deoxyribonucleic acid (DNA), but bottlenecks in nucleic acid synthesis continue to make DNA data storage orders of magnitude more expensive than electronic storage media. Additionally, despite its potential for long-term storage, DNA faces durability challenges from environmental degradation. In this work, we demonstrate nongenomic molecular data storage using molecular libraries redirected from chemical waste streams. This approach requires no synthetic effort and can be implemented by using molecules that have a minimal associated cost. While the technique is agnostic about the exact molecular content of its inputs, we confirmed that some sources contained poly fluoroalkyl substances (PFAS), which persist for long periods in the natural environment and could offer extremely durable information storage as well as environmental benefits. These demonstrations provide a perspective on some of the valuable possibilities for nongenomic molecular information systems.
Collapse
|
13
|
Dong S, Yan PF, Mezzari MP, Abriola LM, Pennell KD, Cápiro NL. Using Network Analysis and Predictive Functional Analysis to Explore the Fluorotelomer Biotransformation Potential of Soil Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7480-7492. [PMID: 38639388 DOI: 10.1021/acs.est.4c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Microbial transformation of per- and polyfluoroalkyl substances (PFAS), including fluorotelomer-derived PFAS, by native microbial communities in the environment has been widely documented. However, few studies have identified the key microorganisms and their roles during the PFAS biotransformation processes. This study was undertaken to gain more insight into the structure and function of soil microbial communities that are relevant to PFAS biotransformation. We collected 16S rRNA gene sequencing data from 8:2 fluorotelomer alcohol and 6:2 fluorotelomer sulfonate biotransformation studies conducted in soil microcosms under various redox conditions. Through co-occurrence network analysis, several genera, including Variovorax, Rhodococcus, and Cupriavidus, were found to likely play important roles in the biotransformation of fluorotelomers. Additionally, a metagenomic prediction approach (PICRUSt2) identified functional genes, including 6-oxocyclohex-1-ene-carbonyl-CoA hydrolase, cyclohexa-1,5-dienecarbonyl-CoA hydratase, and a fluoride-proton antiporter gene, that may be involved in defluorination. This study pioneers the application of these bioinformatics tools in the analysis of PFAS biotransformation-related sequencing data. Our findings serve as a foundational reference for investigating enzymatic mechanisms of microbial defluorination that may facilitate the development of efficient microbial consortia and/or pure microbial strains for PFAS biotransformation.
Collapse
|
14
|
Arshadi M, Garza-Rubalcava U, Guedes A, Cápiro NL, Pennell KD, Christ J, Abriola LM. Modeling 1-D aqueous film forming foam transport through the vadose zone under realistic site and release conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170566. [PMID: 38331271 DOI: 10.1016/j.scitotenv.2024.170566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Aqueous film forming foams (AFFFs) have been used to extinguish fires since the 1960s, leading to widespread subsurface contamination by per- and polyfluoroalkyl substances (PFAS), an essential component of AFFF. This study presents 1-D simulations of PFAS migration in the vadose zone resulting from AFFF releases. Simulation scenarios used soil profiles from three US Air Force (USAF) installations, encompassing a range of climatic conditions and hydrogeologic environments. A three-component mixture, representative of major constituents of AFFF, facilitated the exploration of competitive and synergistic effects of co-constituents on PFAS migration. To accurately capture unsaturated transport of PFAS in porous media, the model considers (1) surfactant-induced flow, (2) non-linear sorption to the solid phase, (3) competitive accumulation at the air-water interface, and (4) the moisture-dependence of the air-water interfacial area. Defined PFAS releases were consistent with fire training exercises, emergency responses, and accidental spills of record. Simulation results illustrate the importance of hydrogeologic, climatic, geochemical, and AFFF release conditions on PFAS transport and retention. Comparison of field observations and model simulations for Ellsworth AFB indicate that much of the PFOA and PFOS mass is associated with the air-water interface and the solid phase, which limits their migration potential in the vadose zone. Results also show that rates of migration in the aqueous phase are largely controlled by hydrogeologic properties, including recharge rates and hydraulic conductivity. AFFF spill scenarios varying in volume, concentration, and frequency reveal the importance of release characteristics in determining rates of PFAS migration and concentration peaks. Variability is attributed to non-linear sorption processes, where, contrary to simple linear partitioning formulations, transport is strongly affected by the concentration of PFAS species. Simulations also demonstrate the importance of modeling the AFFF as a mixture since competitive interfacial accumulation effects are shown to enhance the mobility of less surface-active PFAS compounds.
Collapse
|
15
|
Yan PF, Dong S, Woodcock MJ, Manz KE, Garza-Rubalcava U, Abriola LM, Pennell KD, Cápiro NL. Biotransformation of 6:2 fluorotelomer sulfonate and microbial community dynamics in water-saturated one-dimensional flow-through columns. WATER RESEARCH 2024; 252:121146. [PMID: 38306753 DOI: 10.1016/j.watres.2024.121146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
Nearly all per- and polyfluoroalkyl substances (PFAS) biotransformation studies reported to date have been limited to laboratory-scale batch reactors. The fate and transport of PFAS in systems that more closely represent field conditions, i.e., in saturated porous media under flowing conditions, remain largely unexplored. This study investigated the biotransformation of 6:2 fluorotelomer sulfonate (6:2 FTS), a representative PFAS of widespread environmental occurrence, in one-dimensional water-saturated flow-through columns packed with soil obtained from a PFAS-contaminated site. The 305-day column experiments demonstrated that 6:2 FTS biotransformation was rate-limited, where a decrease in pore-water velocity from 3.7 to 2.4 cm/day, resulted in a 21.7-26.1 % decrease in effluent concentrations of 6:2 FTS and higher yields (1.0-1.4 mol% vs. 0.3 mol%) of late-stage biotransformation products (C4C7 perfluoroalkyl carboxylates). Flow interruptions (2 and 7 days) were found to enhance 6:2 FTS biotransformation during the 6-7 pore volumes following flow resumption. Model-fitted 6:2 FTS column biotransformation rates (0.039-0.041 cmw3/gs/d) were ∼3.5 times smaller than those observed in microcosms (0.137 cmw3/gs/d). Additionally, during column experiments, planktonic microbial communities remained relatively stable, whereas the composition of the attached microbial communities shifted along the flow path, which may have been attributed to oxygen availability and the toxicity of 6:2 FTS and associated biotransformation products. Genus Pseudomonas dominated in planktonic microbial communities, while in the attached microbial communities, Rhodococcus decreased and Pelotomaculum increased along the flow path, suggesting their potential involvement in early- and late-stage 6:2 FTS biotransformation, respectively. Overall, this study highlights the importance of incorporating realistic environmental conditions into experimental systems to obtain a more representative assessment of in-situ PFAS biotransformation.
Collapse
|
16
|
Smith SJ, Lauria M, Higgins CP, Pennell KD, Blotevogel J, Arp HPH. The Need to Include a Fluorine Mass Balance in the Development of Effective Technologies for PFAS Destruction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2587-2590. [PMID: 38314573 PMCID: PMC10867837 DOI: 10.1021/acs.est.3c10617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Indexed: 02/06/2024]
|
17
|
Yan PF, Dong S, Manz KE, Woodcock MJ, Liu C, Mezzari MP, Abriola LM, Pennell KD, Cápiro NL. Aerobic biotransformation of 6:2 fluorotelomer sulfonate in soils from two aqueous film-forming foam (AFFF)-impacted sites. WATER RESEARCH 2024; 249:120941. [PMID: 38070347 DOI: 10.1016/j.watres.2023.120941] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Although 6:2 fluorotelomer sulfonate (6:2 FTS) is a common ingredient in aqueous film-forming foam (AFFF) formulations, its environmental fate at AFFF-impacted sites remains poorly understood. This study investigated the biotransformation of 6:2 FTS in microcosms prepared with soils collected from two AFFF-impacted sites; the former Loring Air Force Base (AFB) and Robins AFB. The half-life of 6:2 FTS in Loring soil was 43.3 days; while >60 mol% of initially spiked 6:2 FTS remained in Robins soil microcosms after a 224-day incubation. Differences in initial sulfate concentrations and the depletion of sulfate over the incubation likely contributed to the different 6:2 FTS biotransformation rates between the two soils. At day 224, stable transformation products, i.e., C4C7 perfluoroalkyl carboxylates, were formed with combined molar yields of 13.8 mol% and 1.2 mol% in Loring and Robins soils, respectively. Based on all detected transformation products, the biotransformation pathways of 6:2 FTS in the two soils were proposed. Microbial community analysis suggests that Desulfobacterota microorganisms may promote 6:2 FTS biotransformation via more efficient desulfonation. In addition, species from the genus Sphingomonas, which exhibited higher tolerance to elevated concentrations of 6:2 FTS and its biotransformation products, are likely to have contributed to 6:2 FTS biotransformation. This study demonstrates the potential role of biotransformation processes on the fate of 6:2 FTS at AFFF-impacted sites and highlights the need to characterize site biogeochemical properties for improved assessment of 6:2 FTS biotransformation behavior.
Collapse
|
18
|
Zheng T, Kelsey K, Zhu C, Pennell KD, Yao Q, Manz KE, Zheng YF, Braun JM, Liu Y, Papandonatos G, Liu Q, Shi K, Brochman S, Buka SL. Adverse birth outcomes related to concentrations of per- and polyfluoroalkyl substances (PFAS) in maternal blood collected from pregnant women in 1960-1966. ENVIRONMENTAL RESEARCH 2024; 241:117010. [PMID: 37696323 DOI: 10.1016/j.envres.2023.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/12/2023] [Accepted: 08/27/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Prior animal and epidemiological studies suggest that per- and polyfluoroalkyl substances (PFAS) exposure may be associated with reduced birth weight. However, results from prior studies evaluated a relatively small set of PFAS. OBJECTIVES Determine associations of gestational PFAS concentrations in maternal serum samples banked for 60 years with birth outcomes. METHODS We used data from 97 pregnant women from Boston and Providence that enrolled in the Collaborative Perinatal Project (CPP) study (1960-1966). We quantified concentrations of 27 PFAS in maternal serum in pregnancy and measured infant weight, height and ponderal index at birth. Covariate-adjusted associations between 11 PFAS concentrations (>75% detection limits) and birth outcomes were estimated using linear regression methods. RESULTS Median concentrations of PFOA, PFNA, PFHxS, and PFOS were 6.189, 0.330, 14.432, and 38.170 ng/mL, respectively. We found that elevated PFAS concentrations during pregnancy were significantly associated with lower birth weight and ponderal index at birth, but no significant associations were found with birth length. Specifically, infants born to women with PFAS concentrations ≥ median levels had significantly lower birth weight (PFOS: β = -0.323, P = 0.006; PFHxS: β = -0.292, P = 0.015; PFOA: β = -0.233, P = 0.03; PFHpS: β = -0.239, P = 0.023; PFNA: β = -0.239, P = 0.017). Similarly, women with PFAS concentrations ≥ median levels had significantly lower ponderal index (PFHxS: β = -0.168, P = 0.020; PFHxA: β = -0.148, P = 0.018). CONCLUSIONS Using data from this US-based cohort study, we found that 1) maternal PFAS levels from the 1960s exceeded values in contemporaneous populations and 2) that gestational concentrations of certain PFAS were associated with lower birth weight and infant ponderal index. Additional studies with larger sample size are needed to further examine the associations of gestational exposure to individual PFAS and their mixtures with adverse birth outcomes.
Collapse
|
19
|
Hall AM, Fleury E, Papandonatos GD, Buckley JP, Cecil KM, Chen A, Lanphear BP, Yolton K, Walker DI, Pennell KD, Braun JM, Manz KE. Associations of a Prenatal Serum Per- and Polyfluoroalkyl Substance Mixture with the Cord Serum Metabolome in the HOME Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21627-21636. [PMID: 38091497 PMCID: PMC11185318 DOI: 10.1021/acs.est.3c07515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous and persistent chemicals associated with multiple adverse health outcomes; however, the biological pathways affected by these chemicals are unknown. To address this knowledge gap, we used data from 264 mother-infant dyads in the Health Outcomes and Measures of the Environment (HOME) Study and employed quantile-based g-computation to estimate covariate-adjusted associations between a prenatal (∼16 weeks' gestation) serum PFAS mixture [perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)] and 14,402 features measured in cord serum. The PFAS mixture was associated with four features: PFOS, PFHxS, a putatively identified metabolite (3-monoiodo-l-thyronine 4-O-sulfate), and an unidentified feature (590.0020 m/z and 441.4 s retention time; false discovery rate <0.20). Using pathway enrichment analysis coupled with quantile-based g-computation, the PFAS mixture was associated with 49 metabolic pathways, most notably amino acid, carbohydrate, lipid and cofactor and vitamin metabolism, as well as glycan biosynthesis and metabolism (P(Gamma) <0.05). Future studies should assess if these pathways mediate associations of prenatal PFAS exposure with infant or child health outcomes, such as birthweight or vaccine response.
Collapse
|
20
|
Puvvula J, Manz KE, Braun JM, Pennell KD, DeFranco EA, Ho SM, Leung YK, Huang S, Vuong AM, Kim SS, Percy ZP, Bhashyam P, Lee R, Jones DP, Tran V, Kim DV, Chen A. Maternal and newborn metabolomic changes associated with urinary polycyclic aromatic hydrocarbon metabolite concentrations at delivery: an untargeted approach. Metabolomics 2023; 20:6. [PMID: 38095785 DOI: 10.1007/s11306-023-02074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION Prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse human health outcomes. To explore the plausible associations between maternal PAH exposure and maternal/newborn metabolomic outcomes, we conducted a cross-sectional study among 75 pregnant people from Cincinnati, Ohio. METHOD We quantified 8 monohydroxylated PAH metabolites in maternal urine samples collected at delivery. We then used an untargeted high-resolution mass spectrometry approach to examine alterations in the maternal (n = 72) and newborn (n = 63) serum metabolome associated with PAH metabolites. Associations between individual maternal urinary PAH metabolites and maternal/newborn metabolome were assessed using linear regression adjusted for maternal and newborn factors while accounting for multiple testing with the Benjamini-Hochberg method. We then conducted functional analysis to identify potential biological pathways. RESULTS Our results from the metabolome-wide associations (MWAS) indicated that an average of 1% newborn metabolome features and 2% maternal metabolome features were associated with maternal urinary PAH metabolites. Individual PAH metabolite concentrations in maternal urine were associated with maternal/newborn metabolome related to metabolism of vitamins, amino acids, fatty acids, lipids, carbohydrates, nucleotides, energy, xenobiotics, glycan, and organic compounds. CONCLUSION In this cross-sectional study, we identified associations between urinary PAH concentrations during late pregnancy and metabolic features associated with several metabolic pathways among pregnant women and newborns. Further studies are needed to explore the mediating role of the metabolome in the relationship between PAHs and adverse pregnancy outcomes.
Collapse
|
21
|
Manz KE, Dodson RE, Liu Y, Scheidl L, Burks S, Dunn F, Gairola R, Lee NF, Walker ED, Pennell KD, Braun JM. Effects of Corsi-Rosenthal boxes on indoor air contaminants: non-targeted analysis using high resolution mass spectrometry. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:537-547. [PMID: 37414869 PMCID: PMC11185994 DOI: 10.1038/s41370-023-00577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND In response to COVID-19, attention was drawn to indoor air quality and interventions to mitigate airborne COVID-19 transmission. Of developed interventions, Corsi-Rosenthal (CR) boxes, a do-it-yourself indoor air filter, may have potential co-benefits of reducing indoor air contaminant levels. OBJECTIVE We employed non-targeted and suspect screening analysis (NTA and SSA) to detect and identify volatile and semi-volatile organic contaminants (VOCs and SVOCs) that decreased in indoor air following installation of CR boxes. METHODS Using a natural experiment, we sampled indoor air before and during installation of CR boxes in 17 rooms inside an occupied office building. We measured VOCs and SVOCs using gas chromatography (GC) high resolution mass spectrometry (HRMS) with electron ionization (EI) and liquid chromatography (LC) HRMS in negative and positive electrospray ionization (ESI). We examined area count changes during vs. before operation of the CR boxes using linear mixed models. RESULTS Transformed (log2) area counts of 71 features significantly decreased by 50-100% after CR boxes were installed (False Discovery Rate (FDR) p-value < 0.2). Of the significantly decreased features, four chemicals were identified with Level 1 confidence, 45 were putatively identified with Level 2-4 confidence, and 22 could not be identified (Level 5). Identified and putatively identified features (Level ≥4) that declined included disinfectants (n = 1), fragrance and/or food chemicals (n = 9), nitrogen-containing heterocyclic compounds (n = 4), organophosphate esters (n = 1), polycyclic aromatic hydrocarbons (n = 8), polychlorinated biphenyls (n = 1), pesticides/herbicides/insecticides (n = 18), per- and polyfluorinated alkyl substances (n = 2), phthalates (n = 3), and plasticizers (n = 2). IMPACT STATEMENT We used SSA and NTA to demonstrate that do-it-yourself Corsi-Rosenthal boxes are an effective means for improving indoor air quality by reducing a wide range of volatile and semi-volatile organic contaminants.
Collapse
|
22
|
Manz KE, Feerick A, Braun JM, Feng YL, Hall A, Koelmel J, Manzano C, Newton SR, Pennell KD, Place BJ, Godri Pollitt KJ, Prasse C, Young JA. Non-targeted analysis (NTA) and suspect screening analysis (SSA): a review of examining the chemical exposome. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:524-536. [PMID: 37380877 PMCID: PMC10403360 DOI: 10.1038/s41370-023-00574-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Non-targeted analysis (NTA) and suspect screening analysis (SSA) are powerful techniques that rely on high-resolution mass spectrometry (HRMS) and computational tools to detect and identify unknown or suspected chemicals in the exposome. Fully understanding the chemical exposome requires characterization of both environmental media and human specimens. As such, we conducted a review to examine the use of different NTA and SSA methods in various exposure media and human samples, including the results and chemicals detected. The literature review was conducted by searching literature databases, such as PubMed and Web of Science, for keywords, such as "non-targeted analysis", "suspect screening analysis" and the exposure media. Sources of human exposure to environmental chemicals discussed in this review include water, air, soil/sediment, dust, and food and consumer products. The use of NTA for exposure discovery in human biospecimen is also reviewed. The chemical space that has been captured using NTA varies by media analyzed and analytical platform. In each media the chemicals that were frequently detected using NTA were: per- and polyfluoroalkyl substances (PFAS) and pharmaceuticals in water, pesticides and polyaromatic hydrocarbons (PAHs) in soil and sediment, volatile and semi-volatile organic compounds in air, flame retardants in dust, plasticizers in consumer products, and plasticizers, pesticides, and halogenated compounds in human samples. Some studies reviewed herein used both liquid chromatography (LC) and gas chromatography (GC) HRMS to increase the detected chemical space (16%); however, the majority (51%) only used LC-HRMS and fewer used GC-HRMS (32%). Finally, we identify knowledge and technology gaps that must be overcome to fully assess potential chemical exposures using NTA. Understanding the chemical space is essential to identifying and prioritizing gaps in our understanding of exposure sources and prior exposures. IMPACT STATEMENT: This review examines the results and chemicals detected by analyzing exposure media and human samples using high-resolution mass spectrometry based non-targeted analysis (NTA) and suspect screening analysis (SSA).
Collapse
|
23
|
Hnatko JP, Liu C, Elsey JL, Dong S, Fortner JD, Pennell KD, Abriola LM, Cápiro NL. Microbial Reductive Dechlorination by a Commercially Available Dechlorinating Consortium Is Not Inhibited by Perfluoroalkyl Acids (PFAAs) at Field-Relevant Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37216485 DOI: 10.1021/acs.est.2c04815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have been shown to inhibit biodegradation (i.e., organohalide respiration) of chlorinated ethenes. The potential negative impacts of PFAAs on microbial species performing organohalide respiration, particularly Dehalococcoides mccartyi (Dhc), and the efficacy of in situ bioremediation are a critical concern for comingled PFAA-chlorinated ethene plumes. Batch reactor (no soil) and microcosm (with soil) experiments, containing a PFAA mixture and bioaugmented with KB-1, were completed to assess the impact of PFAAs on chlorinated ethene organohalide respiration. In batch reactors, PFAAs delayed complete biodegradation of cis-1,2-dichloroethene (cis-DCE) to ethene. Maximum substrate utilization rates (a metric for quantifying biodegradation rates) were fit to batch reactor experiments using a numerical model that accounted for chlorinated ethene losses to septa. Fitted values for cis-DCE and vinyl chloride biodegradation were significantly lower (p < 0.05) in batch reactors containing ≥50 mg/L PFAAs. Examination of reductive dehalogenase genes implicated in ethene formation revealed a PFAA-associated change in the Dhc community from cells harboring the vcrA gene to those harboring the bvcA gene. Organohalide respiration of chlorinated ethenes was not impaired in microcosm experiments with PFAA concentrations of 38.7 mg/L and less, suggesting that a microbial community containing multiple strains of Dhc is unlikely to be inhibited by PFAAs at lower, environmentally relevant concentrations.
Collapse
|
24
|
Zdioruk M, Jimenez-Macias JL, Nowicki MO, Manz KE, Pennell KD, Koch MS, Finkelberg T, Wu B, Boucher P, Takeda Y, Li W, Piranlioglu R, Ling AL, Chiocca EA, Lawler SE. PPRX-1701, a nanoparticle formulation of 6'-bromoindirubin acetoxime, improves delivery and shows efficacy in preclinical GBM models. Cell Rep Med 2023; 4:101019. [PMID: 37060903 PMCID: PMC10213750 DOI: 10.1016/j.xcrm.2023.101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/17/2023]
Abstract
Derivatives of the Chinese traditional medicine indirubin have shown potential for the treatment of cancer through a range of mechanisms. This study investigates the impact of 6'-bromoindirubin-3'-acetoxime (BiA) on immunosuppressive mechanisms in glioblastoma (GBM) and evaluates the efficacy of a BiA nanoparticle formulation, PPRX-1701, in immunocompetent mouse GBM models. Transcriptomic studies reveal that BiA downregulates immune-related genes, including indoleamine 2,3-dioxygenase 1 (IDO1), a critical enzyme in the tryptophan-kynurenine-aryl hydrocarbon receptor (Trp-Kyn-AhR) immunosuppressive pathway in tumor cells. BiA blocks interferon-γ (IFNγ)-induced IDO1 protein expression in vitro and enhances T cell-mediated tumor cell killing in GBM stem-like cell co-culture models. PPRX-1701 reaches intracranial murine GBM and significantly improves survival in immunocompetent GBM models in vivo. Our results indicate that BiA improves survival in murine GBM models via effects on important immunotherapeutic targets in GBM and that it can be delivered efficiently via PPRX-1701, a nanoparticle injectable formulation of BiA.
Collapse
|
25
|
Liao S, Liu XL, Manz KE, Pennell KD, Novak J, Santos E, Huang Y. Comprehensive analysis of alkenones by reversed-phase HPLC-MS with unprecedented selectivity, linearity and sensitivity. Talanta 2023; 260:124653. [PMID: 37178676 DOI: 10.1016/j.talanta.2023.124653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Alkenones are among the most widely used paleotemperature biomarkers. Traditionally, alkenones are analyzed using gas chromatography-flame ionization detector (GC-FID), or GC-chemical ionization-mass spectrometry (GC-CI-MS). However, these methods encounter considerable challenges for samples that exhibit matrix interference or low concentrations, with GC-FID requiring tedious sample preparations and GC-CI-MS suffering from nonlinear response and a narrow linear dynamic range. Here we demonstrate that reversed-phase high pressure liquid chromatography-mass spectrometry (HPLC-MS) methods provide excellent resolution, selectivity, linearity and sensitivity for alkenones in complex matrices. We systematically compared the advantages and limitations of three mass detectors (quadrupole, Orbitrap, and quadrupole-time of flight) and two ionization modes (electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI)) for alkenone analyses. We demonstrate that ESI performs better than APCI as response factors of various unsaturated alkenones are similar. Among the three mass analyzers tested, orbitrap MS provided the lowest limit of detection (0.4, 3.8 and 8.6 pg injected masses for Orbitrap, qTOF and single quadrupole MS, respectively) and the widest linear dynamic range (600, 20 and 30 folds for Orbitrap, qTOF and single quadrupole MS, respectively). Single quadrupole MS operated in ESI mode provides accurate quantification of proxy measurements over a wide range of injection masses, and with its modest instrument cost, represents an ideal method for routine applications. Analysis of global core-top sediment samples confirmed the efficacy of HPLC-MS methods for the detection and quantification of paleotemperature proxies based on alkenones and their superiority over GC-based methods. The analytical method demonstrated in this study should also allow highly sensitive analyses of diverse aliphatic ketones in complex matrices.
Collapse
|