1
|
Zhu J, Vinothkumar KR, Hirst J. Structure of mammalian respiratory complex I. Nature 2016; 536:354-358. [PMID: 27509854 PMCID: PMC5027920 DOI: 10.1038/nature19095] [Citation(s) in RCA: 421] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/08/2016] [Indexed: 12/17/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in the cell, powers ATP synthesis in mammalian mitochondria by using the reducing potential of NADH to drive protons across the inner membrane. Mammalian complex I1 contains 45 subunits, comprising 14 core subunits that house the catalytic machinery and are conserved from bacteria to humans, and a mammalian-specific cohort of 31 supernumerary subunits1,2. Knowledge about the structures and functions of the supernumerary subunits is fragmentary. Here, we describe a 4.2 Å resolution single-particle cryoEM structure of complex I from Bos taurus. We locate and model all 45 subunits to provide the entire structure of the mammalian complex. Furthermore, computational sorting of the particles identified different structural classes, related by subtle domain movements, which reveal conformationally-dynamic regions and match biochemical descriptions of the ‘active-to-deactive’ enzyme transition that occurs during hypoxia3,4. Thus, our structures provide a foundation for understanding complex I assembly5 and the effects of mutations that cause clinically-relevant complex I dysfunctions6, insights into the structural and functional roles of the supernumerary subunits, and new information on the mechanism and regulation of catalysis.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
421 |
2
|
Vinothkumar KR, Zhu J, Hirst J. Architecture of mammalian respiratory complex I. Nature 2014; 515:80-84. [PMID: 25209663 PMCID: PMC4224586 DOI: 10.1038/nature13686] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/17/2014] [Indexed: 12/18/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is essential for oxidative phosphorylation in mammalian mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the energy-transducing inner membrane, providing electrons for respiration and driving ATP synthesis. Mammalian complex I contains 44 different nuclear- and mitochondrial-encoded subunits, with a combined mass of 1 MDa. The 14 conserved 'core' subunits have been structurally defined in the minimal, bacterial complex, but the structures and arrangement of the 30 'supernumerary' subunits are unknown. Here we describe a 5 Å resolution structure of complex I from Bos taurus heart mitochondria, a close relative of the human enzyme, determined by single-particle electron cryo-microscopy. We present the structures of the mammalian core subunits that contain eight iron-sulphur clusters and 60 transmembrane helices, identify 18 supernumerary transmembrane helices, and assign and model 14 supernumerary subunits. Thus, we considerably advance knowledge of the structure of mammalian complex I and the architecture of its supernumerary ensemble around the core domains. Our structure provides insights into the roles of the supernumerary subunits in regulation, assembly and homeostasis, and a basis for understanding the effects of mutations that cause a diverse range of human diseases.
Collapse
|
research-article |
11 |
323 |
3
|
Yildiz Ö, Vinothkumar KR, Goswami P, Kühlbrandt W. Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation. EMBO J 2006; 25:3702-13. [PMID: 16888630 PMCID: PMC1538548 DOI: 10.1038/sj.emboj.7601237] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 06/14/2006] [Indexed: 11/09/2022] Open
Abstract
OmpG, a monomeric pore-forming protein from Escherichia coli outer membranes, was refolded from inclusion bodies and crystallized in two different conformations. The OmpG channel is a 14-stranded beta-barrel, with short periplasmic turns and seven extracellular loops. Crystals grown at neutral pH show the channel in the open state at 2.3 A resolution. In the 2.7 A structure of crystals grown at pH 5.6, the pore is blocked by loop 6, which folds across the channel. The rearrangement of loop 6 appears to be triggered by a pair of histidine residues, which repel one another at acidic pH, resulting in the breakage of neighbouring H-bonds and a lengthening of loop 6 from 10 to 17 residues. A total of 151 ordered LDAO detergent molecules were found in the 2.3 A structure, mostly on the hydrophobic outer surface of OmpG, mimicking the outer membrane lipid bilayer, with three LDAO molecules in the open pore. In the 2.7 A structure, OmpG binds one OG and one glucose molecule as sugar substrates in the closed pore.
Collapse
|
Journal Article |
19 |
136 |
4
|
Abstract
In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class.
Collapse
|
Review |
15 |
121 |
5
|
Blaza JN, Vinothkumar KR, Hirst J. Structure of the Deactive State of Mammalian Respiratory Complex I. Structure 2018; 26:312-319.e3. [PMID: 29395787 PMCID: PMC5807054 DOI: 10.1016/j.str.2017.12.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/03/2017] [Accepted: 12/27/2017] [Indexed: 12/20/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is central to energy metabolism in mammalian mitochondria. It couples NADH oxidation by ubiquinone to proton transport across the energy-conserving inner membrane, catalyzing respiration and driving ATP synthesis. In the absence of substrates, active complex I gradually enters a pronounced resting or deactive state. The active-deactive transition occurs during ischemia and is crucial for controlling how respiration recovers upon reperfusion. Here, we set a highly active preparation of Bos taurus complex I into the biochemically defined deactive state, and used single-particle electron cryomicroscopy to determine its structure to 4.1 Å resolution. We show that the deactive state arises when critical structural elements that form the ubiquinone-binding site become disordered, and we propose reactivation is induced when substrate binding to the NADH-reduced enzyme templates their reordering. Our structure both rationalizes biochemical data on the deactive state and offers new insights into its physiological and cellular roles.
Preparation of mammalian complex I in the deactive state that forms during ischemia The structure of the deactive state determined using electron cryomicroscopy Improved particle densities and orientations obtained using PEGylated gold grids Localized unfolding around the quinone-binding site in the deactive state
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
92 |
6
|
Vinothkumar KR, Strisovsky K, Andreeva A, Christova Y, Verhelst S, Freeman M. The structural basis for catalysis and substrate specificity of a rhomboid protease. EMBO J 2010; 29:3797-809. [PMID: 20890268 DOI: 10.1038/emboj.2010.243] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/06/2010] [Indexed: 12/28/2022] Open
Abstract
Rhomboids are intramembrane proteases that use a catalytic dyad of serine and histidine for proteolysis. They are conserved in both prokaryotes and eukaryotes and regulate cellular processes as diverse as intercellular signalling, parasitic invasion of host cells, and mitochondrial morphology. Their widespread biological significance and consequent medical potential provides a strong incentive to understand the mechanism of these unusual enzymes for identification of specific inhibitors. In this study, we describe the structure of Escherichia coli rhomboid GlpG covalently bound to a mechanism-based isocoumarin inhibitor. We identify the position of the oxyanion hole, and the S₁- and S₂'-binding subsites of GlpG, which are the key determinants of substrate specificity. The inhibitor-bound structure suggests that subtle structural change is sufficient for catalysis, as opposed to large changes proposed from previous structures of unliganded GlpG. Using bound inhibitor as a template, we present a model for substrate binding at the active site and biochemically test its validity. This study provides a foundation for a structural explanation of rhomboid specificity and mechanism, and for inhibitor design.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
90 |
7
|
Hiller M, Krabben L, Vinothkumar KR, Castellani F, van Rossum BJ, Kühlbrandt W, Oschkinat H. Solid-State Magic-Angle Spinning NMR of Outer-Membrane Protein G from Escherichia coli. Chembiochem 2005; 6:1679-84. [PMID: 16138308 DOI: 10.1002/cbic.200500132] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Uniformly 13C-,15N-labelled outer-membrane protein G (OmpG) from Escherichia coli was expressed for structural studies by solid-state magic-angle spinning (MAS) NMR. Inclusion bodies of the recombinant, labelled protein were purified under denaturing conditions and refolded in detergent. OmpG was reconstituted into lipid bilayers and several milligrams of two-dimensional crystals were obtained. Solid-state MAS NMR spectra showed signals with an apparent line width of 80-120 Hz (including homonuclear scalar couplings). Signal patterns for several amino acids, including threonines, prolines and serines were resolved and identified in 2D proton-driven spin-diffusion (PDSD) spectra.
Collapse
|
|
20 |
75 |
8
|
Vinothkumar KR, Smits SHJ, Kühlbrandt W. pH-induced structural change in a sodium/proton antiporter from Methanococcus jannaschii. EMBO J 2005; 24:2720-9. [PMID: 16015376 PMCID: PMC1182236 DOI: 10.1038/sj.emboj.7600727] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 06/02/2005] [Indexed: 11/08/2022] Open
Abstract
Na+/H+ antiporters are pH-dependent membrane transport proteins that maintain the homeostasis of H+ and Na+ in living cells. MjNhaP1 from Methanococcus jannaschii, a hyperthermophilic archaeon that grows optimally at 85 degrees C, was cloned and expressed in Escherichia coli. Two-dimensional crystals were obtained from purified protein at pH 4. Electron cryomicroscopy yielded an 8 A projection map. Like the related E. coli antiporter NhaA, MjNhaP1 is a dimer, but otherwise the structures of the two antiporters differ significantly. The map of MjNhaP1 shows elongated densities in the centre of the dimer and a cluster of density peaks on either side of the dimer core, indicative of a bundle of 4-6 membrane-spanning helices. The effect of pH on the structure of MjNhaP1 was studied in situ. A major change in density distribution within the helix bundle, and an approximately 2 A shift in the position of the helix bundle relative to the dimer core occurred at pH 6 and above. The two conformations at low and high pH most likely represent the closed and open states of the antiporter.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
49 |
9
|
Kumari A, Kesarwani S, Javoor MG, Vinothkumar KR, Sirajuddin M. Structural insights into actin filament recognition by commonly used cellular actin markers. EMBO J 2020; 39:e104006. [PMID: 32567727 PMCID: PMC7360965 DOI: 10.15252/embj.2019104006] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 01/16/2023] Open
Abstract
Cellular studies of filamentous actin (F‐actin) processes commonly utilize fluorescent versions of toxins, peptides, and proteins that bind actin. While the choice of these markers has been largely based on availability and ease, there is a severe dearth of structural data for an informed judgment in employing suitable F‐actin markers for a particular requirement. Here, we describe the electron cryomicroscopy structures of phalloidin, lifeAct, and utrophin bound to F‐actin, providing a comprehensive high‐resolution structural comparison of widely used actin markers and their influence towards F‐actin. Our results show that phalloidin binding does not induce specific conformational change and lifeAct specifically recognizes closed D‐loop conformation, i.e., ADP‐Pi or ADP states of F‐actin. The structural models aided designing of minimal utrophin and a shorter lifeAct, which can be utilized as F‐actin marker. Together, our study provides a structural perspective, where the binding sites of utrophin and lifeAct overlap with majority of actin‐binding proteins and thus offering an invaluable resource for researchers in choosing appropriate actin markers and generating new marker variants.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
49 |
10
|
McMullan G, Vinothkumar KR, Henderson R. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy. Ultramicroscopy 2015; 158:26-32. [PMID: 26103047 PMCID: PMC4584428 DOI: 10.1016/j.ultramic.2015.05.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/19/2015] [Accepted: 05/24/2015] [Indexed: 11/27/2022]
Abstract
We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å2 for every incident 300 keV e−/Å2. The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e−/Å2 per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination.
Thon rings can be seen from amorphous ice. Radiation damage to amorphous ice randomly displaces water molecules. Each incident 300 keV e−/Å2 displaces water molecules on average by ∼1 Å. Macromolecules embedded in amorphous ice undergo beam induced Brownian motion.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
41 |
11
|
Vinothkumar KR. Membrane protein structures without crystals, by single particle electron cryomicroscopy. Curr Opin Struct Biol 2015; 33:103-14. [PMID: 26435463 PMCID: PMC4764762 DOI: 10.1016/j.sbi.2015.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/13/2015] [Accepted: 07/24/2015] [Indexed: 11/25/2022]
Abstract
Electron microscopy of membrane proteins as single particles. Membrane protein structures without crystals. Direct electron detectors have high signal to noise. Medium to high-resolution structures of molecules between 0.13 and 2 MDa. Sub-tomogram averaging to study membrane proteins in situ. It is an exciting period in membrane protein structural biology with a number of medically important protein structures determined at a rapid pace. However, two major hurdles still remain in the structural biology of membrane proteins. One is the inability to obtain large amounts of protein for crystallization and the other is the failure to get well-diffracting crystals. With single particle electron cryomicroscopy, both these problems can be overcome and high-resolution structures of membrane proteins and other labile protein complexes can be obtained with very little protein and without the need for crystals. In this review, I highlight recent advances in electron microscopy, detectors and software, which have allowed determination of medium to high-resolution structures of membrane proteins and complexes that have been difficult to study by other structural biological techniques.
Collapse
|
Review |
10 |
39 |
12
|
Tichá A, Stanchev S, Vinothkumar KR, Mikles DC, Pachl P, Began J, Škerle J, Švehlová K, Nguyen MTN, Verhelst SHL, Johnson DC, Bachovchin DA, Lepšík M, Majer P, Strisovsky K. General and Modular Strategy for Designing Potent, Selective, and Pharmacologically Compliant Inhibitors of Rhomboid Proteases. Cell Chem Biol 2017; 24:1523-1536.e4. [PMID: 29107700 PMCID: PMC5746060 DOI: 10.1016/j.chembiol.2017.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/19/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022]
Abstract
Rhomboid-family intramembrane proteases regulate important biological processes and have been associated with malaria, cancer, and Parkinson's disease. However, due to the lack of potent, selective, and pharmacologically compliant inhibitors, the wide therapeutic potential of rhomboids is currently untapped. Here, we bridge this gap by discovering that peptidyl α-ketoamides substituted at the ketoamide nitrogen by hydrophobic groups are potent rhomboid inhibitors active in the nanomolar range, surpassing the currently used rhomboid inhibitors by up to three orders of magnitude. Such peptidyl ketoamides show selectivity for rhomboids, leaving most human serine hydrolases unaffected. Crystal structures show that these compounds bind the active site of rhomboid covalently and in a substrate-like manner, and kinetic analysis reveals their reversible, slow-binding, non-competitive mechanism. Since ketoamides are clinically used pharmacophores, our findings uncover a straightforward modular way for the design of specific inhibitors of rhomboid proteases, which can be widely applicable in cell biology and drug discovery.
N-substituted peptidyl α-ketoamides are nanomolar inhibitors of rhomboid proteases Peptidyl ketoamides inhibit rhomboids covalently, reversibly, and non-competitively The peptide and ketoamide substituent independently modulate potency and selectivity Peptidyl ketoamides are selective for rhomboids, sparing most human serine proteases
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
30 |
13
|
Vinothkumar KR, McMullan G, Henderson R. Molecular mechanism of antibody-mediated activation of β-galactosidase. Structure 2014; 22:621-7. [PMID: 24613486 PMCID: PMC3988998 DOI: 10.1016/j.str.2014.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 11/18/2022]
Abstract
Binding of a single-chain Fv antibody to Escherichia coli β-galactosidase (β-gal) is known to stabilize the enzyme and activate several inactive point mutants, historically called antibody-mediated enzyme formation mutants. To understand the nature of this activation, we have determined by electron cryo-microscopy the structure of the complex between β-gal and the antibody scFv13R4. Our structure localizes the scFv13R4 binding site to the crevice between domains 1 and 3 in each β-gal subunit. The mutations that scFv13R4 counteracts are located between the antibody binding site and the active site of β-gal, at one end of the TIM-barrel that forms domain 3 where the substrate lactose is hydrolyzed. The mode of binding suggests how scFv stabilizes both the active site of β-gal and the tetrameric state.
Antibodies can activate inactive mutant β-galactosidase enzymes Cryo-EM analysis reveals the structure of such an antibody complex One Fv antibody binds to each of four β-galactosidase subunits Activation occurs by internal stabilization within each subunit
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
20 |
14
|
Chen S, Li J, Vinothkumar KR, Henderson R. Interaction of human erythrocyte catalase with air-water interface in cryoEM. Microscopy (Oxf) 2022; 71:i51-i59. [PMID: 35275189 PMCID: PMC8855524 DOI: 10.1093/jmicro/dfab037] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 09/16/2021] [Indexed: 11/14/2022] Open
Abstract
One of the key goals in single-particle cryo-microscopy is to obtain a uniform distribution of particle orientations, so that the three-dimensional structure has isotropic resolution in Fourier space. A common problem arises from the interaction of protein molecules with the air-water interface that exists on both surfaces of the thin film of liquid that is formed prior to plunge-freezing into liquid ethane. Some proteins and other macromolecular complexes are disrupted by interaction with the air-water interface. Other proteins or macromolecules either become concentrated through their interaction with the interface or are excluded because they bind strongly to some other part of the grid or the filter paper used in blotting. In this paper, the interaction of human erythrocyte catalase with the air-water interface is investigated and minimized by the addition of certain detergents. Detergents can form an amphipathic monolayer at the air-water interface that creates a barrier and leaves the molecules free to adopt a variety of orientations, thus facilitating the 3D structure determination. These results suggest that further characterization and development of detergents for cryo-microscopy plunge-freezing would be useful.
Collapse
|
research-article |
3 |
16 |
15
|
Sathyanarayanan N, Cannone G, Gakhar L, Katagihallimath N, Sowdhamini R, Ramaswamy S, Vinothkumar KR. Molecular basis for metabolite channeling in a ring opening enzyme of the phenylacetate degradation pathway. Nat Commun 2019; 10:4127. [PMID: 31511507 PMCID: PMC6739347 DOI: 10.1038/s41467-019-11931-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/13/2019] [Indexed: 02/06/2023] Open
Abstract
Substrate channeling is a mechanism for the internal transfer of hydrophobic, unstable or toxic intermediates from the active site of one enzyme to another. Such transfer has previously been described to be mediated by a hydrophobic tunnel, the use of electrostatic highways or pivoting and by conformational changes. The enzyme PaaZ is used by many bacteria to degrade environmental pollutants. PaaZ is a bifunctional enzyme that catalyzes the ring opening of oxepin-CoA and converts it to 3-oxo-5,6-dehydrosuberyl-CoA. Here we report the structures of PaaZ determined by electron cryomicroscopy with and without bound ligands. The structures reveal that three domain-swapped dimers of the enzyme form a trilobed structure. A combination of small-angle X-ray scattering (SAXS), computational studies, mutagenesis and microbial growth experiments suggests that the key intermediate is transferred from one active site to the other by a mechanism of electrostatic pivoting of the CoA moiety, mediated by a set of conserved positively charged residues.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
10 |
16
|
Yildiz Ö, Vinothkumar KR, Goswami P, Kühlbrandt W. Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation. EMBO J 2006. [DOI: 10.1038/sj.emboj.7601371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
|
19 |
8 |
17
|
Arya CK, Yadav S, Fine J, Casanal A, Chopra G, Ramanathan G, Vinothkumar KR, Subramanian R. A 2-Tyr-1-carboxylate Mononuclear Iron Center Forms the Active Site of a Paracoccus Dimethylformamidase. Angew Chem Int Ed Engl 2020; 59:16961-16966. [PMID: 32452120 PMCID: PMC7686228 DOI: 10.1002/anie.202005332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/04/2020] [Indexed: 02/04/2023]
Abstract
N,N‐dimethyl formamide (DMF) is an extensively used organic solvent but is also a potent pollutant. Certain bacterial species from genera such as Paracoccus, Pseudomonas, and Alcaligenes have evolved to use DMF as a sole carbon and nitrogen source for growth via degradation by a dimethylformamidase (DMFase). We show that DMFase from Paracoccus sp. strain DMF is a halophilic and thermostable enzyme comprising a multimeric complex of the α2β2 or (α2β2)2 type. One of the three domains of the large subunit and the small subunit are hitherto undescribed protein folds of unknown evolutionary origin. The active site consists of a mononuclear iron coordinated by two Tyr side‐chain phenolates and one carboxylate from Glu. The Fe3+ ion in the active site catalyzes the hydrolytic cleavage of the amide bond in DMF. Kinetic characterization reveals that the enzyme shows cooperativity between subunits, and mutagenesis and structural data provide clues to the catalytic mechanism.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
8 |
18
|
Nirwan N, Singh P, Mishra GG, Johnson CM, Szczelkun MD, Inoue K, Vinothkumar KR, Saikrishnan K. Hexameric assembly of the AAA+ protein McrB is necessary for GTPase activity. Nucleic Acids Res 2019; 47:868-882. [PMID: 30521042 PMCID: PMC6344862 DOI: 10.1093/nar/gky1170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/09/2018] [Indexed: 01/23/2023] Open
Abstract
McrBC is one of the three modification-dependent restriction enzymes encoded by the Escherichia coli K12 chromosome. Amongst restriction enzymes, McrBC and its close homologues are unique in employing the AAA+ domain for GTP hydrolysis-dependent activation of DNA cleavage. The GTPase activity of McrB is stimulated by the endonuclease subunit McrC. It had been reported previously that McrB and McrC subunits oligomerise together into a high molecular weight species. Here we conclusively demonstrate using size exclusion chromatography coupled multi-angle light scattering (SEC-MALS) and images obtained by electron cryomicroscopy that McrB exists as a hexamer in solution. Furthermore, based on SEC-MALS and SAXS analyses of McrBC and the structure of McrB, we propose that McrBC is a complex of two McrB hexamers bridged by two subunits of McrC, and that the complete assembly of this complex is integral to its enzymatic activity. We show that the nucleotide-dependent oligomerisation of McrB precedes GTP hydrolysis. Mutational studies show that, unlike other AAA+ proteins, the catalytic Walker B aspartate is required for oligomerisation.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
7 |
19
|
Vinothkumar KR, Edwards PC, Standfuss J. Practical aspects in expression and purification of membrane proteins for structural analysis. Methods Mol Biol 2013; 955:17-30. [PMID: 23132053 DOI: 10.1007/978-1-62703-176-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A surge of membrane protein structures in the last few years can be attributed to advances in technologies starting at the level of genomes, to highly efficient expression systems, stabilizing conformational flexibility, automation of crystallization and data collection for screening large numbers of crystals and the microfocus beam lines at synchrotrons. The substantial medical importance of many membrane proteins provides a strong incentive to understand them at the molecular level. It is becoming obvious that the major bottleneck in many of the membrane projects is obtaining sufficient amount of stable functional proteins in a detergent micelle for structural studies. Naturally, large effort has been spent on optimizing and advancing multiple expression systems and purification strategies that have started to yield sufficient protein and structures. We describe in this chapter protocols to refold membrane proteins from inclusion bodies, purification from inner membranes of Escherichia coli and from mammalian cell lines.
Collapse
|
|
12 |
3 |
20
|
Subramanian R, Mayor S, Vinothkumar KR. The resolution revolution reaches India. Biophys Rev 2019; 11:513-514. [PMID: 31267327 PMCID: PMC6682190 DOI: 10.1007/s12551-019-00558-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/15/2019] [Indexed: 10/26/2022] Open
|
Letter |
6 |
2 |
21
|
Vinothkumar KR, Arya CK, Ramanathan G, Subramanian R. Comparison of CryoEM and X-ray structures of dimethylformamidase. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 160:66-78. [PMID: 32735943 DOI: 10.1016/j.pbiomolbio.2020.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 11/15/2022]
Abstract
Dimethylformamidase (DMFase) catalyzes the hydrolysis of dimethylformamide, an industrial solvent, introduced into the environment by humans. Recently, we determined the structures of dimethylformamidase by electron cryo microscopy and X-ray crystallography revealing a tetrameric enzyme with a mononuclear iron at the active site. DMFase from Paracoccus sp. isolated from a waste water treatment plant around the city of Kanpur in India shows maximal activity at 54 °C and is halotolerant. The structures determined by both techniques are mostly identical and the largest difference is in a loop near the active site. This loop could play a role in co-operativity between the monomers. A number of non-protein densities are observed in the EM map, which are modelled as water molecules. Comparison of the structures determined by the two methods reveals conserved water molecules that could play a structural role. The higher stability, unusual active site and negligible activity at low temperature makes this a very good model to study enzyme mechanism by cryoEM.
Collapse
|
Comparative Study |
5 |
2 |
22
|
Singh J, Raina R, Vinothkumar KR, Anand R. Decoding the Mechanism of Specific RNA Targeting by Ribosomal Methyltransferases. ACS Chem Biol 2022; 17:829-839. [PMID: 35316014 PMCID: PMC7617139 DOI: 10.1021/acschembio.1c00732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methylation of specific nucleotides is integral for ribosomal biogenesis and also serves as a common mechanism to confer antibiotic resistance by pathogenic bacteria. Here, by determining the high-resolution structure of the 30S-KsgA complex by cryo-electron microscopy, a state was captured, where KsgA juxtaposes between helices h44 and h45 of the 30S ribosome, separating them, thereby enabling remodeling of the surrounded rRNA and allowing the cognate site to enter the methylation pocket. With the structure as a guide, several mutant versions of the ribosomes, where interacting bases in the catalytic helix h45 and surrounding helices h44, h24, and h27, were mutated and evaluated for their methylation efficiency revealing factors that direct the enzyme to its cognate site with high fidelity. The biochemical studies show that the three-dimensional environment of the ribosome enables the interaction of select loop regions in KsgA with the ribosome helices paramount to maintain selectivity.
Collapse
|
research-article |
3 |
1 |
23
|
Kizhedathu A, Chhajed P, Yeramala L, Sain Basu D, Mukherjee T, Vinothkumar KR, Guha A. Duox-generated reactive oxygen species activate ATR/Chk1 to induce G2 arrest in Drosophila tracheoblasts. eLife 2021; 10:68636. [PMID: 34622778 PMCID: PMC8594940 DOI: 10.7554/elife.68636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/07/2021] [Indexed: 12/31/2022] Open
Abstract
Progenitors of the thoracic tracheal system of adult Drosophila (tracheoblasts) arrest in G2 during larval life and rekindle a mitotic program subsequently. G2 arrest is dependent on ataxia telangiectasia mutated and rad3-related kinase (ATR)-dependent phosphorylation of checkpoint kinase 1 (Chk1) that is actuated in the absence of detectable DNA damage. We are interested in the mechanisms that activate ATR/Chk1 (Kizhedathu et al., 2018; Kizhedathu et al., 2020). Here we report that levels of reactive oxygen species (ROS) are high in arrested tracheoblasts and decrease upon mitotic re-entry. High ROS is dependent on expression of Duox, an H2O2 generating dual oxidase. ROS quenching by overexpression of superoxide dismutase 1, or by knockdown of Duox, abolishes Chk1 phosphorylation and results in precocious proliferation. Tracheae deficient in Duox, or deficient in both Duox and regulators of DNA damage-dependent ATR/Chk1 activation (ATRIP/TOPBP1/claspin), can induce phosphorylation of Chk1 in response to micromolar concentrations of H2O2 in minutes. The findings presented reveal that H2O2 activates ATR/Chk1 in tracheoblasts by a non-canonical, potentially direct, mechanism.
Collapse
|
|
4 |
1 |
24
|
Premageetha GT, Vinothkumar KR, Bose S. Exploring advances in single particle CryoEM with apoferritin: From blobs to true atomic resolution. Int J Biochem Cell Biol 2024; 169:106536. [PMID: 38307321 DOI: 10.1016/j.biocel.2024.106536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
Deciphering the three-dimensional structures of macromolecules is of paramount importance for gaining insights into their functions and roles in human health and disease. Single particle cryoEM has emerged as a powerful technique that enables direct visualization of macromolecules and their complexes, and through subsequent averaging, achieve near atomic-level resolution. A major breakthrough was recently achieved with the determination of the apoferritin structure at true atomic resolution. In this review, we discuss the latest technological innovations across the entire single-particle workflow, which have been instrumental in driving the resolution revolution and in transforming cryoEM as a mainstream technique in structural biology. We illustrate these advancements using apoferritin as an example that has served as an excellent benchmark sample for assessing emerging technologies. We further explore whether the existing technology can routinely generate atomic structures of dynamic macromolecules that more accurately represent real-world samples, the limitations in the workflow, and the current approaches employed to overcome them.
Collapse
|
Review |
1 |
|
25
|
Goyal P, Dhanabalan K, Scalise M, Friemann R, Indiveri C, Dobson RCJ, Vinothkumar KR, Ramaswamy S. Molecular determinants of Neu5Ac binding to a tripartite ATP independent periplasmic (TRAP) transporter. eLife 2025; 13:RP98158. [PMID: 39912804 PMCID: PMC11801797 DOI: 10.7554/elife.98158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
N -Acetylneuraminic acid (Neu5Ac) is a negatively charged nine-carbon amino sugar that is often the peripheral sugar in human cell-surface glycoconjugates. Some bacteria scavenge, import, and metabolize Neu5Ac or redeploy it on their cell surfaces for immune evasion. The import of Neu5Ac by many bacteria is mediated by tripartite ATP-independent periplasmic (TRAP) transporters. We have previously reported the structures of SiaQM, a membrane-embedded component of the Haemophilus influenzae TRAP transport system, (Currie et al., 2024). However, none of the published structures contain Neu5Ac bound to SiaQM. This information is critical for defining the transport mechanism and for further structure-activity relationship studies. Here, we report the structures of Fusobacterium nucleatum SiaQM with and without Neu5Ac. Both structures are in an inward (cytoplasmic side) facing conformation. The Neu5Ac-bound structure reveals the interactions of Neu5Ac with the transporter and its relationship with the Na+ binding sites. Two of the Na+-binding sites are similar to those described previously. We identify a third metal-binding site that is further away and buried in the elevator domain. Ser300 and Ser345 interact with the C1-carboxylate group of Neu5Ac. Proteoliposome-based transport assays showed that Ser300-Neu5Ac interaction is critical for transport, whereas Ser345 is dispensable. Neu5Ac primarily interacts with residues in the elevator domain of the protein, thereby supporting the elevator with an operator mechanism. The residues interacting with Neu5Ac are conserved, providing fundamental information required to design inhibitors against this class of proteins.
Collapse
|
research-article |
1 |
|