1
|
Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houdé O, Crivello F, Joliot M, Petit L, Tzourio-Mazoyer N. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 2001; 54:287-98. [PMID: 11287133 DOI: 10.1016/s0361-9230(00)00437-8] [Citation(s) in RCA: 656] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cortical anatomy of the conscious resting state (REST) was investigated using a meta-analysis of nine positron emission tomography (PET) activation protocols that dealt with different cognitive tasks but shared REST as a common control state. During REST, subjects were in darkness and silence, and were instructed to relax, refrain from moving, and avoid systematic thoughts. Each protocol contrasted REST to a different cognitive task consisting either of language, mental imagery, mental calculation, reasoning, finger movement, or spatial working memory, using either auditory, visual or no stimulus delivery, and requiring either vocal, motor or no output. A total of 63 subjects and 370 spatially normalized PET scans were entered in the meta-analysis. Conjunction analysis revealed a network of brain areas jointly activated during conscious REST as compared to the nine cognitive tasks, including the bilateral angular gyrus, the left anterior precuneus and posterior cingulate cortex, the left medial frontal and anterior cingulate cortex, the left superior and medial frontal sulcus, and the left inferior frontal cortex. These results suggest that brain activity during conscious REST is sustained by a large scale network of heteromodal associative parietal and frontal cortical areas, that can be further hierarchically organized in an episodic working memory parieto-frontal network, driven in part by emotions, working under the supervision of an executive left prefrontal network.
Collapse
|
|
24 |
656 |
2
|
Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV. An area specialized for spatial working memory in human frontal cortex. Science 1998; 279:1347-51. [PMID: 9478894 DOI: 10.1126/science.279.5355.1347] [Citation(s) in RCA: 621] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Working memory is the process of maintaining an active representation of information so that it is available for use. In monkeys, a prefrontal cortical region important for spatial working memory lies in and around the principal sulcus, but in humans the location, and even the existence, of a region for spatial working memory is in dispute. By using functional magnetic resonance imaging in humans, an area in the superior frontal sulcus was identified that is specialized for spatial working memory. This area is located more superiorly and posteriorly in the human than in the monkey brain, which may explain why it was not recognized previously.
Collapse
|
|
27 |
621 |
3
|
Abstract
Clostridium perfringens is a ubiquitous pathogen that produces many toxins and hydrolytic enzymes. Because the toxin-encoding genes can be located on extrachromosomal elements or in variable regions of the chromosome, several pathovars have arisen, each of which is involved in a specific disease. Pathovar identification is required for a precise diagnosis of associated pathologies and to define vaccine requirements. For these purposes, toxin genotyping is more reliable than the classical toxinotyping.
Collapse
|
Review |
26 |
392 |
4
|
Beauchamp MS, Petit L, Ellmore TM, Ingeholm J, Haxby JV. A parametric fMRI study of overt and covert shifts of visuospatial attention. Neuroimage 2001; 14:310-21. [PMID: 11467905 DOI: 10.1006/nimg.2001.0788] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has recently been demonstrated that a cortical network of visuospatial and oculomotor control areas is active for covert shifts of spatial attention (shifts of attention without eye movements) as well as for overt shifts of spatial attention (shifts of attention with saccadic eye movements). Studies examining activity in this visuospatial network during attentional shifts at a single rate have given conflicting reports about how the activity differs for overt and covert shifts. To better understand how the network subserves attentional shifts, we performed a parametric study in which subjects made either overt attentional shifts or covert attentional shifts at three different rates (0.2, 1.0, and 2.0 Hz). At every shift rate, both overt and covert shifts of visuospatial attention induced activations in the precentral sulcus, intraparietal sulcus, and lateral occipital cortex that were of greater amplitude for overt than during covert shifting. As the rate of attentional shifts increased, responses in the visuospatial network increased in both overt and covert conditions but this parametric increase was greater during overt shifts. These results confirm that overt and covert attentional shifts are subserved by the same network of areas. Overt shifts of attention elicit more neural activity than do covert shifts, reflecting additional activity associated with saccade execution. An additional finding concerns the anatomical organization of the visuospatial network. Two distinct activation foci were observed within the precentral sulcus for both overt and covert attentional shifts, corresponding to specific anatomical landmarks. We therefore reappraise the correspondence of these two precentral areas with the frontal eye fields.
Collapse
|
|
24 |
253 |
5
|
Kérouanton A, Hennekinne JA, Letertre C, Petit L, Chesneau O, Brisabois A, De Buyser ML. Characterization of Staphylococcus aureus strains associated with food poisoning outbreaks in France. Int J Food Microbiol 2007; 115:369-75. [PMID: 17306397 DOI: 10.1016/j.ijfoodmicro.2006.10.050] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 10/25/2006] [Accepted: 10/30/2006] [Indexed: 11/18/2022]
Abstract
Enterotoxins produced by Staphylococcus aureus are responsible for staphylococcal food-poisoning outbreaks (SFPO). In France, SFPO are the second cause of food-borne diseases after Salmonella. However, very little is known about the strains involved. The objective of this study was to characterize the staphylococcal strains related to these SFPO through phenotypic and genotypic analyses. A total of 178 coagulase-positive staphylococcal isolates recovered from 31 SFPO (1981-2002) were screened through biotyping. Thirty-three strains representative of the different biotypes in each SFPO were further examined for SmaI macrorestriction-type, phage-type, resistance to various antimicrobial drugs, presence of staphylococcal enterotoxin (se) genes sea to sei, and production of enterotoxins SEA to SED. All these 33 strains were identified as S. aureus species: 27 were of human biotypes and six ovine or non-host-specific biotypes. Most (74.1%) strains reacted with group III phages. Eleven strains were resistant to at least two classes of antibiotics and among them, two were resistant to methicillin. Twenty-nine strains carried one or several of the eight se genes tested; the gene sea was most common (n=23), and often linked to sed (n=12) or seh (n=5). The novel se genes seg-i were in all cases associated with se genes sea to sed except for one strain which carried only seg and sei. Pulsed-Field Gel Electrophoresis (PFGE) of SmaI macrorestriction digests of the 33 strains discriminated 32 PFGE patterns grouped into nine biotype-specific clusters. All five strains carrying sea and seh were grouped together into the same sub-cluster. Three of the four se-gene-negative strains were in one PFGE cluster: all four should be tested for se genes not included in this study and, if negative, be further investigated for the presence of unidentified SEs.
Collapse
|
|
18 |
212 |
6
|
Petit L, Haxby JV. Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J Neurophysiol 1999; 82:463-71. [PMID: 10400972 DOI: 10.1152/jn.1999.82.1.463] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have investigated the functional anatomy of pursuit eye movements in humans with functional magnetic imaging. The performance of pursuit eye movements induced activations in the cortical eye fields also activated during the execution of visually guided saccadic eye movements, namely in the precentral cortex [frontal eye field (FEF)], the medial superior frontal cortex (supplementary eye field), the intraparietal cortex (parietal eye field), and the precuneus, and at the junction of occipital and temporal cortex (MT/MST) cortex. Pursuit-related areas could be distinguished from saccade-related areas both in terms of spatial extent and location. Pursuit-related areas were smaller than their saccade-related counterparts, three of eight significantly so. The pursuit-related FEF was usually inferior to saccade-related FEF. Other pursuit-related areas were consistently posterior to their saccade-related counterparts. The current findings provide the first functional imaging evidence for a distinction between two parallel cortical systems that subserve pursuit and saccadic eye movements in humans.
Collapse
|
|
26 |
208 |
7
|
Petit L, Clark VP, Ingeholm J, Haxby JV. Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI. J Neurophysiol 1997; 77:3386-90. [PMID: 9212283 DOI: 10.1152/jn.1997.77.6.3386] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The location of the human frontal eye fields (FEFs) underlying horizontal visually guided saccadic and pursuit eye movements was investigated with the use of functional magnetic resonance imaging in five healthy humans. Execution of both saccadic and pursuit eye movements induced bilateral FEF activation located medially at the junction of the precentral sulcus and the superior frontal sulcus and extending laterally to the precentral gyrus. These findings extend previous functional imaging studies by providing the first functional imaging evidence of a specific activation in the FEF during smooth pursuit eye movements in healthy humans. FEF activation during smooth pursuit performance was smaller than during saccades. This finding, which may reflect the presence of a smaller pursuit-related region area in human FEF than the saccade-related region, is consistent with their relative size observed in the monkey. The mean location of the pursuit-related FEF was more inferior and lateral than the location of the saccade-related FEF. These results provide the first evidence that there are different subregions in the human FEF that are involved in the execution of two different types of eye movements, namely saccadic and pursuit eye movements. Moreover, this study provides additional evidence that the human FEF is located in Brodmann's area 6, unlike the monkey FEF which is located in the posterior part of Brodmann's area 8.
Collapse
|
|
28 |
194 |
8
|
Mellet E, Briscogne S, Tzourio-Mazoyer N, Ghaëm O, Petit L, Zago L, Etard O, Berthoz A, Mazoyer B, Denis M. Neural correlates of topographic mental exploration: the impact of route versus survey perspective learning. Neuroimage 2000; 12:588-600. [PMID: 11034866 DOI: 10.1006/nimg.2000.0648] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There are two major sources of information to build a topographic representation of an environment, namely actual navigation within the environment (route perspective) and map learning (survey perspective). The aim of the present work was to use positron emission tomography (PET) to compare the neural substrate of the topographic representation built from these two modes. One group of subjects performed a mental exploration task in an environment learned from actual navigation (mental navigation task). Another group of subjects performed exploration in the same environment learned from a map (mental map task). A right hippocampal activation common to both mental navigation and mental map tasks was evidenced and may correspond the neural substrate of a "dual-perspective" representation. The parahippocampal gyrus was additionally activated bilaterally during mental navigation only. These results suggest that the right hippocampus involvement would be sufficient when the representation incorporates essentially survey information while the bilateral parahippocampal gyrus would be involved when the environment incorporates route information and includes "object" landmarks. The activation of a parietofrontal network composed of the intraparietal sulcus, the superior frontal sulcus, the middle frontal gyrus, and the pre-SMA was observed in common for both mental navigation and mental map and is likely to reflect the spatial mental imagery components of the tasks.
Collapse
|
|
25 |
172 |
9
|
Courtney SM, Petit L, Haxby JV, Ungerleider LG. The role of prefrontal cortex in working memory: examining the contents of consciousness. Philos Trans R Soc Lond B Biol Sci 1998; 353:1819-28. [PMID: 9854254 PMCID: PMC1692423 DOI: 10.1098/rstb.1998.0334] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Working memory enables us to hold in our 'mind's eye' the contents of our conscious awareness, even in the absence of sensory input, by maintaining an active representation of information for a brief period of time. In this review we consider the functional organization of the prefrontal cortex and its role in this cognitive process. First, we present evidence from brain-imaging studies that prefrontal cortex shows sustained activity during the delay period of visual working memory tasks, indicating that this cortex maintains on-line representations of stimuli after they are removed from view. We then present evidence for domain specificity within frontal cortex based on the type of information, with object working memory mediated by more ventral frontal regions and spatial working memory mediated by more dorsal frontal regions. We also propose that a second dimension for domain specificity within prefrontal cortex might exist for object working memory on the basis of the type of representation, with analytic representations maintained preferentially in the left hemisphere and image-based representations maintained preferentially in the right hemisphere. Furthermore, we discuss the possibility that there are prefrontal areas brought into play during the monitoring and manipulation of information in working memory in addition to those engaged during the maintenance of this information. Finally, we consider the relationship of prefrontal areas important for working memory, both to posterior visual processing areas and to prefrontal areas associated with long-term memory.
Collapse
|
review-article |
27 |
170 |
10
|
Brydon L, Roka F, Petit L, de Coppet P, Tissot M, Barrett P, Morgan PJ, Nanoff C, Strosberg AD, Jockers R. Dual signaling of human Mel1a melatonin receptors via G(i2), G(i3), and G(q/11) proteins. Mol Endocrinol 1999; 13:2025-38. [PMID: 10598579 DOI: 10.1210/mend.13.12.0390] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mel 1a melatonin receptors belong to the super-family of guanine nucleotide-binding regulatory protein (G protein)-coupled receptors. So far, interest in Mel 1a receptor signaling has focused mainly on the modulation of the adenylyl cyclase pathway via pertussis toxin (PTX)-sensitive G proteins. To further investigate signaling of the human Mel 1a receptor, we have developed an antibody directed against the C terminus of this receptor. This antibody detected the Mel 1a receptor as a protein with an apparent molecular mass of approximately 60 kDa in immunoblots after separation by SDS-PAGE. It also specifically precipitated the 2-[125I]iodomelatonin (125I-Mel)-labeled receptor from Mel 1a-transfected HEK 293 cells. Coprecipitation experiments showed that G(i2), G(i3), and G(q/11) proteins couple to the Mel 1a receptor in an agonist-dependent and guanine nucleotide-sensitive manner. Coupling was selective since other G proteins present in HEK 293 cells, (G(i1), G(o), G(s), G(z), and G12) were not detected in receptor complexes. Coupling of the Mel 1a receptor to G(i) and G(q) was confirmed by inhibition of high-affinity 125I-Mel binding to receptors with subtype-selective G protein alpha-subunit antibodies. G(i2) and/or G(i3) mediated adenylyl cyclase inhibition while G(q/11) induced a transient elevation in cytosolic calcium concentrations in HEK 293 cells stably expressing Mel 1a receptors. Melatonin-induced cytosolic calcium mobilization via PTX-insensitive G proteins was confirmed in primary cultures of ovine pars tuberalis cells endogenously expressing Mel 1a receptors. In conclusion, we report the development of the first antibody recognizing the cloned human Mel 1a melatonin receptor protein. We show that Mel 1a receptors functionally couple to both PTX-sensitive and PTX-insensitive G proteins. The previously unknown signaling of Mel 1a receptors through G(q/11) widens the spectrum of potential targets for melatonin.
Collapse
MESH Headings
- Adenylate Cyclase Toxin
- Adenylyl Cyclase Inhibitors
- Amino Acid Sequence
- Animals
- Calcium/metabolism
- Cell Line
- Cells, Cultured
- Cytosol/metabolism
- Humans
- Melatonin/pharmacology
- Molecular Sequence Data
- Molecular Weight
- Pertussis Toxin
- Pituitary Gland, Anterior/drug effects
- Pituitary Gland, Anterior/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Melatonin
- Sheep
- Signal Transduction
- Solubility
- Transfection
- Virulence Factors, Bordetella/pharmacology
Collapse
|
|
26 |
163 |
11
|
Petit L, Orssaud C, Tzourio N, Salamon G, Mazoyer B, Berthoz A. PET study of voluntary saccadic eye movements in humans: basal ganglia-thalamocortical system and cingulate cortex involvement. J Neurophysiol 1993; 69:1009-17. [PMID: 8492144 DOI: 10.1152/jn.1993.69.4.1009] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. The purpose of this work was to explore the cortical and subcortical mechanisms underlying the execution of voluntary saccadic eye movements in humans. 2. Normalized regional cerebral blood flow (NrCBF) was measured using positron emission tomography (PET) and H2(15O) bolus intravenous injections in four right-handed healthy volunteers at rest and while performing self-paced voluntary horizontal saccadic eye movements in total darkness. 3. Magnetic resonance imaging of each subject's brain was matched to PET images, allowing the detection of activation in individually defined anatomic regions of interest. Cortical regions were drawn according to gyri limits; subcortical structures were also defined. 4. Self-paced saccadic eye movements elicited bilateral NrCBF increases in the lenticular nuclei, including putamen and globus pallidus, and in the thalamus. At the cortical level, we found bilateral NrCBF increases in the precentral gyrus, the superior part of the median frontal gyrus that corresponds to the supplementary motor area. There was also a significant NrCBF increase in the cerebellar vermis. 5. Right fusiform and lingual gyri, right insula, and left cingulate gyrus were also activated during the execution of saccades. 6. These results indicate that the classical basal ganglia-thalamocortical motor loop previously described for skeletal movements may also be involved in simple saccadic eye movements in humans.
Collapse
|
|
32 |
159 |
12
|
Mellet E, Petit L, Mazoyer B, Denis M, Tzourio N. Reopening the mental imagery debate: lessons from functional anatomy. Neuroimage 1998; 8:129-39. [PMID: 9740756 DOI: 10.1006/nimg.1998.0355] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Over the past few years, the neural bases of mental imagery have been both a topic of intense debate and a domain of extensive investigations using either PET or fMRI that have provided new insights into the cortical anatomy of this cognitive function. Several studies have in fact demonstrated that there exist types of mental imagery that do not rely on primary/early visual areas, whereas a consensus now exists on the validity of the dorsal/ventral-route model in the imagery domain. More importantly, these studies have provided evidence that, in addition to higher order visual areas, mental imagery shares common brain areas with other major cognitive functions, such as language, memory, and movement, depending on the nature of the imagery task. This body of recent results indicates that there is no unique mental imagery cortical network; rather, it reflects the high degree of interaction between mental imagery and other cognitive functions.
Collapse
|
Review |
27 |
143 |
13
|
Mentaverri R, Yano S, Chattopadhyay N, Petit L, Kifor O, Kamel S, Terwilliger EF, Brazier M, Brown EM. The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J 2006; 20:2562-4. [PMID: 17077282 DOI: 10.1096/fj.06-6304fje] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intracellular transduction pathways that are dependent on activation of the CaR by Ca(o)2+ have been studied extensively in parathyroid and other cell types, and include cytosolic calcium, phospholipases C, A2, and D, protein kinase C isoforms and the cAMP/protein kinase A system. In this study, using bone marrow cells isolated from CaR-/- mice as well as DN-CaR-transfected RAW 264.7 cells, we provide evidence that expression of the CaR plays an important role in osteoclast differentiation. We also establish that activation of the CaR and resultant stimulation of PLC are involved in high Ca(o)2+-induced apoptosis of mature rabbit osteoclasts. Similar to RANKL, Ca(o)2+ (20 mM) appeared to trigger rapid and significant nuclear translocation of NF-kappaB in a CaR- and PLC-dependent manner. In summary, our data suggest that stimulation of the CaR may play a pivotal role in the control of both osteoclast differentiation and apoptosis in the systems studied here through a signaling pathway involving activation of the CaR, phospholipase C, and NF-kappaB.
Collapse
|
|
19 |
139 |
14
|
Haxby JV, Petit L, Ungerleider LG, Courtney SM. Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory. Neuroimage 2000; 11:380-91. [PMID: 10806025 DOI: 10.1006/nimg.2000.0592] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have investigated the human neural systems for visual working memory using functional magnetic resonance imaging to distinguish sustained activity during memory delays from transient responses related to perceptual and motor operations. These studies have identified six distinct frontal regions that demonstrate sustained activity during memory delays. These regions could be distinguished from brain regions in extrastriate cortex that participate more in perception and from brain regions in medial and lateral frontal cortex that participate more in motor control. Moreover, the working memory regions could be distinguished from each other based on the relative strength of their participation in spatial and face working memory and on the relative strength of sustained activity during memory delays versus transient activity related to stimulus presentation. These results demonstrate that visual working memory performance involves the concerted activity of multiple regions in a widely distributed system. Distinctions between functions, such as perception versus memory maintenance, or spatial versus face working memory, are a matter of the degree of participation of different regions, not the discrete parcellation of different functions to different modules.
Collapse
|
Review |
25 |
138 |
15
|
Abstract
The electronic structure of PuO(2+/-x) was studied using first-principles quantum mechanics, realized with the self-interaction corrected local spin density method. In the stoichiometric PuO2 compound, Pu occurs in the Pu(IV) oxidation state, corresponding to a localized f4 shell. If oxygen is introduced onto the octahedral interstitial site, the nearby Pu atoms turn into Pu(V) (f3) by transferring electrons to the oxygen. Oxygen vacancies cause Pu(III) (f5) to form by taking up electrons released by oxygen. At T = 0, the PuO2 compound is stable with respect to free oxygen, but the delicate energy balance suggests the possible deterioration of the material during long-term storage.
Collapse
|
|
22 |
137 |
16
|
Moreau M, Brocheriou I, Petit L, Ninio E, Chapman MJ, Rouis M. Interleukin-8 mediates downregulation of tissue inhibitor of metalloproteinase-1 expression in cholesterol-loaded human macrophages: relevance to stability of atherosclerotic plaque. Circulation 1999; 99:420-6. [PMID: 9918530 DOI: 10.1161/01.cir.99.3.420] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The accumulation of macrophage-derived foam cells in atherosclerotic lesions correlates with increased local release of matrix-degrading metalloproteinases (MMPs) and a thin fibrous cap. The activity of these enzymes is controlled by specific tissue inhibitors of metalloproteinases (TIMPs). METHODS AND RESULTS Because oxidized low-density lipoprotein (OxLDL) modulates gene expression, we investigated the effect of these particles on the levels of MMP-1, MMP-3, MMP-9, TIMP-1, and TIMP-2 in the culture media of human monocyte-derived macrophages. OxLDL but not native LDL or high-density lipoprotein reduced the level of TIMP-1 in a dose-dependent manner with maximal effect (60% of control) at approximately 100 microg protein/mL. In addition, Northern blotting revealed marked reduction in the abundance of TIMP-1 mRNA in OxLDL-treated cells. Evaluation of the effect of oxysterol components of OxLDL on TIMP-1 production revealed that 25-hydroxycholesterol (1 microg/mL) was the most potent inhibitor ( approximately 30% of control). Such inhibition was partially mediated by interleukin (IL)-8. Indeed, IL-8 (2.5 ng/mL) induced maximal inhibition of TIMP-1 accumulation (30% of control) in 4 of 6 cell preparations. In addition, the inhibitory effect of OxLDL-treated cells in the presence of an anti-IL-8 neutralizing antibody was partially reversed. CONCLUSIONS Immunohistochemical analyses of human atherosclerotic plaques revealed the expression of TIMP-1 in some but not all macrophage-rich and IL-8-rich areas. Therefore, IL-8 may play a potential atherogenic role by inhibiting local TIMP-1 expression, thereby leading to an imbalance between MMPs and TIMPs at focal sites in the atherosclerotic plaque.
Collapse
MESH Headings
- Antibodies, Monoclonal
- Antigens, CD/analysis
- Antigens, CD/immunology
- Antigens, Differentiation, Myelomonocytic/analysis
- Antigens, Differentiation, Myelomonocytic/immunology
- Arteriosclerosis/metabolism
- Arteriosclerosis/pathology
- Carotid Arteries/chemistry
- Carotid Arteries/enzymology
- Carotid Arteries/pathology
- Cells, Cultured
- Cholesterol, LDL/metabolism
- Cholesterol, LDL/pharmacology
- Collagenases/analysis
- Collagenases/immunology
- Collagenases/metabolism
- Gene Expression Regulation, Enzymologic
- Humans
- Interleukin-8/analysis
- Interleukin-8/immunology
- Interleukin-8/metabolism
- Macrophages/chemistry
- Macrophages/drug effects
- Macrophages/enzymology
- Matrix Metalloproteinase 1
- Matrix Metalloproteinase 3/analysis
- Matrix Metalloproteinase 3/immunology
- Matrix Metalloproteinase 3/metabolism
- Matrix Metalloproteinase 9
- Monocytes/chemistry
- Monocytes/drug effects
- Monocytes/enzymology
- Oxidation-Reduction
- Tissue Inhibitor of Metalloproteinase-1/genetics
- Tissue Inhibitor of Metalloproteinase-1/immunology
- Tissue Inhibitor of Metalloproteinase-2/analysis
- Tissue Inhibitor of Metalloproteinase-2/genetics
- Tissue Inhibitor of Metalloproteinase-2/immunology
Collapse
|
|
26 |
125 |
17
|
Petit L, Gibert M, Gillet D, Laurent-Winter C, Boquet P, Popoff MR. Clostridium perfringens epsilon-toxin acts on MDCK cells by forming a large membrane complex. J Bacteriol 1997; 179:6480-7. [PMID: 9335299 PMCID: PMC179566 DOI: 10.1128/jb.179.20.6480-6487.1997] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Epsilon-toxin is produced by Clostridium perfringens types B and D and is responsible for a rapidly fatal enterotoxemia in animals, which is characterized by edema in several organs due to an increase in blood vessel permeability. The Madin-Darby canine kidney (MDCK) cell line has been found to be susceptible to epsilon-toxin (D. W. Payne, E. D. Williamson, H. Havard, N. Modi, and J. Brown, FEMS Microbiol. Lett. 116:161-168, 1994). Here we present evidence that epsilon-toxin cytotoxic activity is correlated with the formation of a large membrane complex (about 155 kDa) and efflux of intracellular K+ without entry of the toxin into the cytosol. Epsilon-toxin induced swelling, blebbing, and lysis of MDCK cells. Iodolabeled epsilon-toxin bound specifically to MDCK cell membranes at 4 and 37 labeled C and was associated with a large complex (about 155 kDa). The binding of epsilon-toxin to the cell surface was corroborated by immunofluorescence staining. The complex formed at 37 degrees C was more stable than that formed at 4 degrees C, since it was not dissociated by 5% sodium dodecyl sulfate and boiling.
Collapse
|
research-article |
28 |
117 |
18
|
Petit L, Lacroix I, de Coppet P, Strosberg AD, Jockers R. Differential signaling of human Mel1a and Mel1b melatonin receptors through the cyclic guanosine 3'-5'-monophosphate pathway. Biochem Pharmacol 1999; 58:633-9. [PMID: 10413300 DOI: 10.1016/s0006-2952(99)00134-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cyclic guanosine 3'-5'-monophosphate (cGMP) has recently been shown to constitute a second messenger for Xenopus laevis melatonin Mel1c receptors. To verify whether cGMP levels are also modulated by mammalian melatonin receptors, we cloned the genes encoding the human Mel1a and Mel1b receptor subtypes and expressed them in human embryonic kidney cells. Pharmacological profiles and inhibition of forskolin-stimulated adenosine 3'-5'-cyclic monophosphate levels by melatonin confirmed functional expression of high-affinity melatonin receptors. Mel1b receptor-transfected cells modulated cGMP levels in a dose-dependent manner via the soluble guanylyl cyclase pathway. In contrast, Mel1a receptors had no effect on cGMP levels. These results demonstrate that mammalian melatonin receptors modulate cGMP levels and reveal for the first time differences in signaling between melatonin receptor subtypes, which may explain the necessity to express different receptor subtypes.
Collapse
|
|
26 |
113 |
19
|
Brydon L, Petit L, Delagrange P, Strosberg AD, Jockers R. Functional expression of MT2 (Mel1b) melatonin receptors in human PAZ6 adipocytes. Endocrinology 2001; 142:4264-71. [PMID: 11564683 DOI: 10.1210/endo.142.10.8423] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several reports have demonstrated that the pineal hormone, melatonin, plays an important role in body mass regulation in mammals. To date, however, the target tissues and relevant biochemical mechanisms involved remain uncharacterized. As adipose tissue is the principal site of energy storage in the body, we investigated whether melatonin could also act on this tissue. Semiquantitative RT-PCR analysis revealed the expression of MT1 and MT2 melatonin receptor mRNAs in the human brown adipose cell line, PAZ6, as well as in human brown and white adipose tissue. Binding analysis with 2-[(125)I]iodomelatonin ((125)I-Mel) revealed the presence of a single, high affinity binding site in PAZ6 adipocytes with a binding capacity of 7.46 +/- 1.58 fmol/mg protein and a K(d) of 457 +/- 5 pM. Both melatonin and the MT2 receptor-selective antagonist, 4-phenyl-2-propionamidotetraline, competed with 2-[(125)I]iodomelatonin binding, with respective K(i) values of 3 x 10(-11) and 1.5 x 10(-11) M. Functional expression of melatonin receptors in PAZ6 adipocytes was indicated by the melatonin-induced, dose-dependent inhibition of forskolin-stimulated cAMP levels and basal cGMP levels with IC(50) values of 2 x 10(-9) and 3 x 10(-10) M, respectively. Modulation of the cGMP pathway by melatonin further supports functional expression of MT2 receptors, as this pathway was shown to be specific for that subtype in humans. In addition, long-term melatonin treatment of PAZ6 adipocytes was found to decrease the expression of the glucose transporter Glut4 and glucose uptake, an important parameter of adipocyte metabolism. These results suggest that melatonin may act directly at MT2 receptors on human brown adipocytes to regulate adipocyte physiology.
Collapse
|
|
24 |
103 |
20
|
Petit L, Maier E, Gibert M, Popoff MR, Benz R. Clostridium perfringens epsilon toxin induces a rapid change of cell membrane permeability to ions and forms channels in artificial lipid bilayers. J Biol Chem 2001; 276:15736-40. [PMID: 11278669 DOI: 10.1074/jbc.m010412200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epsilon toxin is a potent toxin produced by Clostridium perfringens types B and D, which are responsible for a rapidly fatal enterotoxemia in animals. One of the main properties of epsilon toxin is the production of edema. We have previously found that epsilon toxin causes a rapid swelling of Madin-Darby canine kidney cells and that the toxin does not enter the cytosol and remains associated with the cell membrane by forming a large complex (Petit, L., Gibert, M., Gillet, D., Laurent-Winter, C., Boquet, P., and Popoff, M. R. (1997) J. Bacteriol. 179, 6480-6487). Here, we report that epsilon toxin induced in Madin-Darby canine kidney cells a rapid decrease of intracellular K(+), and an increase of Cl(-) and Na(+), whereas the increase of Ca(2+) occurred later. The entry of propidium iodide that was correlated with the loss of cell viability monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test indicates that epsilon toxin formed large pores. In artificial lipid bilayers, epsilon toxin caused current steps with a single-channel conductance of 60 pS in 100 mm KCl, which represented general diffusion pores. The channels were slightly selective for anions, but cations could also penetrate. Epsilon toxin formed wide and water-filled channels permeable to hydrophilic solutes up to a molecular mass of at least 1 kDa, which probably represents the basic mechanism of toxin action on target cells.
Collapse
|
|
24 |
102 |
21
|
Haxby JV, Petit L, Ungerleider LG, Courtney SM. Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory. Neuroimage 2000; 11:145-56. [PMID: 10679186 DOI: 10.1006/nimg.1999.0527] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have investigated the human neural systems for visual working memory using functional magnetic resonance imaging to distinguish sustained activity during memory delays from transient responses related to perceptual and motor operations. These studies have identified six distinct frontal regions that demonstrate sustained activity during memory delays. These regions could be distinguished from brain regions in extrastriate cortex that participate more in perception and from brain regions in medial and lateral frontal cortex that participate more in motor control. Moreover, the working memory regions could be distinguished from each other based on the relative strength of their participation in spatial and face working memory and on the relative strength of sustained activity during memory delays versus transient activity related to stimulus presentation. These results demonstrate that visual working memory performance involves the concerted activity of multiple regions in a widely distributed system. Distinctions between functions, such as perception versus memory maintenance, or spatial versus face working memory, are a matter of the degree of participation of different regions, not the discrete parcellation of different functions to different modules.
Collapse
|
|
25 |
89 |
22
|
Marie D, Jobard G, Crivello F, Perchey G, Petit L, Mellet E, Joliot M, Zago L, Mazoyer B, Tzourio-Mazoyer N. Descriptive anatomy of Heschl's gyri in 430 healthy volunteers, including 198 left-handers. Brain Struct Funct 2013; 220:729-43. [PMID: 24310352 PMCID: PMC4341020 DOI: 10.1007/s00429-013-0680-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/19/2013] [Indexed: 11/29/2022]
Abstract
This study describes the gyrification patterns and surface areas of Heschl's gyrus (HG) in 430 healthy volunteers mapped with magnetic resonance imaging. Among the 232 right-handers, we found a large occurrence of duplication (64 %), especially on the right (49 vs. 37 % on the left). Partial duplication was twice more frequent on the left than complete duplication. On the opposite, in the right hemisphere, complete duplication was 10 % more frequent than partial duplication. The most frequent inter-hemispheric gyrification patterns were bilateral single HG (36 %) and left single-right duplication (27 %). The least common patterns were left duplication-right single (22 %) and bilateral duplication (15 %). Duplication was associated with decreased anterior HG surface area on the corresponding side, independently of the type of duplication, and increased total HG surface area (including the second gyrus). Inter-hemispheric gyrification patterns strongly influenced both anterior and total HG surface area asymmetries, leftward asymmetry of the anterior HG surface was observed in all patterns except double left HG, and total HG surface asymmetry favored the side of duplication. Compared to right-handers, the 198 left-handers exhibited lower occurrence of duplication, and larger right anterior HG surface and total HG surface areas. Left-handers' HG surface asymmetries were thus significantly different from those of right-handers, with a loss of leftward asymmetry of their anterior HG surface, and with significant rightward asymmetry of their total HG surface. In summary, gyrification patterns have a strong impact on HG surface and asymmetry. The observed reduced lateralization of HG duplications and anterior HG asymmetry in left-handers highlights HG inter-hemispheric gyrification patterns as a potential candidate marker of speech lateralization.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
75 |
23
|
Tan J, Blume-Peytavi U, Ortonne J, Wilhelm K, Marticou L, Baltas E, Rivier M, Petit L, Martel P. An observational cross-sectional survey of rosacea: clinical associations and progression between subtypes. Br J Dermatol 2013; 169:555-62. [DOI: 10.1111/bjd.12385] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2013] [Indexed: 12/01/2022]
|
|
12 |
74 |
24
|
Abstract
Skin colour typology depends on the amount and location of its chromophores. Among them, eumelanins derived from 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and 5,6-dihydroxyindole (DHI), and phaeomelanins are of utmost importance. These biomolecules result from the multi-step enzymatic and non-enzymatic conversion of tyrosine into melanins. Pigmentation disorders are multiple and depend on alterations in the density in active melanocytes, and on specific abnormalities of any of the complex melanogenesis mechanisms. This review presents some of the main skin-lightening agents with respect to their mechanisms of action and side-effects. Some of the novel compounds may lead to new perspectives in the fields of dermatology and cosmetology. The methods commonly used to assess efficacy of skin-lightening products rely on in vitro models including cell-free enzymatic assays, melanocyte cultures and reconstructed epidermis bioassays. Animal models have little relevance. By contrast, human testing with the support of instrumental evaluations is the most informative.
Collapse
|
Journal Article |
15 |
71 |
25
|
Lang W, Petit L, Höllinger P, Pietrzyk U, Tzourio N, Mazoyer B, Berthoz A. A positron emission tomography study of oculomotor imagery. Neuroreport 1994; 5:921-4. [PMID: 8061297 DOI: 10.1097/00001756-199404000-00017] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Focal increases of regional cerebral blood flow (rCBF) were measured by positron emission tomography in order to study the anatomo-functional analogies between imagined and executed saccadic eye movements. Oculomotor imagery was performed in the absence of overt eye movements. Compared with a control state the two conditions were associated with normalized rCBF increases in the median cingulate gyrus, and the supplementary and frontal eye fields of both hemispheres. Therefore in the human brain execution and mental imagery of eye movement appear to be functionally linked and mediated by a common network of frontal structures.
Collapse
|
|
31 |
68 |