1
|
Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF, Siebenlist U. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 1997; 11:3482-96. [PMID: 9407039 PMCID: PMC316809 DOI: 10.1101/gad.11.24.3482] [Citation(s) in RCA: 817] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/1997] [Accepted: 11/04/1997] [Indexed: 02/05/2023]
Abstract
NF-kappaB is a family of related, dimeric transcription factors that are readily activated in cells by signals associated with stress or pathogens. These factors are critical to host defense, as demonstrated previously with mice deficient in individual subunits of NF-kappaB. We have generated mice deficient in both the p50 and p52 subunits of NF-kappaB to reveal critical functions that may be shared by these two highly homologous proteins. We now demonstrate that unlike the respective single knockout mice, the p50/p52 double knockout mice fail to generate mature osteoclasts and B cells, apparently because of defects that track with these lineages in adoptive transfer experiments. Furthermore, these mice present markedly impaired thymic and splenic architectures and impaired macrophage functions. The blocks in osteoclast and B-cell maturation were unexpected. Lack of mature osteoclasts caused severe osteopetrosis, a family of diseases characterized by impaired osteoclastic bone resorption. These findings now establish critical roles for NF-kappaB in development and expand its repertoire of roles in the physiology of differentiated hematopoietic cells.
Collapse
|
research-article |
28 |
817 |
2
|
Chinnaiyan AM, O'Rourke K, Yu GL, Lyons RH, Garg M, Duan DR, Xing L, Gentz R, Ni J, Dixit VM. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 1996; 274:990-2. [PMID: 8875942 DOI: 10.1126/science.274.5289.990] [Citation(s) in RCA: 462] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tumor necrosis factor receptor-1 (TNFR-1) and CD95 (also called Fas or APO-1) are cytokine receptors that engage the apoptosis pathway through a region of intracellular homology, designated the "death domain." Another death domain-containing member of the TNFR family, death receptor 3 (DR3), was identified and was shown to induce both apoptosis and activation of nuclear factor kappaB. Expression of DR3 appears to be restricted to tissues enriched in lymphocytes. DR3 signal transduction is mediated by a complex of intracellular signaling molecules including TRADD, TRAF2, FADD, and FLICE. Thus, DR3 likely plays a role in regulating lymphocyte homeostasis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Apoptosis
- Carrier Proteins/metabolism
- Caspase 8
- Caspase 9
- Caspases
- Cloning, Molecular
- Cysteine Endopeptidases/metabolism
- Fas-Associated Death Domain Protein
- Gene Library
- Humans
- Lymphocytes
- Molecular Sequence Data
- NF-kappa B/physiology
- Organ Specificity
- Proteins/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Member 25
- Sequence Alignment
- Signal Transduction
- TNF Receptor-Associated Factor 1
- TNF Receptor-Associated Factor 2
- Transfection
- Tumor Cells, Cultured
- fas Receptor/chemistry
- fas Receptor/physiology
Collapse
|
|
29 |
462 |
3
|
Schwartzberg PL, Xing L, Hoffmann O, Lowell CA, Garrett L, Boyce BF, Varmus HE. Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src-/- mutant mice. Genes Dev 1997; 11:2835-44. [PMID: 9353253 PMCID: PMC316651 DOI: 10.1101/gad.11.21.2835] [Citation(s) in RCA: 241] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/1997] [Accepted: 08/26/1997] [Indexed: 02/05/2023]
Abstract
The Src tyrosine kinase has been implicated in a wide variety of signal transduction pathways, yet despite the nearly ubiquitous expression of c-src, src-/- mice show only one major phenotype-osteopetrosis caused by an intrinsic defect in osteoclasts, the cells responsible for resorbing bone. To explore further the role of Src both in osteoclasts and other cell types, we have generated transgenic mice that express the wild-type and mutated versions of the chicken c-src proto-oncogene from the promoter of tartrate resistant acid phosphatase (TRAP), a gene that is expressed highly in osteoclasts. We demonstrate here that expression of a wild-type transgene in only a limited number of tissues can fully rescue the src-/- phenotype. Surprisingly, expression of kinase-defective alleles of c-src also reduces osteopetrosis in src-/- animals and partially rescues a defect in cytoskeletal organization observed in src-/- osteoclasts. These results suggest that there are essential kinase-independent functions for Src in vivo. Biochemical examination of osteoclasts from these mice suggest that Src may function in part by recruiting or activating other tyrosine kinases.
Collapse
|
research-article |
28 |
241 |
4
|
Choi JY, Pratap J, Javed A, Zaidi SK, Xing L, Balint E, Dalamangas S, Boyce B, van Wijnen AJ, Lian JB, Stein JL, Jones SN, Stein GS. Subnuclear targeting of Runx/Cbfa/AML factors is essential for tissue-specific differentiation during embryonic development. Proc Natl Acad Sci U S A 2001; 98:8650-5. [PMID: 11438701 PMCID: PMC37490 DOI: 10.1073/pnas.151236498] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Runx (Cbfa/AML) transcription factors are critical for tissue-specific gene expression. A unique targeting signal in the C terminus directs Runx factors to discrete foci within the nucleus. Using Runx2/CBFA1/AML3 and its essential role in osteogenesis as a model, we investigated the fundamental importance of fidelity of subnuclear localization for tissue differentiating activity by deleting the intranuclear targeting signal via homologous recombination. Mice homozygous for the deletion (Runx2 Delta C) do not form bone due to maturational arrest of osteoblasts. Heterozygotes do not develop clavicles, but are otherwise normal. These phenotypes are indistinguishable from those of the homozygous and heterozygous null mutants, indicating that the intranuclear targeting signal is a critical determinant for function. The expressed truncated Runx2 Delta C protein enters the nucleus and retains normal DNA binding activity, but shows complete loss of intranuclear targeting. These results demonstrate that the multifunctional N-terminal region of the Runx2 protein is not sufficient for biological activity. We conclude that subnuclear localization of Runx factors in specific foci together with associated regulatory functions is essential for control of Runx-dependent genes involved in tissue differentiation during embryonic development.
Collapse
|
research-article |
24 |
224 |
5
|
Zhai Y, Guo R, Hsu TL, Yu GL, Ni J, Kwon BS, Jiang GW, Lu J, Tan J, Ugustus M, Carter K, Rojas L, Zhu F, Lincoln C, Endress G, Xing L, Wang S, Oh KO, Gentz R, Ruben S, Lippman ME, Hsieh SL, Yang D. LIGHT, a novel ligand for lymphotoxin beta receptor and TR2/HVEM induces apoptosis and suppresses in vivo tumor formation via gene transfer. J Clin Invest 1998; 102:1142-51. [PMID: 9739048 PMCID: PMC509097 DOI: 10.1172/jci3492] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
LIGHT is a new member of tumor necrosis factor (TNF) cytokine family derived from an activated T cell cDNA library. LIGHT mRNA is highly expressed in splenocytes, activated PBL, CD8(+) tumor infiltrating lymphocytes, granulocytes, and monocytes but not in the thymus and the tumor cells examined. Introduction of LIGHT cDNA into MDA-MB-231 human breast carcinoma caused complete tumor suppression in vivo. Histological examination showed marked neutrophil infiltration and necrosis in LIGHT expressing but not in the parental or the Neo-transfected MDA-MB-231 tumors. Interferon gamma (IFNgamma) dramatically enhances LIGHT-mediated apoptosis. LIGHT protein triggers apoptosis of various tumor cells expressing both lymphotoxin beta receptor (LTbetaR) and TR2/HVEM receptors, and its cytotoxicity can be blocked specifically by addition of a LTbetaR-Fc or a TR2/HVEM-Fc fusion protein. However, LIGHT was not cytolytic to the tumor cells that express only the LTbetaR or the TR2/HVEM or hematopoietic cells examined that express only the TR2/HVEM, such as PBL, Jurkat cells, or CD8(+) TIL cells. In contrast, treatment of the activated PBL with LIGHT resulted in release of IFNgamma. Our data suggest that LIGHT triggers distinct biological responses based on the expression patterns of its receptors on the target cells. Thus, LIGHT may play a role in the immune modulation and have a potential value in cancer therapy.
Collapse
|
research-article |
27 |
222 |
6
|
Anderson SL, Carton JM, Lou J, Xing L, Rubin BY. Interferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virus. Virology 1999; 256:8-14. [PMID: 10087221 DOI: 10.1006/viro.1999.9614] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cDNA encoding the human guanylate binding protein-1 (hGBP-1) was expressed in HeLa cells using a constitutive expression vector. Stably transfected clones expressing hGBP-1 exhibited resistance to the cytopathic effect mediated by both vesicular stomatitis virus (VSV) and encephalomyocarditis virus (EMCV) and produced less viral progeny than control cells following infection with these viruses. To study the role hGBP-1 plays in the IFN-mediated antiviral effect, cells were stably transfected with a construct expressing antisense RNA for hGBP-1. VSV infection of IFN-alpha-treated antisense RNA-expressing cells produced an amount of virus comparable to that produced in the parental cell line, while EMCV infection of the IFN-alpha-treated transfected cells and VSV and EMCV infection of the IFN-gamma-treated transfected cells produced far more virus than was produced in the parental cell line. These results demonstrate that GBP-1 mediates an antiviral effect against VSV and EMCV and plays a role in the IFN-mediated antiviral response against these viruses.
Collapse
|
|
26 |
212 |
7
|
Kwon B, Yu KY, Ni J, Yu GL, Jang IK, Kim YJ, Xing L, Liu D, Wang SX, Kwon BS. Identification of a novel activation-inducible protein of the tumor necrosis factor receptor superfamily and its ligand. J Biol Chem 1999; 274:6056-61. [PMID: 10037686 DOI: 10.1074/jbc.274.10.6056] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among members of the tumor necrosis factor receptor (TNFR) superfamily, 4-1BB, CD27, and glucocorticoid-induced tumor necrosis factor receptor family-related gene (GITR) share a striking homology in the cytoplasmic domain. Here we report the identification of a new member, activation-inducible TNFR family member (AITR), which belongs to this subfamily, and its ligand. The receptor is expressed in lymph node and peripheral blood leukocytes, and its expression is up-regulated in human peripheral mononuclear cells mainly after stimulation with anti-CD3/CD28 monoclonal antibodies or phorbol 12-myristate 13-acetate/ionomycin. AITR associates with TRAF1 (TNF receptor-associated factor 1), TRAF2, and TRAF3, and induces nuclear factor (NF)-kappaB activation via TRAF2. The ligand for AITR (AITRL) was found to be an undescribed member of the TNF family, which is expressed in endothelial cells. Thus, AITR and AITRL seem to be important for interactions between activated T lymphocytes and endothelial cells.
Collapse
|
|
26 |
135 |
8
|
Ma CM, Pawlicki T, Jiang SB, Li JS, Deng J, Mok E, Kapur A, Xing L, Ma L, Boyer AL. Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system. Phys Med Biol 2000; 45:2483-95. [PMID: 11008950 DOI: 10.1088/0031-9155/45/9/303] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The purpose of this work was to use Monte Carlo simulations to verify the accuracy of the dose distributions from a commercial treatment planning optimization system (Corvus, Nomos Corp., Sewickley, PA) for intensity-modulated radiotherapy (IMRT). A Monte Carlo treatment planning system has been implemented clinically to improve and verify the accuracy of radiotherapy dose calculations. Further modifications to the system were made to compute the dose in a patient for multiple fixed-gantry IMRT fields. The dose distributions in the experimental phantoms and in the patients were calculated and used to verify the optimized treatment plans generated by the Corvus system. The Monte Carlo calculated IMRT dose distributions agreed with the measurements to within 2% of the maximum dose for all the beam energies and field sizes for both the homogeneous and heterogeneous phantoms. The dose distributions predicted by the Corvus system, which employs a finite-size pencil beam (FSPB) algorithm, agreed with the Monte Carlo simulations and measurements to within 4% in a cylindrical water phantom with various hypothetical target shapes. Discrepancies of more than 5% (relative to the prescribed target dose) in the target region and over 20% in the critical structures were found in some IMRT patient calculations. The FSPB algorithm as implemented in the Corvus system is adequate for homogeneous phantoms (such as prostate) but may result in significant under or over-estimation of the dose in some cases involving heterogeneities such as the air-tissue, lung-tissue and tissue-bone interfaces.
Collapse
|
Comparative Study |
25 |
123 |
9
|
Pugachev A, Li JG, Boyer AL, Hancock SL, Le QT, Donaldson SS, Xing L. Role of beam orientation optimization in intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2001; 50:551-60. [PMID: 11380245 DOI: 10.1016/s0360-3016(01)01502-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE To investigate the role of beam orientation optimization in intensity-modulated radiation therapy (IMRT) and to examine the potential benefits of noncoplanar intensity-modulated beams. METHODS AND MATERIALS A beam orientation optimization algorithm was implemented. For this purpose, system variables were divided into two groups: beam position (gantry and table angles) and beam profile (beamlet weights). Simulated annealing was used for beam orientation optimization and the simultaneous iterative inverse treatment planning algorithm (SIITP) for beam intensity profile optimization. Three clinical cases were studied: a localized prostate cancer, a nasopharyngeal cancer, and a paraspinal tumor. Nine fields were used for all treatments. For each case, 3 types of treatment plan optimization were performed: (1) beam intensity profiles were optimized for 9 equiangular spaced coplanar beams; (2) orientations and intensity profiles were optimized for 9 coplanar beams; (3) orientations and intensity profiles were optimized for 9 noncoplanar beams. RESULTS For the localized prostate case, all 3 types of optimization described above resulted in dose distributions of a similar quality. For the nasopharynx case, optimized noncoplanar beams provided a significant gain in the gross tumor volume coverage. For the paraspinal case, orientation optimization using noncoplanar beams resulted in better kidney sparing and improved gross tumor volume coverage. CONCLUSION The sensitivity of an IMRT treatment plan with respect to the selection of beam orientations varies from site to site. For some cases, the choice of beam orientations is important even when the number of beams is as large as 9. Noncoplanar beams provide an additional degree of freedom for IMRT treatment optimization and may allow for notable improvement in the quality of some complicated plans.
Collapse
|
|
24 |
123 |
10
|
Jonason JH, Xiao G, Zhang M, Xing L, Chen D. Post-translational Regulation of Runx2 in Bone and Cartilage. J Dent Res 2009; 88:693-703. [PMID: 19734454 DOI: 10.1177/0022034509341629] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Runx2 gene product is essential for mammalian bone development. In humans, Runx2 haploinsufficiency results in cleidocranial dysplasia, a skeletal disorder characterized by bone and dental abnormalities. At the molecular level, Runx2 acts as a transcription factor for genes expressed in hypertrophic chondrocytes and osteoblasts. Runx2 gene expression and protein function are regulated on multiple levels, including transcription, translation, and post-translational modification. Furthermore, Runx2 is involved in numerous protein-protein interactions, most of which either activate or repress transcription of target genes. In this review, we discuss expression of Runx2 during development as well as the post-translational regulation of Runx2 through modification by phosphorylation, ubiquitination, and acetylation.
Collapse
|
Review |
16 |
122 |
11
|
Abstract
Inverse treatment planning starts with a treatment objective and obtains the solution by optimizing an objective function. The clinical objectives are usually multifaceted and potentially incompatible with one another. A set of importance factors is often incorporated in the objective function to parametrize trade-off strategies and to prioritize the dose conformality in different anatomical structures. Whereas the general formalism remains the same, different sets of importance factors characterize plans of obviously different flavour and thus critically determine the final plan. Up to now, the determination of these parameters has been a 'guessing' game based on empirical knowledge because the final dose distribution depends on the parameters in a complex and implicit way. The influence of these parameters is not known until the plan optimization is completed. In order to compromise properly the conflicting requirements of the target and sensitive structures, the parameters are usually adjusted through a trial-and-error process. In this paper, a method to estimate these parameters computationally is proposed and an iterative computer algorithm is described to determine these parameters numerically. The treatment plan selection is done in two steps. First, a set of importance factors are chosen and the corresponding beam parameters (e.g. beam profiles) are optimized under the guidance of a quadratic objective function using an iterative algorithm reported earlier. The 'optimal' plan is then evaluated by an additional scoring function. The importance factors in the objective function are accordingly adjusted to improve the ranking of the plan. For every change in the importance factors, the beam parameters need to be re-optimized. This process continues in an iterative fashion until the scoring function is saturated. The algorithm was applied to two clinical cases and the results demonstrated that it has the potential to improve significantly the existing method of inverse planning. It was noticed that near the final solution the plan became insensitive to small variations of the importance factors.
Collapse
|
|
26 |
121 |
12
|
Li T, Schreibmann E, Yang Y, Xing L. Motion correction for improved target localization with on-board cone-beam computed tomography. Phys Med Biol 2005; 51:253-67. [PMID: 16394337 DOI: 10.1088/0031-9155/51/2/005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
On-board imager (OBI) based cone-beam computed tomography (CBCT) has become available in radiotherapy clinics to accurately identify the target in the treatment position. However, due to the relatively slow gantry rotation (typically about 60 s for a full 360 degrees scan) in acquiring the CBCT projection data, the patient's respiratory motion causes serious problems such as blurring, doubling, streaking and distortion in the reconstructed images, which heavily degrade the image quality and the target localization. In this work, we present a motion compensation method for slow-rotating CBCT scans by incorporating into image reconstruction a patient-specific motion model, which is derived from previously obtained four-dimensional (4D) treatment planning CT images of the same patient via deformable registration. The registration of the 4D CT phases results in transformations representing a temporal sequence of three-dimensional (3D) deformation fields, or in other words, a 4D model of organ motion. The algorithm was developed heuristically in two-dimensional (2D) parallel-beam geometry and extended to 3D cone-beam geometry. By simulations with digital phantoms capable of translational motion and other complex motion, we demonstrated that the algorithm can reduce the motion artefacts locally, and restore the tumour size and shape, which may thereby improve the accuracy of target localization and patient positioning when CBCT is used as the treatment guidance.
Collapse
|
|
20 |
119 |
13
|
Zhai Y, Ni J, Jiang GW, Lu J, Xing L, Lincoln C, Carter KC, Janat F, Kozak D, Xu S, Rojas L, Aggarwal BB, Ruben S, Li LY, Gentz R, Yu GL. VEGI, a novel cytokine of the tumor necrosis factor family, is an angiogenesis inhibitor that suppresses the growth of colon carcinomas in vivo. FASEB J 1999; 13:181-9. [PMID: 9872942 DOI: 10.1096/fasebj.13.1.181] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A novel member of the tumor necrosis factor (TNF) family has been identified from the human umbilical vein endothelial cell cDNA library, named vascular endothelial growth inhibitor (VEGI). The VEGI gene was mapped to human chromosome 9q32. The cDNA for VEGI encodes a protein of 174 amino acid residues with the characteristics of a type II transmembrane protein. Its amino acid sequence is 20-30% identical to other members of the TNF family. Unlike other members of the TNF family, VEGI is expressed predominantly in endothelial cells. Local production of a secreted form of VEGI via gene transfer caused complete suppression of the growth of MC-38 murine colon cancers in syngeneic C57BL/6 mice. Histological examination showed marked reduction of vascularization in MC-38 tumors that expressed soluble but not membrane-bound VEGI or were transfected with control vector. The conditioned media from soluble VEGI-expressing cells showed marked inhibitory effect on in vitro proliferation of adult bovine aortic endothelial cells. Our data suggest that VEGI is a novel angiogenesis inhibitor of the TNF family and functions in part by directly inhibiting endothelial cell proliferation. The results further suggest that VEGI maybe highly valuable toward angiogenesis-based cancer therapy.
Collapse
|
|
26 |
116 |
14
|
Ni J, Abrahamson M, Zhang M, Fernandez MA, Grubb A, Su J, Yu GL, Li Y, Parmelee D, Xing L, Coleman TA, Gentz S, Thotakura R, Nguyen N, Hesselberg M, Gentz R. Cystatin E is a novel human cysteine proteinase inhibitor with structural resemblance to family 2 cystatins. J Biol Chem 1997; 272:10853-8. [PMID: 9099741 DOI: 10.1074/jbc.272.16.10853] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A new member of the human cystatin superfamily, called cystatin E, has been found by expressed sequence tag (EST) sequencing in amniotic cell and fetal skin epithelial cell cDNA libraries. The sequence of a full-length amniotic cell cDNA clone contained an open reading frame encoding a putative 28-residue signal peptide and a mature protein of 121 amino acids, including four cysteine residues and motifs of importance for the inhibitory activity of Family 2 cystatins like cystatin C. Recombinant cystatin E was produced in a baculovirus expression system and isolated. An antiserum against the recombinant protein could be used for affinity purification of cystatin E from human urine, as confirmed by N-terminal sequencing. The mature recombinant protein processed by insect cells started at amino acid 4 (cystatin C numbering), and displayed reversible inhibition of papain and cathepsin B (Ki values of 0.39 and 32 nM, respectively), in competition with substrate. Cystatin E is thus a functional cysteine proteinase inhibitor despite relatively low amino acid sequence similarities with human cystatins (26-34% identity with sequences for the Family 2 cystatins C, D, S, SN, and SA; <30% with the Family 1 cystatins, A and B, and domains 2 and 3 of the Family 3 cystatin, kininogen). Unlike other human low Mr cystatins, cystatin E is a glycoprotein, carrying an N-linked carbohydrate chain at position 108. Northern blot analysis revealed that the cystatin E gene is expressed in most human tissues, with the highest mRNA amounts found in uterus and liver. A strikingly high incidence of cystatin E clones in cDNA libraries from fetal skin epithelium and amniotic membrane cells (>0.5% of clones sequenced) indicates a protective role of cystatin E during fetal development.
Collapse
|
|
28 |
116 |
15
|
Xing L, Kato K, Li T, Takeda N, Miyamura T, Hammar L, Cheng RH. Recombinant hepatitis E capsid protein self-assembles into a dual-domain T = 1 particle presenting native virus epitopes. Virology 1999; 265:35-45. [PMID: 10603315 DOI: 10.1006/viro.1999.0005] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The three-dimensional structure of a self-assembled, recombinant hepatitis E virus particle has been solved to 22-A resolution by cryo-electron microscopy and three-dimensional image reconstruction. The single subunit of 50 kDa is derived from a truncated version of the open reading frame-2 gene of the virus expressed in a baculovirus system. This is the first structure of a T = 1 particle with protruding dimers at the icosahedral two-fold axes solved by cryo-electron microscopy. The protein shell of these hollow particles extends from a radius of 50 A outward to a radius of 135 A. In the reconstruction, the capsid is dominated by dimers that define the 30 morphological units. The outer domain of the homodimer forms a protrusion, which corresponds to the spike-like density seen in the cryo-electron micrograph. This particle retains native virus epitopes, suggesting its potential value as a vaccine.
Collapse
|
|
26 |
111 |
16
|
Xing L, Tjarnlund K, Lindqvist B, Kaplan GG, Feigelstock D, Cheng RH, Casasnovas JM. Distinct cellular receptor interactions in poliovirus and rhinoviruses. EMBO J 2000; 19:1207-16. [PMID: 10716921 PMCID: PMC305662 DOI: 10.1093/emboj/19.6.1207] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Receptor binding to human poliovirus type 1 (PV1/M) and the major group of human rhinoviruses (HRV) was studied comparatively to uncover the evolution of receptor recognition in picornaviruses. Surface plas- mon resonance showed receptor binding to PV1/M with faster association and dissociation rates than to HRV3 and HRV16, two serotypes that have similar binding kinetics. The faster rate for receptor association to PV1/M suggested a relatively more accessible binding site. Thermodynamics for receptor binding to the viruses and assays for receptor-mediated virus uncoating showed a more disruptive receptor interaction with PV1/M than with HRV3 or HRV16. Cryo-electron microscopy and image reconstruction of receptor-PV1/M complexes revealed receptor binding to the 'wall' of surface protrusions surrounding the 'canyon', a depressive surface in the capsid where the rhinovirus receptor binds. These data reveal more exposed receptor-binding sites in poliovirus than rhinoviruses, which are less protected from immune surveillance but more suited for receptor-mediated virus uncoating and entry at the cell surface.
Collapse
|
research-article |
25 |
109 |
17
|
Wiersma RD, Mao W, Xing L. Combined kV and MV imaging for real-time tracking of implanted fiducial markers. Med Phys 2008; 35:1191-8. [PMID: 18491510 DOI: 10.1118/1.2842072] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In the presence of intrafraction organ motion, target localization uncertainty can greatly hamper the advantage of highly conformal dose techniques such as intensity modulated radiation therapy (IMRT). To minimize the adverse dosimetric effect caused by tumor motion, a real-time knowledge of the tumor position is required throughout the beam delivery process. The recent integration of onboard kV diagnostic imaging together with MV electronic portal imaging devices on linear accelerators can allow for real-time three-dimensional (3D) tumor position monitoring during a treatment delivery. The aim of this study is to demonstrate a near real-time 3D internal fiducial tracking system based on the combined use of kV and MV imaging. A commercially available radiotherapy system equipped with both kV and MV imaging systems was used in this work. A hardware video frame grabber was used to capture both kV and MV video streams simultaneously through independent video channels at 30 frames per second. The fiducial locations were extracted from the kV and MV images using a software tool. The geometric tracking capabilities of the system were evaluated using a pelvic phantom with embedded fiducials placed on a moveable stage. The maximum tracking speed of the kV/MV system is approximately 9 Hz, which is primarily limited by the frame rate of the MV imager. The geometric accuracy of the system is found to be on the order of less than 1 mm in all three spatial dimensions. The technique requires minimal hardware modification and is potentially useful for image-guided radiation therapy systems.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
106 |
18
|
Xing L, Curran B, Hill R, Holmes T, Ma L, Forster KM, Boyer AL. Dosimetric verification of a commercial inverse treatment planning system. Phys Med Biol 1999; 44:463-78. [PMID: 10070795 DOI: 10.1088/0031-9155/44/2/013] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A commercial three-dimensional (3D) inverse treatment planning system, Corvus (Nomos Corporation, Sewickley, PA), was recently made available. This paper reports our preliminary results and experience with commissioning this system for clinical implementation. This system uses a simulated annealing inverse planning algorithm to calculate intensity-modulated fields. The intensity-modulated fields are divided into beam profiles that can be delivered by means of a sequence of leaf settings by a multileaf collimator (MLC). The treatments are delivered using a computer-controlled MLC. To test the dose calculation algorithm used by the Corvus software, the dose distributions for single rectangularly shaped fields were compared with water phantom scan data. The dose distributions predicted to be delivered by multiple fields were measured using an ion chamber that could be positioned in a rotatable cylindrical water phantom. Integrated charge collected by the ion chamber was used to check the absolute dose of single- and multifield intensity modulated treatments at various spatial points. The measured and predicted doses were found to agree to within 4% at all measurement points. Another set of measurements used a cubic polystyrene phantom with radiographic film to record the radiation dose distribution. The films were calibrated and scanned to yield two-dimensional isodose distributions. Finally, a beam imaging system (BIS) was used to measure the intensity-modulated x-ray beam patterns in the beam's-eye view. The BIS-measured images were then compared with a theoretical calculation based on the MLC leaf sequence files to verify that the treatment would be executed accurately and without machine faults. Excellent correlation (correlation coefficients > or = 0.96) was found for all cases. Treatment plans generated using intensity-modulated beams appear to be suitable for treatment of irregularly shaped tumours adjacent to critical structures. The results indicated that the system has potential for clinical radiation treatment planning and delivery and may in the future reduce treatment complexity.
Collapse
|
|
26 |
94 |
19
|
Abstract
Nuclear factor-kappa B (NF-kappaB) is a set of five polypeptide transcription factors, called p50, p52, p65 (also called Rel A), Rel B, and c-Rel, which regulate the expression of a variety of genes involved in immune and inflammatory responses. They were originally named because they were considered essential regulators of B cell kappa light chain expression. More recent studies indicate that NF-kappaB proteins are involved in the regulation of a variety of other cell functions, including cell proliferation, responses to stress, and apoptosis. NF-kappaB heterodimers reside in the cytoplasm of cells bound to inhibitory proteins, the two commonest of which are IkappaBalpha and IkappaBbeta, which prevent NF-kappaB from entering the nucleus. When cells are stimulated, IkappaB is phosphorylated by specific IkappaB kinases and subsequently is ubiquitinated and degraded in proteosomes. This allows NF-kappaB to translocate to the nucleus to regulate the expression of a growing list of genes, including the proinflammatory cytokines, interleukin-1 (IL-1), IL-6, and tumor necrosis factor. IL-1 and tumor necrosis factor in turn also regulate the expression of NF-kappaB. Thus, once activated, NF-kappaB may be involved in upregulatory loops, which can amplify the effects of the initiating stimulus. Because these proinflammatory cytokines have been implicated in the pathogenesis of estrogen deficiency and inflammation-related bone loss, it is likely that NF-kappaB has a significant role in the increased generation and function of osteoclasts in these circumstances. However, an unexpected and essential role of NF-kappaB in the formation of osteoclasts during development was discovered recently after the generation of knockout mice, which lack the expression of the p50 and p52 subunits. This paper will describe recent studies that reveal an essential role for NF-kappaB signaling in the generation of osteoclasts and that suggest that NF-kappaB may also play a key central role in the activation and survival of osteoclasts in conditions in which osteoclastogenesis is upregulated.
Collapse
|
|
26 |
92 |
20
|
Abstract
Accurate targeting is important in intensity-modulated radiation therapy (IMRT). The positional uncertainties of structures with respect to the external beams arise in part from random organ motion and patient setup errors. While it is important to improve immobilization and reduce the influence of organ motion, the residual effects should be included in the IMRT plan design. Current inverse planning algorithms follow the conventional approach and include uncertainties by assuming population-based margins to the target and sensitive structures. Margin around a structure represents a "hard boundary" and the fact that a structure has a spatial probability distribution has been completely ignored. With increasing understanding of spatial uncertainties of structures and the technical capability of fine-tuning the dose distribution on an individual beamlet level in IMRT, it seems timely and important to fully utilize the information in the planning process. This will reduce the "effective" margins of the structures and facilitate dose escalation. Instead of specifying a "hard margin," we describe an inverse planning algorithm which takes into consideration positional uncertainty in terms of spatial probability distribution. The algorithm was demonstrated by assuming that the random organ motion can be represented by a three-dimensional Gaussian distribution function. Other probability distributions can be dealt with similarly. In particular, the commonly used "hard margin" is a special case of the current approach with a uniform probability distribution within a specified range. The algorithm was applied to plan treatment for a prostate case and a pancreatic case. The results were compared with those obtained by adding a margin to the clinical target volume. Better sparing of the sensitive structures were obtained in both cases using the proposed method for approximately the same target coverage.
Collapse
|
|
25 |
89 |
21
|
Zhang X, Morham SG, Langenbach R, Young DA, Xing L, Boyce BF, Puzas EJ, Rosier RN, O'Keefe RJ, Schwarz EM. Evidence for a direct role of cyclo-oxygenase 2 in implant wear debris-induced osteolysis. J Bone Miner Res 2001; 16:660-70. [PMID: 11315993 DOI: 10.1359/jbmr.2001.16.4.660] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aseptic loosening is a major complication of prosthetic joint surgery and is manifested as chronic inflammation, pain, and osteolysis at the bone implant interface. The osteolysis is believed to be driven by a host inflammatory response to wear debris generated from the implant. In our current study, we use a selective inhibitor (celecoxib) of cyclo-oxygenase 2 (COX-2) and mice that lack either COX-1 (COX-1-/-) or COX-2 (COX-2-/-) to show that COX-2, but not COX-1, plays an important role in wear debris-induced osteolysis. Titanium (Ti) wear debris was implanted surgically onto the calvaria of the mice. An intense inflammatory reaction and extensive bone resorption, which closely resembles that observed in patients with aseptic loosening, developed within 10 days of implantation in wild-type and COX-1-/- mice. COX-2 and prostaglandin E2 (PGE2) production increased in the calvaria and inflammatory tissue overlying it after Ti implantation. Celecoxib (25 mg/kg per day) significantly reduced the inflammation, the local PGE2 production, and osteolysis. In comparison with wild-type and COX-1-/- mice, COX-2-/- mice implanted with Ti had a significantly reduced calvarial bone resorption response, independent of the inflammatory response, and significantly fewer osteoclasts were formed from cultures of their bone marrow cells. These results provide direct evidence that COX-2 is an important mediator of wear debris-induced osteolysis and suggests that COX-2 inhibitors are potential therapeutic agents for the prevention of wear debris-induced osteolysis.
Collapse
|
|
24 |
88 |
22
|
Pugachev A, Xing L. Pseudo beam's-eye-view as applied to beam orientation selection in intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2001; 51:1361-70. [PMID: 11728698 DOI: 10.1016/s0360-3016(01)01736-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To introduce the concept of pseudo beam's-eye-view (pBEV), to establish a framework for computer-assisted beam orientation selection in intensity-modulated radiation therapy (IMRT), and to evaluate the utility of the proposed technique. METHODS AND MATERIALS To facilitate the selection of beam orientations for IMRT treatment planning, a scoring of beam direction was introduced. The score function was based on the maximum target dose deliverable by the beam without exceeding the tolerance doses of the critical structures. For the score function calculation, the beam portal at given gantry and couch angles was divided into a grid of beamlets. Each beamlet crossing the target was assigned the maximum intensity that could be used without exceeding the dose tolerances of the organs at risk (OARs) and normal tissue. Thereafter, a score was assigned to the beam according to the target dose delivered. The beams for the treatment were selected among those with the highest scores. In a sense, this technique is similar to the beam's-eye-view approach used in conventional radiation therapy, except that the evaluation by a human is replaced by a score function, and beam modulation is taken into account. RESULTS The pBEV technique was tested on two clinical cases: a paraspinal treatment and a nasopharyngeal cancer with both coplanar and noncoplanar beam configurations. The plans generated under the guidance of pBEV for the paraspinal treatment offered superior target dose uniformity and reduced OAR doses. For the nasopharyngeal cancer case, it was also found that the pBEV-selected coplanar and noncoplanar beams significantly improved the target coverage without compromising the sparing of the OARs. CONCLUSIONS The pBEV technique developed in this work provides a comprehensive tool for beam orientation selection in IMRT. It is especially valuable for complicated cases, where the target is surrounded by several sensitive structures and where it is difficult to select a set of good beam orientations. The pBEV technique has considerable potential for simplifying the IMRT treatment planning process and for maximizing the technical capacity of IMRT.
Collapse
|
|
24 |
86 |
23
|
Xing L, Venegas AM, Chen A, Garrett-Beal L, Boyce BF, Varmus HE, Schwartzberg PL. Genetic evidence for a role for Src family kinases in TNF family receptor signaling and cell survival. Genes Dev 2001; 15:241-53. [PMID: 11157779 PMCID: PMC312612 DOI: 10.1101/gad.840301] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutant src(-/-) mice have osteopetrosis resulting from defective osteoclasts, the cells that resorb bone. However, signaling pathways involving Src family members in osteoclasts remain unclear. We demonstrate that expression of a truncated Src molecule, Src251, lacking the kinase domain, induces osteopetrosis in wild-type and src(+/-) mice and worsens osteopetrosis in src(-/-) mice by a novel mechanism, increased osteoclast apoptosis. Induction of apoptosis by Src251 requires a functional SH2, but not an SH3, domain and is associated with reduced AKT kinase activity. Expression of Src251 dramatically reduces osteoclast survival in response to RANKL/TRANCE/OPGL, providing evidence that Src family kinases are required in vivo for survival signaling pathways downstream from TNF family receptors.
Collapse
|
research-article |
24 |
85 |
24
|
Pugachev AB, Boyer AL, Xing L. Beam orientation optimization in intensity-modulated radiation treatment planning. Med Phys 2000; 27:1238-45. [PMID: 10902552 DOI: 10.1118/1.599001] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Beam direction optimization is an important problem in radiation therapy. In intensity modulated radiation therapy (IMRT), the difficulty for computer optimization of the beam directions arises from the fact that they are coupled with the intensity profiles of the incident beams. In order to obtain the optimal incident beam directions using iterative or stochastic methods, the beam profiles ought to be optimized after every change of beam configuration. In this paper we report an effective algorithm to optimize gantry angles for IMRT. In our calculation the gantry angles and the beam profiles (beamlet weights) were treated as two separate groups of variables. The gantry angles were sampled according to a simulated annealing algorithm. For each sampled beam configuration, beam profile calculation was done using a fast filtered backprojection (FBP) method. Simulated annealing was also used for beam profile optimization to examine the performance of the FBP for beam orientation optimization. Relative importance factors were incorporated into the objective function to control the relative importance of the target and the sensitive structures. Minimization of the objective function resulted in the best possible beam orientations and beam profiles judged by the given objective function. The algorithm was applied to several model problems and the results showed that the approach has potential for IMRT applications.
Collapse
|
|
25 |
84 |
25
|
Carpenter CM, Sun C, Pratx G, Rao R, Xing L. Hybrid x-ray/optical luminescence imaging: characterization of experimental conditions. Med Phys 2010; 37:4011-8. [PMID: 20879562 DOI: 10.1118/1.3457332] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The feasibility of x-ray luminescence imaging is investigated using a dual-modality imaging system that merges x-ray and optical imaging. This modality utilizes x-ray activated nanophosphors that luminesce when excited by ionizing photons. By doping phosphors with lanthanides, which emit light in the visible and near infrared range, the luminescence is suitable for biological applications. This study examines practical aspects of this new modality including phosphor concentration, light emission linearity, detector damage, and spectral emission characteristics. Finally, the contrast produced by these phosphors is compared to that of x-ray fluoroscopy. METHODS Gadolinium and lanthanum oxysulfide phosphors doped with terbium (green emission) or europium (red emission) were studied. The light emission was imaged in a clinical x-ray scanner with a cooled CCD camera and a spectrophotometer; dose measurements were determined with a calibrated dosimeter. Using these properties, in addition to luminescence efficiency values found in the literature for a similar phosphor, minimum concentration calculations are performed. Finally, a 2.5 cm agar phantom with a 1 cm diameter cylindrical phosphor-filled inclusion (diluted at 10 mg/ml) is imaged to compare x-ray luminescence contrast with x-ray fluoroscopic contrast at a superficial location. RESULTS Dose to the CCD camera in the chosen imaging geometry was measured at less than 0.02 cGy/s. Emitted light was found to be linear with dose (R(2)= 1) and concentration (R(2)= 1). Emission peaks for clinical x-ray energies are less than 3 nm full width at half maximum, as expected from lanthanide dopants. The minimum practical concentration necessary to detect luminescent phosphors is dependent on dose; it is estimated that subpicomolar concentrations are detectable at the surface of the tissue with typical mammographic doses, with the minimum detectable concentration increasing with depth and decreasing with dose. In a reflection geometry, x-ray luminescence had nearly a 430-fold greater contrast to background than x-ray fluoroscopy. CONCLUSIONS X-ray luminescence has the potential to be a promising new modality for enabling molecular imaging within x-ray scanners. Although much work needs to be done to ensure biocompatibility of x-ray exciting phosphors, the benefits of this modality, highlighted in this work, encourage further study.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
80 |