1
|
Scognamiglio R, Cabezas-Wallscheid N, Thier MC, Altamura S, Reyes A, Prendergast ÁM, Baumgärtner D, Carnevalli LS, Atzberger A, Haas S, von Paleske L, Boroviak T, Wörsdörfer P, Essers MAG, Kloz U, Eisenman RN, Edenhofer F, Bertone P, Huber W, van der Hoeven F, Smith A, Trumpp A. Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell 2016; 164:668-80. [PMID: 26871632 PMCID: PMC4752822 DOI: 10.1016/j.cell.2015.12.033] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 10/26/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
Abstract
Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest. This process is reversible and occurs without affecting pluripotency, suggesting that Myc-depleted stem cells enter a state of dormancy similar to embryonic diapause. Indeed, c-Myc is depleted in diapaused blastocysts, and the differential expression signatures of dKO ESCs and diapaused epiblasts are remarkably similar. Following Myc inhibition, pre-implantation blastocysts enter biosynthetic dormancy but can progress through their normal developmental program after transfer into pseudo-pregnant recipients. Our study shows that Myc controls the biosynthetic machinery of stem cells without affecting their potency, thus regulating their entry and exit from the dormant state.
Collapse
|
research-article |
9 |
193 |
2
|
Carnevalli LS, Masuda K, Frigerio F, Le Bacquer O, Um SH, Gandin V, Topisirovic I, Sonenberg N, Thomas G, Kozma SC. S6K1 plays a critical role in early adipocyte differentiation. Dev Cell 2010; 18:763-74. [PMID: 20493810 DOI: 10.1016/j.devcel.2010.02.018] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/04/2010] [Accepted: 02/26/2010] [Indexed: 01/08/2023]
Abstract
Earlier, we reported that S6K1(-/-) mice have reduced body fat mass, have elevated rates of lipolysis, have severely decreased adipocyte size, and are resistant to high fat diet (HFD)-induced obesity. Here we report that adipocytes of S6K1(-/-) mice on a HFD have the capacity to increase in size to a degree comparable to that of wild-type (WT) mice, but not in number, indicating an unexpected lesion in adipogenesis. Tracing this lesion revealed that S6K1 is dispensable for terminal adipocyte differentiation, but is involved in the commitment of embryonic stem cells to early adipocyte progenitors. We further show that absence of S6K1 attenuates the upregulation of transcription factors critical for commitment to adipogenesis. These results led to the conclusion that a lack of S6K1 impairs the generation of de novo adipocytes when mice are challenged with a HFD, consistent with a reduction in early adipocyte progenitors.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
154 |
3
|
Michaloglou C, Crafter C, Siersbaek R, Delpuech O, Curwen JO, Carnevalli LS, Staniszewska AD, Polanska UM, Cheraghchi-Bashi A, Lawson M, Chernukhin I, McEwen R, Carroll JS, Cosulich SC. Combined Inhibition of mTOR and CDK4/6 Is Required for Optimal Blockade of E2F Function and Long-term Growth Inhibition in Estrogen Receptor-positive Breast Cancer. Mol Cancer Ther 2018; 17:908-920. [PMID: 29483206 PMCID: PMC6485624 DOI: 10.1158/1535-7163.mct-17-0537] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 11/01/2017] [Accepted: 02/19/2018] [Indexed: 01/15/2023]
Abstract
The cyclin dependent kinase (CDK)-retinoblastoma (RB)-E2F pathway plays a critical role in the control of cell cycle in estrogen receptor-positive (ER+) breast cancer. Small-molecule inhibitors of CDK4/6 have shown promise in this tumor type in combination with hormonal therapies, reflecting the particular dependence of this subtype of cancer on cyclin D1 and E2F transcription factors. mTOR inhibitors have also shown potential in clinical trials in this disease setting. Recent data have suggested cooperation between the PI3K/mTOR pathway and CDK4/6 inhibition in preventing early adaptation and eliciting growth arrest, but the mechanisms of the interplay between these pathways have not been fully elucidated. Here we show that profound and durable inhibition of ER+ breast cancer growth is likely to require multiple hits on E2F-mediated transcription. We demonstrate that inhibition of mTORC1/2 does not affect ER function directly, but does cause a decrease in cyclin D1 protein, RB phosphorylation, and E2F-mediated transcription. Combination of an mTORC1/2 inhibitor with a CDK4/6 inhibitor results in more profound effects on E2F-dependent transcription, which translates into more durable growth arrest and a delay in the onset of resistance. Combined inhibition of mTORC1/2, CDK4/6, and ER delivers even more profound and durable regressions in breast cancer cell lines and xenografts. Furthermore, we show that CDK4/6 inhibitor-resistant cell lines reactivate the CDK-RB-E2F pathway, but remain sensitive to mTORC1/2 inhibition, suggesting that mTORC1/2 inhibitors may represent an option for patients that have relapsed on CDK4/6 therapy. Mol Cancer Ther; 17(5); 908-20. ©2018 AACR.
Collapse
|
research-article |
7 |
122 |
4
|
Thomas HE, Mercer CA, Carnevalli LS, Park J, Andersen JB, Conner EA, Tanaka K, Matsutani T, Iwanami A, Aronow BJ, Manway L, Maira SM, Thorgeirsson SS, Mischel PS, Thomas G, Kozma SC. mTOR inhibitors synergize on regression, reversal of gene expression, and autophagy in hepatocellular carcinoma. Sci Transl Med 2012; 4:139ra84. [PMID: 22539746 DOI: 10.1126/scitranslmed.3003923] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) affects more than half a million people worldwide and is the third most common cause of cancer deaths. Because mammalian target of rapamycin (mTOR) signaling is up-regulated in 50% of HCCs, we compared the effects of the U.S. Food and Drug Administration-approved mTOR-allosteric inhibitor, RAD001, with a new-generation phosphatidylinositol 3-kinase/mTOR adenosine triphosphate-site competitive inhibitor, BEZ235. Unexpectedly, the two drugs acted synergistically in inhibiting the proliferation of cultured HCC cells. The synergistic effect closely paralleled eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) dephosphorylation, which is implicated in the suppression of tumor cell proliferation. In a mouse model approximating human HCC, the drugs in combination, but not singly, induced a marked regression in tumor burden. However, in the tumor, BEZ235 alone was as effective as the combination in inhibiting 4E-BP1 phosphorylation, which suggests that additional target(s) may also be involved. Microarray analyses revealed a large number of genes that reverted to normal liver tissue expression in mice treated with both drugs, but not either drug alone. These analyses also revealed the down-regulation of autophagy genes in tumors compared to normal liver. Moreover, in HCC patients, altered expression of autophagy genes was associated with poor prognosis. Consistent with these findings, the drug combination had a profound effect on UNC51-like kinase 1 (ULK1) dephosphorylation and autophagy in culture, independent of 4E-BP1, and in parallel induced tumor mitophagy, a tumor suppressor process in liver. These observations have led to an investigator-initiated phase 1B-2 dose escalation trial with RAD001 combined with BEZ235 in patients with HCC and other advanced solid tumors.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
83 |
5
|
Taylor MA, Hughes AM, Walton J, Coenen-Stass AML, Magiera L, Mooney L, Bell S, Staniszewska AD, Sandin LC, Barry ST, Watkins A, Carnevalli LS, Hardaker EL. Longitudinal immune characterization of syngeneic tumor models to enable model selection for immune oncology drug discovery. J Immunother Cancer 2019; 7:328. [PMID: 31779705 PMCID: PMC6883640 DOI: 10.1186/s40425-019-0794-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/30/2019] [Indexed: 02/02/2023] Open
Abstract
Background The ability to modulate immune-inhibitory pathways using checkpoint blockade antibodies such as αPD-1, αPD-L1, and αCTLA-4 represents a significant breakthrough in cancer therapy in recent years. This has driven interest in identifying small-molecule-immunotherapy combinations to increase the proportion of responses. Murine syngeneic models, which have a functional immune system, represent an essential tool for pre-clinical evaluation of new immunotherapies. However, immune response varies widely between models and the translational relevance of each model is not fully understood, making selection of an appropriate pre-clinical model for drug target validation challenging. Methods Using flow cytometry, O-link protein analysis, RT-PCR, and RNAseq we have characterized kinetic changes in immune-cell populations over the course of tumor development in commonly used syngeneic models. Results This longitudinal profiling of syngeneic models enables pharmacodynamic time point selection within each model, dependent on the immune population of interest. Additionally, we have characterized the changes in immune populations in each of these models after treatment with the combination of α-PD-L1 and α-CTLA-4 antibodies, enabling benchmarking to known immune modulating treatments within each model. Conclusions Taken together, this dataset will provide a framework for characterization and enable the selection of the optimal models for immunotherapy combinations and generate potential biomarkers for clinical evaluation in identifying responders and non-responders to immunotherapy combinations.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
63 |
6
|
Carnevalli LS, Sinclair C, Taylor MA, Gutierrez PM, Langdon S, Coenen-Stass AML, Mooney L, Hughes A, Jarvis L, Staniszewska A, Crafter C, Sidders B, Hardaker E, Hudson K, Barry ST. PI3Kα/δ inhibition promotes anti-tumor immunity through direct enhancement of effector CD8 + T-cell activity. J Immunother Cancer 2018; 6:158. [PMID: 30587236 PMCID: PMC6307194 DOI: 10.1186/s40425-018-0457-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/20/2018] [Indexed: 01/08/2023] Open
Abstract
PI3K inhibitors with differential selectivity to distinct PI3K isoforms have been tested extensively in clinical trials, largely to target tumor epithelial cells. PI3K signaling also regulates the immune system and inhibition of PI3Kδ modulate the tumor immune microenvironment of pre-clinical mouse tumor models by relieving T-regs-mediated immunosuppression. PI3K inhibitors as a class and PI3Kδ specifically are associated with immune-related side effects. However, the impact of mixed PI3K inhibitors in tumor immunology is under-explored. Here we examine the differential effects of AZD8835, a dual PI3Kα/δ inhibitor, specifically on the tumor immune microenvironment using syngeneic models. Continuous suppression of PI3Kα/δ was not required for anti-tumor activity, as tumor growth inhibition was potentiated by an intermittent dosing/schedule in vivo. Moreover, PI3Kα/δ inhibition delivered strong single agent anti-tumor activity, which was associated with dynamic suppression of T-regs, improved CD8+ T-cell activation and memory in mouse syngeneic tumor models. Strikingly, AZD8835 promoted robust CD8+ T-cell activation dissociated from its effect on T-regs. This was associated with enhancing effector cell viability/function. Together these data reveal novel mechanisms by which PI3Kα/δ inhibitors interact with the immune system and validate the clinical compound AZD8835 as a novel immunoncology drug, independent of effects on tumor cells. These data support further clinical investigation of PI3K pathway inhibitors as immuno-oncology agents.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
61 |
7
|
Revenko A, Carnevalli LS, Sinclair C, Johnson B, Peter A, Taylor M, Hettrick L, Chapman M, Klein S, Solanki A, Gattis D, Watt A, Hughes AM, Magiera L, Kar G, Ireland L, Mele DA, Sah V, Singh M, Walton J, Mairesse M, King M, Edbrooke M, Lyne P, Barry ST, Fawell S, Goldberg FW, MacLeod AR. Direct targeting of FOXP3 in Tregs with AZD8701, a novel antisense oligonucleotide to relieve immunosuppression in cancer. J Immunother Cancer 2022; 10:jitc-2021-003892. [PMID: 35387780 PMCID: PMC8987763 DOI: 10.1136/jitc-2021-003892] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The Regulatory T cell (Treg) lineage is defined by the transcription factor FOXP3, which controls immune-suppressive gene expression profiles. Tregs are often recruited in high frequencies to the tumor microenvironment where they can suppress antitumor immunity. We hypothesized that pharmacological inhibition of FOXP3 by systemically delivered, unformulated constrained ethyl-modified antisense oligonucleotides could modulate the activity of Tregs and augment antitumor immunity providing therapeutic benefit in cancer models and potentially in man. METHODS We have identified murine Foxp3 antisense oligonucleotides (ASOs) and clinical candidate human FOXP3 ASO AZD8701. Pharmacology and biological effects of FOXP3 inhibitors on Treg function and antitumor immunity were tested in cultured Tregs and mouse syngeneic tumor models. Experiments were controlled by vehicle and non-targeting control ASO groups as well as by use of multiple independent FOXP3 ASOs. Statistical significance of biological effects was evaluated by one or two-way analysis of variance with multiple comparisons. RESULTS AZD8701 demonstrated a dose-dependent knockdown of FOXP3 in primary Tregs, reduction of suppressive function and efficient target downregulation in humanized mice at clinically relevant doses. Surrogate murine FOXP3 ASO, which efficiently downregulated Foxp3 messenger RNA and protein levels in primary Tregs, reduced Treg suppressive function in immune suppression assays in vitro. FOXP3 ASO promoted more than 70% reduction in FOXP3 levels in Tregs in vitro and in vivo, strongly modulated Treg effector molecules (eg, ICOS, CTLA-4, CD25 and 4-1BB), and augmented CD8+ T cell activation and produced antitumor activity in syngeneic tumor models. The combination of FOXP3 ASOs with immune checkpoint blockade further enhanced antitumor efficacy. CONCLUSIONS Antisense inhibitors of FOXP3 offer a promising novel cancer immunotherapy approach. AZD8701 is being developed clinically as a first-in-class FOXP3 inhibitor for the treatment of cancer currently in Ph1a/b clinical trial (NCT04504669).
Collapse
|
Clinical Trial |
3 |
45 |
8
|
Georgopoulou D, Callari M, Rueda OM, Shea A, Martin A, Giovannetti A, Qosaj F, Dariush A, Chin SF, Carnevalli LS, Provenzano E, Greenwood W, Lerda G, Esmaeilishirazifard E, O'Reilly M, Serra V, Bressan D, Mills GB, Ali HR, Cosulich SS, Hannon GJ, Bruna A, Caldas C. Landscapes of cellular phenotypic diversity in breast cancer xenografts and their impact on drug response. Nat Commun 2021; 12:1998. [PMID: 33790302 PMCID: PMC8012607 DOI: 10.1038/s41467-021-22303-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/26/2021] [Indexed: 02/01/2023] Open
Abstract
The heterogeneity of breast cancer plays a major role in drug response and resistance and has been extensively characterized at the genomic level. Here, a single-cell breast cancer mass cytometry (BCMC) panel is optimized to identify cell phenotypes and their oncogenic signalling states in a biobank of patient-derived tumour xenograft (PDTX) models representing the diversity of human breast cancer. The BCMC panel identifies 13 cellular phenotypes (11 human and 2 murine), associated with both breast cancer subtypes and specific genomic features. Pre-treatment cellular phenotypic composition is a determinant of response to anticancer therapies. Single-cell profiling also reveals drug-induced cellular phenotypic dynamics, unravelling previously unnoticed intra-tumour response diversity. The comprehensive view of the landscapes of cellular phenotypic heterogeneity in PDTXs uncovered by the BCMC panel, which is mirrored in primary human tumours, has profound implications for understanding and predicting therapy response and resistance.
Collapse
|
research-article |
4 |
34 |
9
|
Langdon S, Hughes A, Taylor MA, Kuczynski EA, Mele DA, Delpuech O, Jarvis L, Staniszewska A, Cosulich S, Carnevalli LS, Sinclair C. Combination of dual mTORC1/2 inhibition and immune-checkpoint blockade potentiates anti-tumour immunity. Oncoimmunology 2018; 7:e1458810. [PMID: 30221055 PMCID: PMC6136876 DOI: 10.1080/2162402x.2018.1458810] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/02/2022] Open
Abstract
mTOR inhibition can promote or inhibit immune responses in a context dependent manner, but whether this will represent a net benefit or be contraindicated in the context of immunooncology therapies is less understood. Here, we report that the mTORC1/2 dual kinase inhibitor vistusertib (AZD2014) potentiates anti-tumour immunity in combination with anti-CTLA-4 (αCTLA-4), αPD-1 or αPD-L1 immune checkpoint blockade. Combination of vistusertib and immune checkpoint blocking antibodies led to tumour growth inhibition and improved survival of MC-38 or CT-26 pre-clinical syngeneic tumour models, whereas monotherapies were less effective. Underlying these combinatorial effects, vistusertib/immune checkpoint combinations reduced the occurrence of exhausted phenotype tumour infiltrating lymphocytes (TILs), whilst increasing frequencies of activated Th1 polarized T-cells in tumours. Vistusertib alone was shown to promote a Th1 polarizing proinflammatory cytokine profile by innate primary immune cells. Moreover, vistusertib directly enhanced activation of effector T-cell and survival, an effect that was critically dependent on inhibitor dose. Therefore, these data highlight direct, tumour-relevant immune potentiating benefits of mTOR inhibition that complement immune checkpoint blockade. Together, these data provide a clear rationale to investigate such combinations in the clinic.
Collapse
|
Journal Article |
7 |
31 |
10
|
Hashimoto NN, Carnevalli LS, Castilho BA. Translation initiation at non-AUG codons mediated by weakened association of eukaryotic initiation factor (eIF) 2 subunits. Biochem J 2002; 367:359-68. [PMID: 12137565 PMCID: PMC1222906 DOI: 10.1042/bj20020556] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2002] [Revised: 06/19/2002] [Accepted: 07/23/2002] [Indexed: 11/17/2022]
Abstract
The heterotrimeric eukaryotic initiation factor (eIF) 2 binds the initiator methionyl-tRNA in a GTP-dependent mode and delivers it to the 40 S ribosomal subunit. In the present study, we have identified amino acid residues in eIF2beta required for binding to eIF2gamma in yeast. Alteration of six residues in the central region of eIF2beta abolished this interaction, as determined by GST-pull down and two-hybrid assays, and leads to cell lethality. Substitution of (131)Tyr and (132)Ser by alanine residues ((131)YS), although abolishing the binding to eIF2gamma in these assays, resulted in a functional but defective protein in vivo, imparting a temperature-sensitive growth phenotype to cells. A dramatically weakened association of this mutant protein with eIF2gamma in vivo was shown by co-immunoprecipitation. The (131)YS mutation in eIF2beta allows translation to initiate at non-AUG codons, as defined by the ability of cells carrying an initiator codon mutation in the HIS4 mRNA to grow in the absence of histidine. The combination of this mutation with the (264)Ser-->Tyr alteration, a previously isolated suppressor of initiator codon mutations which has been shown to increase the spontaneous GTP hydrolysis in the ternary complex, caused a recessive lethality, suggesting additive defects. Thus the impaired interaction of these two subunits represents a novel type of defect in eIF2 function, providing in vivo evidence that the strength of interaction between eIF2beta and eIF2gamma defines the correct usage of the AUG codon for translation initiation.
Collapse
|
research-article |
23 |
31 |
11
|
Avivar-Valderas A, McEwen R, Taheri-Ghahfarokhi A, Carnevalli LS, Hardaker EL, Maresca M, Hudson K, Harrington EA, Cruzalegui F. Functional significance of co-occurring mutations in PIK3CA and MAP3K1 in breast cancer. Oncotarget 2018; 9:21444-21458. [PMID: 29765551 PMCID: PMC5940413 DOI: 10.18632/oncotarget.25118] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/22/2018] [Indexed: 12/30/2022] Open
Abstract
The PI3Kα signaling pathway is frequently hyper-activated in breast cancer (BrCa), as a result of mutations/amplifications in oncogenes (e.g. HER2), decreased function in tumor suppressors (e.g. PTEN) or activating mutations in key components of the pathway. In particular, activating mutations of PIK3CA (~45%) are frequently found in luminal A BrCa samples. Genomic studies have uncovered inactivating mutations in MAP3K1 (13-20%) and MAP2K4 (~8%), two upstream kinases of the JNK apoptotic pathway in luminal A BrCa samples. Further, simultaneous mutation of PIK3CA and MAP3K1 are found in ~11% of mutant PIK3CA tumors. How these two alterations may cooperate to elicit tumorigenesis and impact the sensitivity to PI3K and AKT inhibitors is currently unknown. Using CRISPR gene editing we have genetically disrupted MAP3K1 expression in mutant PIK3CA cell lines to specifically create in vitro models reflecting the mutational status of PIK3CA and MAP3K1 in BrCa patients. MAP3K1 deficient cell lines exhibited ~2.4-fold increased proliferation rate and decreased sensitivity to PI3Kα/δ(AZD8835) and AKT (AZD5363) inhibitors (~2.61 and ~5.23-fold IC50 increases, respectively) compared with parental control cell lines. In addition, mechanistic analysis revealed that MAP3K1 disruption enhances AKT phosphorylation and downstream signaling and reduces sensitivity to AZD5363-mediated pathway inhibition. This appears to be a consequence of deficient MAP3K1-JNK signaling increasing IRS1 stability and therefore promoting IRS1 binding to p85, resulting in enhanced PI3Kα activity. Using 3D-MCF10A-PI3KαH1047R models, we found that MAP3K1 depletion increased overall acinar volume and counteracted AZD5363-mediated reduction of acinar growth due to enhanced proliferation and reduced apoptosis. Furthermore, in vivo efficacy studies revealed that MAP3K1-deficient MCF7 tumors were less sensitive to AKT inhibitor treatment, compared with parental MCF7 tumors. Our study provides mechanistic and in vivo evidence indicating a role for MAP3K1 as a tumor suppressor gene at least in the context of PIK3CA-mutant backgrounds. Further, our work predicts that MAP3K1 mutational status may be considered as a predictive biomarker for efficacy in PI3K pathway inhibitor trials.
Collapse
|
Journal Article |
7 |
30 |
12
|
Carnevalli LS, Pereira CM, Longo BM, Jaqueta CB, Avedissian M, Mello LEAM, Castilho BA. Phosphorylation of translation initiation factor eIF2α in the brain during pilocarpine-induced status epilepticus in mice. Neurosci Lett 2004; 357:191-4. [PMID: 15003282 DOI: 10.1016/j.neulet.2003.12.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 12/15/2003] [Accepted: 12/15/2003] [Indexed: 11/24/2022]
Abstract
In this work, we show extensive phosphorylation of the alpha subunit of translation initiation factor 2 (eIF2alpha) occurring in the brain of mice subjected to 30 min of status epilepticus induced by pilocarpine. eIF2alpha(P) immunoreactivity was detected in the hippocampal pyramidal layer CA1 and CA3, cortex layer V, thalamus and amygdala. After 2 h of recovery, there was a marked decrease in total brain eIF2alpha(P), with the cortex layer V showing the most pronounced loss of anti-eIF2alpha(P) labeling, whereas the CA1 subregion had a significant increase in eIF2alpha(P). These results indicate that inhibition of protein synthesis in experimental models of epilepsy might be due to low levels of eIF2-GTP caused by the phosphorylation of eIF2alpha, and suggest that translational control may contribute to cell fate in the affected areas.
Collapse
|
|
21 |
19 |
13
|
Carnevalli LS, Scognamiglio R, Cabezas-Wallscheid N, Rahmig S, Laurenti E, Masuda K, Jöckel L, Kuck A, Sujer S, Polykratis A, Erlacher M, Pasparakis M, Essers MAG, Trumpp A. Improved HSC reconstitution and protection from inflammatory stress and chemotherapy in mice lacking granzyme B. ACTA ACUST UNITED AC 2014; 211:769-79. [PMID: 24752302 PMCID: PMC4010905 DOI: 10.1084/jem.20131072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Granzyme B is expressed by hematopoietic stem cells (HSCs) and stromal cells in response to bacterial products or chemotherapy agents and limits HSC reconstitution potential. The serine protease granzyme B (GzmB) is stored in the granules of cytotoxic T and NK cells and facilitates immune-mediated destruction of virus-infected cells. In this study, we use genetic tools to report novel roles for GzmB as an important regulator of hematopoietic stem cell (HSC) function in response to stress. HSCs lacking the GzmB gene show improved bone marrow (BM) reconstitution associated with increased HSC proliferation and mitochondrial activity. In addition, recipients deficient in GzmB support superior engraftment of wild-type HSCs compared with hosts with normal BM niches. Stimulation of mice with lipopolysaccharide strongly induced GzmB protein expression in HSCs, which was mediated by the TLR4–TRIF–p65 NF-κB pathway. This is associated with increased cell death and GzmB secretion into the BM environment, suggesting an extracellular role of GzmB in modulating HSC niches. Moreover, treatment with the chemotherapeutic agent 5-fluorouracil (5-FU) also induces GzmB production in HSCs. In this situation GzmB is not secreted, but instead causes cell-autonomous apoptosis. Accordingly, GzmB-deficient mice are more resistant to serial 5-FU treatments. Collectively, these results identify GzmB as a negative regulator of HSC function that is induced by stress and chemotherapy in both HSCs and their niches. Blockade of GzmB production may help to improve hematopoiesis in various situations of BM stress.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
17 |
14
|
Harrod A, Lai CF, Goldsbrough I, Simmons GM, Oppermans N, Santos DB, Győrffy B, Allsopp RC, Toghill BJ, Balachandran K, Lawson M, Morrow CJ, Surakala M, Carnevalli LS, Zhang P, Guttery DS, Shaw JA, Coombes RC, Buluwela L, Ali S. Genome engineering for estrogen receptor mutations reveals differential responses to anti-estrogens and new prognostic gene signatures for breast cancer. Oncogene 2022; 41:4905-4915. [PMID: 36198774 PMCID: PMC7613769 DOI: 10.1038/s41388-022-02483-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022]
Abstract
Mutations in the estrogen receptor (ESR1) gene are common in ER-positive breast cancer patients who progress on endocrine therapies. Most mutations localise to just three residues at, or near, the C-terminal helix 12 of the hormone binding domain, at leucine-536, tyrosine-537 and aspartate-538. To investigate these mutations, we have used CRISPR-Cas9 mediated genome engineering to generate a comprehensive set of isogenic mutant breast cancer cell lines. Our results confirm that L536R, Y537C, Y537N, Y537S and D538G mutations confer estrogen-independent growth in breast cancer cells. Growth assays show mutation-specific reductions in sensitivities to drugs representing three classes of clinical anti-estrogens. These differential mutation- and drug-selectivity profiles have implications for treatment choices following clinical emergence of ER mutations. Our results further suggest that mutant expression levels may be determinants of the degree of resistance to some anti-estrogens. Differential gene expression analysis demonstrates up-regulation of estrogen-responsive genes, as expected, but also reveals that enrichment for interferon-regulated gene expression is a common feature of all mutations. Finally, a new gene signature developed from the gene expression profiles in ER mutant cells predicts clinical response in breast cancer patients with ER mutations.
Collapse
|
research-article |
3 |
14 |
15
|
Floc'h N, Ashton S, Ferguson D, Taylor P, Carnevalli LS, Hughes AM, Harris E, Hattersley M, Wen S, Curtis NJ, Pilling JE, Young LA, Maratea K, Pease EJ, Barry ST. Modeling Dose and Schedule Effects of AZD2811 Nanoparticles Targeting Aurora B Kinase for Treatment of Diffuse Large B-cell Lymphoma. Mol Cancer Ther 2019; 18:909-919. [PMID: 30872381 DOI: 10.1158/1535-7163.mct-18-0577] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/03/2018] [Accepted: 03/07/2019] [Indexed: 11/16/2022]
Abstract
Barasertib (AZD1152), a pro-drug of the highly potent and selective Aurora B kinase inhibitor AZD2811, showed promising clinical activity in relapsed/refractory diffuse large B-cell lymphoma (DLBCL) patients administered as a 4-day infusion. To improve potential therapeutic benefit of Aurora B kinase inhibition, a nanoparticle formulation of AZD2811 has been developed to address limitations of repeated intravenous infusion. One of the challenges with the use of nanoparticles for chronic treatment of tumors is optimizing dose and schedule required to enable repeat administration to sustain tumor growth inhibition. AZD2811 gives potent cell growth inhibition across a range of DLBCL cells lines in vitro In vivo, repeat administration of the AZD2811 nanoparticle gave antitumor activity at half the dose intensity of AZD1152. Compared with AZD1152, a single dose of AZD2811 nanoparticle gave less reduction in pHH3, but increased apoptosis and reduction of cells in G1 and G2-M, albeit at later time points, suggesting that duration and depth of target inhibition influence the nature of the tumor cell response to drug. Further exploration of the influence of dose and schedule on efficacy revealed that AZD2811 nanoparticle can be used flexibly with repeat administration of 25 mg/kg administered up to 7 days apart being sufficient to maintain equivalent tumor control. Timing of repeat administration could be varied with 50 mg/kg every 2 weeks controlling tumor control as effectively as 25 mg/kg every week. AZD2811 nanoparticle can be administered with very different doses and schedules to inhibit DLBCL tumor growth, although maximal tumor growth inhibition was achieved with the highest dose intensities.
Collapse
|
Journal Article |
6 |
13 |
16
|
Johnson TI, Minteer CJ, Kottmann D, Dunlop CR, Fernández SBDQ, Carnevalli LS, Wallez Y, Lau A, Richards FM, Jodrell DI. Quantifying cell cycle-dependent drug sensitivities in cancer using a high throughput synchronisation and screening approach. EBioMedicine 2021; 68:103396. [PMID: 34049239 PMCID: PMC8170111 DOI: 10.1016/j.ebiom.2021.103396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chemotherapy and targeted agent anti-cancer efficacy is largely dependent on the proliferative state of tumours, as exemplified by agents that target DNA synthesis/replication or mitosis. As a result, cell cycle specificities of a number of cancer drugs are well known. However, they are yet to be described in a quantifiable manner. METHODS A scalable cell synchronisation protocol used to screen a library of 235 anti-cancer compounds exposed over six hours in G1 or S/G2 accumulated AsPC-1 cells to generate a cell cycle specificity (CCS) score. FINDINGS The synchronisation method was associated with reduced method-related cytotoxicity compared to nocodazole, delivering sufficient cell cycle purity and cell numbers to run high-throughput drug library screens. Compounds were identified with G1 and S/G2-associated specificities that, overall, functionally matched with a compound's target/mechanism of action. This annotation was used to describe a synergistic schedule using the CDK4/6 inhibitor, palbociclib, prior to gemcitabine/AZD6738 as well as describe the correlation between the CCS score and published synergistic/antagonistic drug schedules. INTERPRETATION This is the first highly quantitative description of cell cycle-dependent drug sensitivities that utilised a tractable and tolerated method with potential uses outside the present study. Drug treatments such as those shown to be G1 or S/G2 associated may benefit from scheduling considerations such as after CDK4/6 inhibitors and being first in drug sequences respectively. FUNDING Cancer Research UK (CRUK) Institute core grants C14303/A17197 and C9545/A29580. The Li Ka Shing Centre where this work was performed was generously funded by CK Hutchison Holdings Limited, the University of Cambridge, CRUK, The Atlantic Philanthropies and others.
Collapse
|
research-article |
4 |
12 |
17
|
Carnevalli LS, Taylor MA, King M, Coenen-Stass AML, Hughes AM, Bell S, Proia TA, Wang Y, Ramos-Montoya A, Wali N, Carroll D, Singh M, Moschetta M, Gutierrez PM, Gardelli C, Critchlow SE, Klinowska T, Fawell SE, Barry ST. Macrophage Activation Status Rather than Repolarization Is Associated with Enhanced Checkpoint Activity in Combination with PI3Kγ Inhibition. Mol Cancer Ther 2021; 20:1080-1091. [PMID: 33785652 DOI: 10.1158/1535-7163.mct-20-0961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/08/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
Suppressive myeloid cells mediate resistance to immune checkpoint blockade. PI3Kγ inhibition can target suppressive macrophages, and enhance efficacy of immune checkpoint inhibitors. However, how PI3Kγ inhibitors function in different tumor microenvironments (TME) to activate specific immune cells is underexplored. The effect of the novel PI3Kγ inhibitor AZD3458 was assessed in preclinical models. AZD3458 enhanced antitumor activity of immune checkpoint inhibitors in 4T1, CT26, and MC38 syngeneic models, increasing CD8+ T-cell activation status. Immune and TME biomarker analysis of MC38 tumors revealed that AZD3458 monotherapy or combination treatment did not repolarize the phenotype of tumor-associated macrophage cells but induced gene signatures associated with LPS and type II INF activation. The activation biomarkers were present across tumor macrophages that appear phenotypically heterogenous. AZD3458 alone or in combination with PD-1-blocking antibodies promoted an increase in antigen-presenting (MHCII+) and cytotoxic (iNOS+)-activated macrophages, as well as dendritic cell activation. AZD3458 reduced IL-10 secretion and signaling in primary human macrophages and murine tumor-associated macrophages, but did not strongly regulate IL-12 as observed in other studies. Therefore, rather than polarizing tumor macrophages, PI3Kγ inhibition with AZD3458 promotes a cytotoxic switch of macrophages into antigen-presenting activated macrophages, resulting in CD8 T-cell-mediated antitumor activity with immune checkpoint inhibitors associated with tumor and peripheral immune activation.
Collapse
|
Journal Article |
4 |
11 |
18
|
Basilico S, Wang X, Kennedy A, Tzelepis K, Giotopoulos G, Kinston SJ, Quiros PM, Wong K, Adams DJ, Carnevalli LS, Huntly BJP, Vassiliou GS, Calero-Nieto FJ, Göttgens B. Dissecting the early steps of MLL induced leukaemogenic transformation using a mouse model of AML. Nat Commun 2020; 11:1407. [PMID: 32179751 PMCID: PMC7075888 DOI: 10.1038/s41467-020-15220-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Leukaemogenic mutations commonly disrupt cellular differentiation and/or enhance proliferation, thus perturbing the regulatory programs that control self-renewal and differentiation of stem and progenitor cells. Translocations involving the Mll1 (Kmt2a) gene generate powerful oncogenic fusion proteins, predominantly affecting infant and paediatric AML and ALL patients. The early stages of leukaemogenic transformation are typically inaccessible from human patients and conventional mouse models. Here, we take advantage of cells conditionally blocked at the multipotent haematopoietic progenitor stage to develop a MLL-r model capturing early cellular and molecular consequences of MLL-ENL expression based on a clear clonal relationship between parental and leukaemic cells. Through a combination of scRNA-seq, ATAC-seq and genome-scale CRISPR-Cas9 screening, we identify pathways and genes likely to drive the early phases of leukaemogenesis. Finally, we demonstrate the broad utility of using matched parental and transformed cells for small molecule inhibitor studies by validating both previously known and other potential therapeutic targets.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Female
- Hematopoietic Stem Cells/metabolism
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/physiopathology
- Mice
- Mice, Inbred C57BL
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
|
Research Support, N.I.H., Extramural |
5 |
11 |
19
|
Lawson M, Cureton N, Ros S, Cheraghchi-Bashi A, Urosevic J, D'Arcy S, Delpuech O, DuPont M, Fisher DI, Gangl ET, Lewis H, Trueman D, Wali N, Williamson SC, Moss J, Montaudon E, Derrien H, Marangoni E, Miragaia RJ, Gagrica S, Morentin-Gutierrez P, Moss TA, Maglennon G, Sutton D, Polanski R, Rosen A, Cairns J, Zhang P, Sánchez-Guixé M, Serra V, Critchlow SE, Scott JS, Lindemann JP, Barry ST, Klinowska T, Morrow CJ, S Carnevalli L. The Next-Generation Oral Selective Estrogen Receptor Degrader Camizestrant (AZD9833) Suppresses ER+ Breast Cancer Growth and Overcomes Endocrine and CDK4/6 Inhibitor Resistance. Cancer Res 2023; 83:3989-4004. [PMID: 37725704 PMCID: PMC10690091 DOI: 10.1158/0008-5472.can-23-0694] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/11/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023]
Abstract
Oral selective estrogen receptor degraders (SERD) could become the backbone of endocrine therapy (ET) for estrogen receptor-positive (ER+) breast cancer, as they achieve greater inhibition of ER-driven cancers than current ETs and overcome key resistance mechanisms. In this study, we evaluated the preclinical pharmacology and efficacy of the next-generation oral SERD camizestrant (AZD9833) and assessed ER-co-targeting strategies by combining camizestrant with CDK4/6 inhibitors (CDK4/6i) and PI3K/AKT/mTOR-targeted therapy in models of progression on CDK4/6i and/or ET. Camizestrant demonstrated robust and selective ER degradation, modulated ER-regulated gene expression, and induced complete ER antagonism and significant antiproliferation activity in ESR1 wild-type (ESR1wt) and mutant (ESR1m) breast cancer cell lines and patient-derived xenograft (PDX) models. Camizestrant also delivered strong antitumor activity in fulvestrant-resistant ESR1wt and ESR1m PDX models. Evaluation of camizestrant in combination with CDK4/6i (palbociclib or abemaciclib) in CDK4/6-naive and -resistant models, as well as in combination with PI3Kαi (alpelisib), mTORi (everolimus), or AKTi (capivasertib), indicated that camizestrant was active with CDK4/6i or PI3K/AKT/mTORi and that antitumor activity was further increased by the triple combination. The response was observed independently of PI3K pathway mutation status. Overall, camizestrant shows strong and broad antitumor activity in ER+ breast cancer as a monotherapy and when combined with CDK4/6i and PI3K/AKT/mTORi. SIGNIFICANCE Camizestrant, a next-generation oral SERD, shows promise in preclinical models of ER+ breast cancer alone and in combination with CDK4/6 and PI3K/AKT/mTOR inhibitors to address endocrine resistance, a current barrier to treatment.
Collapse
|
research-article |
2 |
9 |
20
|
Hopcroft L, Wigmore EM, Williamson SC, Ros S, Eberlein C, Moss JI, Urosevic J, Carnevalli LS, Talbot S, Bradshaw L, Blaker C, Gunda S, Owenson V, Hoffmann S, Sutton D, Jones S, Goodwin RJA, Willis BS, Rooney C, de Bruin EC, Barry ST. Combining the AKT inhibitor capivasertib and SERD fulvestrant is effective in palbociclib-resistant ER+ breast cancer preclinical models. NPJ Breast Cancer 2023; 9:64. [PMID: 37543694 PMCID: PMC10404292 DOI: 10.1038/s41523-023-00571-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/25/2023] [Indexed: 08/07/2023] Open
Abstract
Combining the selective AKT inhibitor, capivasertib, and SERD, fulvestrant improved PFS in a Phase III clinical trial (CAPItello-291), treating HR+ breast cancer patients following aromatase inhibitors, with or without CDK4/6 inhibitors. However, clinical data suggests CDK4/6 treatment may reduce response to subsequent monotherapy endocrine treatment. To support understanding of trials such as CAPItello-291 and gain insight into this emerging population of patients, we explored how CDK4/6 inhibitor treatment influences ER+ breast tumour cell function and response to fulvestrant and capivasertib after CDK4/6 inhibitor treatment. In RB+, RB- T47D and MCF7 palbociclib-resistant cells ER pathway ER and Greb-1 expression were reduced versus naïve cells. PI3K-AKT pathway activation was also modified in RB+ cells, with capivasertib less effective at reducing pS6 in RB+ cells compared to parental cells. Expression profiling of parental versus palbociclib-resistant cells confirmed capivasertib, fulvestrant and the combination differentially impacted gene expression modulation in resistant cells, with different responses seen in T47D and MCF7 cells. Fulvestrant inhibition of ER-dependent genes was reduced. In resistant cells, the combination was less effective at reducing cell cycle genes, but a consistent reduction in cell fraction in S-phase was observed in naïve and resistant cells. Despite modified signalling responses, both RB+ and RB- resistant cells responded to combination treatment despite some reduction in relative efficacy and was effective in vivo in palbociclib-resistant PDX models. Collectively these findings demonstrate that simultaneous inhibition of AKT and ER signalling can be effective in models representing palbociclib resistance despite changes in pathway dependency.
Collapse
|
research-article |
2 |
5 |
21
|
Carnevalli LS, Ghadially H, Barry ST. Therapeutic Approaches Targeting the Natural Killer-Myeloid Cell Axis in the Tumor Microenvironment. Front Immunol 2021; 12:633685. [PMID: 33953710 PMCID: PMC8092119 DOI: 10.3389/fimmu.2021.633685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/29/2021] [Indexed: 01/21/2023] Open
Abstract
Immunotherapy has transformed cancer treatment by promoting durable clinical responses in a proportion of patients; however, treatment still fails in many patients. Innate immune cells play a key role in the response to immunotherapy. Crosstalk between innate and adaptive immune systems drives T-cell activation but also limits immunotherapy response, as myeloid cells are commonly associated with resistance. Hence, innate cells have both negative and positive effects within the tumor microenvironment (TME), and despite investment in early clinical trials targeting innate cells, they have seen limited success. Suppressive myeloid cells facilitate metastasis and immunotherapy resistance through TME remodeling and inhibition of adaptive immune cells. Natural killer (NK) cells, in contrast, secrete inflammatory cytokines and directly kill transformed cells, playing a key immunosurveillance role in early tumor development. Myeloid and NK cells show reciprocal crosstalk, influencing myeloid cell functional status or antigen presentation and NK effector function, respectively. Crosstalk between myeloid cells and the NK immune network in the TME is especially important in the context of therapeutic intervention. Here we discuss how myeloid and NK cell interactions shape anti-tumor responses by influencing an immunosuppressive TME and how this may influence outcomes of treatment strategies involving drugs that target myeloid and NK cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Cell Communication/drug effects
- Humans
- Immune Checkpoint Inhibitors/adverse effects
- Immune Checkpoint Inhibitors/therapeutic use
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunotherapy
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Myeloid-Derived Suppressor Cells/drug effects
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Tumor Escape/drug effects
- Tumor Microenvironment/drug effects
Collapse
|
Review |
4 |
1 |
22
|
Collins GP, Clevenger TN, Burke KA, Yang B, MacDonald A, Cunningham D, Fox CP, Goy A, Gribben J, Nowakowski GS, Roschewski M, Vose JM, Vallurupalli A, Cheung J, Raymond A, Nuttall B, Stetson D, Dougherty BA, Schalkwijk S, Carnevalli LS, Willis B, Tao L, Harrington EA, Hamdy A, Izumi R, Pease JE, Frigault MM, Flinn I. A phase 1/2 study of the combination of acalabrutinib and vistusertib in patients with relapsed/refractory B-cell malignancies. Leuk Lymphoma 2021; 62:2625-2636. [PMID: 34269152 DOI: 10.1080/10428194.2021.1938027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In a phase 1b study of acalabrutinib (a covalent Bruton tyrosine kinase (BTK) inhibitor) in combination with vistusertib (a dual mTORC1/2 inhibitor) in patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL), multiple ascending doses of the combination as intermittent or continuous schedules of vistusertib were evaluated. The overall response rate was 12% (3/25). The pharmacodynamic (PD) profile for acalabrutinib showed that BTK occupancy in all patients was >95%. In contrast, PD analysis for vistusertib showed variable inhibition of phosphorylated 4EBP1 (p4EBP1) without modulation of AKT phosphorylation (pAKT). The pharmacokinetic (PK)/PD relationship of vistusertib was direct for TORC1 inhibition (p4EBP1) but did not correlate with TORC2 inhibition (pAKT). Cell-of-origin subtyping or next-generation sequencing did not identify a subset of DLBCL patients with clinical benefit; however, circulating tumor DNA dynamics correlated with radiographic response. These data suggest that vistusertib does not modulate targets sufficiently to add to the clinical activity of acalabrutinib monotherapy. Clinicaltrials.gov identifier: NCT03205046.
Collapse
|
Journal Article |
4 |
0 |
23
|
Elorbany S, Berlato C, Carnevalli LS, Maniati E, Barry ST, Wang J, Manchanda R, Kzhyshkowska J, Balkwill F. Immunotherapy that improves response to chemotherapy in high-grade serous ovarian cancer. Nat Commun 2024; 15:10144. [PMID: 39578450 PMCID: PMC11584700 DOI: 10.1038/s41467-024-54295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024] Open
Abstract
Single-cell RNA sequencing (scRNAseq) of tumour-infiltrating immune cells in high-grade serous ovarian cancer (HGSOC) omental biopsies reveals potential targets that could enhance response to neo-adjuvant chemotherapy (NACT). Analysis of 64,097 cells identifies NACT-induced overexpression of stabilin-1 (clever-1) on macrophages and FOXP3 in Tregs that is confirmed at the protein level. STAB1 inhibition in vitro induces anti-tumour macrophages. FOXP3 anti-sense oligonucleotide (FOXP3-ASO), repolarises Tregs to an effector T cell phenotype. ScRNAseq on 69,781 cells from an HGSOC syngeneic mouse model recapitulates the patients' data. Combining chemotherapy with anti-stabilin1 antibody and/or Foxp3-ASO significantly increases survival of mice with established peritoneal disease in two HGSOC syngeneic models and progression-free survival in a third model. Long-term survivors (300 days + ) are resistant to tumour rechallenge. Anti-stabilin1 antibody enriches the tumours with CXCL9+ macrophages and Foxp3-ASO increases TBET cell infiltration. Our results suggest that targeting these molecules in immune cells may improve chemotherapy response in patients.
Collapse
MESH Headings
- Female
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/pathology
- Animals
- Humans
- Mice
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- Immunotherapy/methods
- Cell Line, Tumor
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/immunology
- Macrophages/immunology
- Macrophages/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/immunology
- Cystadenocarcinoma, Serous/pathology
- Neoadjuvant Therapy/methods
- Chemokine CXCL9/metabolism
- Chemokine CXCL9/genetics
- Single-Cell Analysis
Collapse
|
research-article |
1 |
|
24
|
Kuczynski EA, Morlino G, Peter A, Coenen‐Stass AML, Moss JI, Wali N, Delpuech O, Reddy A, Solanki A, Sinclair C, Calado DP, Carnevalli LS. A preclinical model of peripheral T-cell lymphoma GATA3 reveals DNA damage response pathway vulnerability. EMBO Mol Med 2022; 14:e15816. [PMID: 35510955 PMCID: PMC9174882 DOI: 10.15252/emmm.202215816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Peripheral T-cell lymphoma (PTCL) represents a rare group of heterogeneous diseases in urgent need of effective treatments. A scarcity of disease-relevant preclinical models hinders research advances. Here, we isolated a novel mouse (m)PTCL by serially transplanting a lymphoma from a germinal center B-cell hyperplasia model (Cγ1-Cre Blimp1fl/fl ) through immune-competent mice. Lymphoma cells were identified as clonal TCRβ+ T-helper cells expressing T-follicular helper markers. We also observed coincident B-cell activation and development of a de novo B-cell lymphoma in the model, reminiscent of B-cell activation/lymphomagenesis found in human PTCL. Molecular profiling linked the mPTCL to the high-risk "GATA3" subtype of PTCL, showing GATA3 and Th2 gene expression, PI3K/mTOR pathway enrichment, hyperactivated MYC, and genome instability. Exome sequencing identified a human-relevant oncogenic β-catenin mutation possibly involved in T-cell lymphomagenesis. Prolonged treatment responses were achieved in vivo by targeting ATR in the DNA damage response (DDR), a result corroborated in PTCL cell lines. This work provides mechanistic insight into the molecular and immunological drivers of T-cell lymphomagenesis and proposes DDR inhibition as an effective and readily translatable therapy in PTCL.
Collapse
|
research-article |
3 |
|
25
|
Carnevalli LS, Carrol D, Moschetta M, Gutierrez PM, Gardelli C, Taylor MA, Montoya A, Hughes A, King M, Klinowska T, Barry ST. Abstract 100: Novel selective PI3Kγ inhibitor AZD3458 promotes anti-tumor immune responses and reverts resistance to immunotherapy in checkpoint blockade refractory preclinical models. Cancer Res 2019. [DOI: 10.1158/1538-7445.am2019-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The PI3Kγ isoform is a key regulator of immune cell proliferation, survival, migration and activation. PI3Kγ inhibitors have the potential to treat a variety of diseases including respiratory, inflammatory, metabolic disorders and cancer. In the context of cancer PI3Kγ inhibition re-polarizes macrophages to an immuno-stimulatory phenotype activating a T-cell mediated tumor immune response. Selective PI3Kγ inhibitors have potential as monotherapy and in combination with checkpoint inhibition to overcome resistance and to enhance efficacy of checkpoint inhibitors. AZD3458 is a highly selective PI3Kγ clinical candidate kinase inhibitor with a cellular IC50 of 8nM with a 100-fold selectivity over PI3Kδ. In vitro, AZD3458 inhibits pAKTS308/S473 in human macrophages and mouse CD11b activation at 32nM and 30nM free IC50, respectively. At these concentrations AZD3458 reverses macrophage polarization increasing IL12/IL-10 ratio and does not impact T cell proliferation and function analysed by gene expression profiling, cytokine quantification and flow cytometry. Oral administration of AZD3458 (20mg/Kg BID) remodeled the tumor microenvironment in 4T1 orthotopic breast tumor model. AZD3458 decreased tumor associated macrophages by 20% compared to vehicle and reduced overall protein expression of immunosuppressive markers CD206 and PD-L1 measured by flow cytometry. In addition, AZD3458 reduced MDSC/neutrophil activation and promoted cytotoxic T-cell activation in vivo, measured by GzmB and Perforin mRNA and protein expression. Consistent to the observed tumor remodeling, combination with checkpoint inhibitors α-PD-1 or α-PD-L1 antibodies (10mg/kg 3x week) had greater anti-tumor effects than checkpoint inhibitor alone in 4T1, LLC, CT-26 and MC-38 mouse syngeneic models. These data demonstrate that AZD3458 can reverse myeloid suppressive tumor microenvironment and revert tumor resistance to immunotherapy in myeloid-enriched immunosuppressive tumor types.
Citation Format: Larissa S. Carnevalli, Danielle Carrol, Michele Moschetta, Pablo Morentin Gutierrez, Cristina Gardelli, Molly A. Taylor, Antonio Montoya, Adina Hughes, Matthew King, Teresa Klinowska, Simon T. Barry. Novel selective PI3Kγ inhibitor AZD3458 promotes anti-tumor immune responses and reverts resistance to immunotherapy in checkpoint blockade refractory preclinical models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 100.
Collapse
|
|
6 |
|